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ASYMPTOTIC SPECTRUM OF MULTIPARAMETER
EIGENVALUE PROBLEMS

by HANS VOLKMER
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Results are given for the asymptotic spectrum of a multiparameter eigenvalue problem in Hilbert space. They
are based on estimates for eigenvalues derived from the minimum-maximum principle. As an application, a
multiparameter Sturm-Liouville problem is considered.

1991 Mathematics subject classification: 47A75, 34L20, 47A10

1. Introduction

We consider the /c-parameter eigenvalue problem

Trur+ £ AsKrsur = 0, 0*ureD(Tr), r=l,...,k, (1.1)
s = l

where k is a positive integer. The selfadjoint operators Tr and Vrl,..., Vrk act in a
separable infinite-dimensional Hilbert space Hr for each r=l,...,k. The operator Tr:
Hr=>D(Tr)-*Hr has compact resolvent and is bounded below, and Vn is bounded for all
r,s=\,...,k. A fe-tuple A=(A,,...,/lt)eR* for which there exist vectors uu...,uk satisfy-
ing (1.1) is an eigenvalue of (1.1). The study of multiparameter eigenvalue problems of
this type was initiated by Atkinson [1]. Since then many results on existence of
eigenvalues (generalizing the classical Klein oscillation theorem) and on expansion into
eigenvectors have been obtained; see [12] for an overview.

The study of the asymptotic behaviour of the spectrum of (1.1) (i.e., its set of
eigenvalues) has found considerable interest [2,6,8,9,10,11]. One question is to find
the asymptotic directions of the spectrum of (1.1), i.e., those unit vectors oeR* for which
there exists a seqence k" of eigenvalues of (1.1) such that A"/||^"|| converges to to while
|| A" || converges to infinity as n-*co. The set of all such asymptotic directions forms the
asymptotic spectrum, and it is denoted by AS. In the special case of a multiparameter
Sturm-Liouville problem (when the Tr-operators are of Sturm-Liouville type and Vn are
multiplication operators in a L2 space), the asymptotic spectrum was determined in an
unpublished lecture by Atkinson [2]. For the abstract two-parameter problem, the
asymptotic spectrum was investigated by Binding, Browne and Seddighi [6] (see also
[7]) by geometrical methods involving eigencurves in the plane. The object of the
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120 HANS VOLKMER

present paper is to generalize some of the results of the latter paper to general
dimension k (when we cannot use figures anymore), and to reprove Atkinson's theorem
within the abstract setting.

It is easy to show (see Theorem 2.1) that the asymptotic spectrum of (1.1) is contained
in the set C + = P)J=1Cr

+, where Cr
+ is the cone (a cone is a subset of Rfc closed under

multiplication with positive scalars) defined by

C; = {AeR": there is arecl(Kr) such that a rJl^0}. (1.2)

We use the notation

Vr = {((Vrlu,«),...,(Vrku,u)): ueU,}; (1.3)

cl(Kr) is the closure of Vr and Ur is the unit sphere in Hr. These cones are a standard
tool in multiparameter spectral theory; see [5]. In fact, Atkinson [2] showed that
AS — C+ nSk~l in the uniformly right definite Sturm-Liouville case. It was noted in [6]
that, in general, this equality does not hold in the situation of (1.1). This can be seen by
the following simple example (compare [6, Example 4.1]) that also shows us the nature
of the problem we are considering in this paper.

Let Hl= ••• =Hk be a Hilbert space with orthonormal basis ex,e2,... Let Tr be the
operator defined by Tren = trnen where each sequence tr> 1tr2,-- consists of positive
numbers that increase to infinity. The operators Vrs are zero for r^s and equal to the
negative identity operator if r = s. Of course, such an uncoupled multiparameter problem
is fairly trivial and usually not of much interest. However, the determination of its
asymptotic spectrum is not entirely trivial. The eigenvalues are given by tuples
(ti,h'--->tk.ik) where i = (iu...,ik) is any multiindex of positive integers. The cone C +

consists of all vectors (Xu...,Ak) with nonnegative components. The inclusion ASc
C+ r\Sk~l is obvious. It is also clear that, in general, not every unit vector in C+ is an
asymptotic direction of the spectrum (for example, if trn = 2" and fc^2). A natural
additional assumption to ensure that AS = C+ o S * " 1 is given by

lim tr „+l/tFt „ = 1 for all but at most one index r = 1, . . . , k; (1.4)

see Section 3 for a proof.
In fact, we will show in Sections 3 and 4 that this type of additional assumption is

also important in the general case of (1.1). More precisely, a given unit vector
(o = (co!,...,a>k) is an asymptotic direction of a uniformly right or left definite problem
(1.1) provided that there exist sequences arn of eigenvalues of the one-parameter
problems

(1.5)
where
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ASYMPTOTIC SPECTRUM 121

W,= £ <ogVn (1.6)
s=l

that converge monotonically to infinity and satisfy (1.4) with ar,n = tr-n.
The paper is organized as follows. In Section 2 we give some results that are true

without assuming a definiteness condition. In Sections 3 and 4, we present results that
require uniform right and left definiteness of (1.1), respectively. Finally, in Section 5 we
specialize to the Sturm-Liouville case and reprove Atkinson's theorem [2].

2. First results

We start with the announced

Theorem 2.1. The asymptotic spectrum AS of (1.1) is contained in C+.

Proof. Let toe AS. By definition, there is a sequence k" of eigenvalues of (1.1) such
that >L"/11>l"11 —*• c« and ||A"||-»oo as n->oo. Choose corresponding eigenvectors u"eUr,
r=\,...,k, such that

7 X + £ KVrSU
nr=0.

5 = 1

We multiply by u" and obtain

fl + v;*" = 0 (2.1)
with sequences v" 6 Vr. Since the sets Vr are bounded, these sequences have convergent
subsequences. Going over to subsequences if necessary, we assume that v"-»arecl(l^.) as
M-»OO for each r. Since Tr is bounded below, there is a constant cr such that (Tru,u)>cr

for all ueD{Tr) n Ur. Now (2.1) yields

Since || A"|| ->oo, this implies arcog0 for all r. Thus coeC+. •

As in [5], we introduce cones C~ <^CrcC* by

C; = {k e R*: there is vr e Vr such that v,A < 0} (2.2)
and

Cr = {k e R*: there is vP e Vr such that v,k g 0}. (2.3)

If Tr is positive definite for every r=l,...,k, i.e., (Tru,M)>0 for all ueD(Tr)nUr then
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122 HANS VOLKMER

(2.1) shows that every eigenvalue of (1.1) is in C~= f]k
r^iC,7. This implies the slightly

stronger result AS<=c\(C~).
For every r = \,...,k and k = (kl,...,k^e1lk, the operator Tr + Y%=i ksVrs is selfadjoint

with compact resolvent and bounded below. Therefore, we can list its eigenvalues in
increasing order and counted according to multiplicity as

(2.4)

By the minimum-maximum principle [13], we can write

l (2.5)p-(A) = min max \(Tru,u)+ £ As(KrsM,u)l
E ueEnUr |_ *=1 J

where the minimum is taken over all /-dimensional subspaces E of D(Tr). For every
r=l,...,k and every positive integer in the solutions of the equation p'r

r(k) = 0 then
define the eigensurface Z'r

r. The intersection points of ZV,..., Z'f, if they exist, are the
eigenvalues of (1.1) corresponding to the oscillation count i=(i1,...,ik). We now prove
the following

Theorem 2.2 IfkeZJ
r,pe Z\ and j ^ i, then k-peCr.

Proof. Use p{(k) = 0 and (2.5) to find a subspace E of D(Tr) with dimension j such
that

max [(r r U > U)+Eli^,M)l=O. (2.6)
| J

Now p;'(/i)^pX/0 = 0 a n d (2-5) s n o w t h a t the left hand side of (2.6) with k replaced by n
is greater than or equal to 0. Thus there exists ueEnU, such that

(Tru,u)+ X /is(Krs«,M)^0. (2.7)
s=l

By (2.6), the inequality is reversed if fi is replaced by k. Subtracting the two inequalities,
we obtain

Z as-/is)(Frsu,M)^o.
s = l

This implies k—peCr. •

If i=j then the statement of Theorem 2.2 remains true if we replace Cr by
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ASYMPTOTIC SPECTRUM 123

Qr = Cr n ( - Cr) = {k e Rk: there are ar, br e Vr such that arA g 0 ̂  brA}

= {AeR*: there is ar ecoVr such that arA = 0}, (2.8)

where coKr denotes the convex hull of Vr Theorem 2.2 immediately yields the following
result on the localization of eigenvalues.

Corollary 2.3. Let i = (i t , . . . , ik) e N \ and let pr e Z\r for every r = 1,..., k. Then

0 ZJ'

In other words: if, for given oscillation count ( i j , . . . , ^ , we know one point fir in each
of the eigensurfaces Z'r

r, then we can guarantee that the intersection points of these
eigensurfaces, if they exist, lie in

6 0 i i , - , A ) : = n Uh + Qr)- (2.9)

This result is related to Theorem 5 in [4] but it is not a direct consequence of it. It
allows a simple geometric interpretation because the vectors vre Vr constitute the
possible normal vectors of the surface Z';. However, the eigensurfaces are usually not
smooth enough that we can speak of normal vectors in the usual sense.

3. Uniformly right definite eigenvalue problems

In this section we assume that the multiparameter eigenvalue problem (1.1) is
uniformly right definite, i.e. there exists e>0 such that

det (Vrsunur)^E for all « , e Uu...,uke Uk. (3.1)

r . s = l ik

It follows from (3.1) that

det(a, , . . . ,a t)^e for alia, ecocl(Ki),...,afc£cocl(Kt). (3.2)

It is well known [4, Theorem 2] that uniform right definiteness implies that the
intersection f\k

r=lZ'r
r of eigensurfaces consists of exactly one point k' for every oscillation

count (ii,...,ik) (abstract Klein's oscillation theorem).
Another consequence of right definiteness is the following

Lemma 3.1. Under uniform right definiteness, C+ =cl(C~).

Proof. Since C* is closed and contains C~ for every r, the inclusion "=>" is clear. To
show the inclusion " c " , let keC+. Then there are vectors arecl(Kr) such that a,>l^0 for
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124 HANS VOLKMER

r = l,...,k. By right definiteness, the vectors au...,ak form a basis of R*. Let b l 5 . . . , b t

be its dual basis, and let b = £ J = 1 b r For every e>0, the vector k(£) = k — eb satisfies
= arA —e<0 which implies k[e)eC~. Since k(e)-*k as e->0 this shows that

. D

Right definiteness implies the following property of the set Q of (2.9).

Theorem 3.2. T/iere is a constant L (depending only on the given uniformly right
definite eigenvalue problem (1.1)) such that

r = l

kfor all fi,(iu...,ftkeRk and

Proof. Let k€Q{py,...,nk). Choose a r e c o ^ such that ar(A — nr) — 0. It follows that

ar(A-n) = ar(/«r-/0 for all r=l , . . . , fc .

Let A be the matrix with rth row ar. Then

1 A i ) ) T . (3.3)

The entries of all possible matrices /I are bounded. By condition (3.2), the entries of all
possible matrices A'1 are bounded, too. Now (3.3) shows that there is a constant L
independent of k,n,fiu...,fik such that

r = l

This is the desired result. •

The above theorem shows that Q(/i,...,/i) consists of the point ft only. Moreover, if
the points fiu...,ftk are close together, then the set Q(ftu...,pk) is small. Another
consequence is

Corollary 3.3. The set Q[Pi,--,lik) is bounded for all pt, , pk e R*.

If the intersection points of the eigensurfaces Z';, r=\,...,k, with a ray starting at 0
are close enough together, then we expect that the corresponding intersection point A1 of
these eigensurfaces is close to the ray. This is expressed by the following theorem.

Theorem 3.4. Let to be a unit vector in R \ and let K be a cone in Rk containing the
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ray R = {uo: t>0} in its interior. Then there exists <5>0 such that the following property
holds: whenever ( i j , . . . , i t )eN* and pr is a point of intersection of the ray R and the
eigensurface Z'r

rfor r=\,...,k, and we set

then P/<x< 1 +<5 implies that K contains the eigenvalue X' and \\X'\\ > a / 2 .

Proof. Choose 0 < e < 1/2 such that the ball B,,(fl>) = {JleR*:||>l-e>|| <e} is contained
in K. Set S = e/kL where L is the constant Theorem 3.2. Let ftlt.. .,/ik be any vectors
according to the statement of the theorem. By Corollary 2.3 and Theorem 3.2,

Since /9/oc < 1 + <5, we obtain

-X'-o) <Lkd = e.
a.

It follows that X'/a lies in Bc{oi). Hence X' e K and || X' || > a/2. •

The following simple lemma on sequences is useful in connection with the previous
result.

Lemma 3.5. For r=\,...,k, let 0<x}^x?^x?^ ... be monotonically nondecreasing
sequences that converge to infinity. Further assume that there is d>0 such that

xn + l

Urn sup —— <l+(5
v"n-»oo -*T

for all r=l,...,k—l. Then, for every A>0, there exists t>A such that the interval
[t,(l +5)t) contains at least one member of each of the sequences x",r=l,...,k.

Proof. We choose N such that x?+ 7*"< 1 + <5 for n^N and r = l,...,k- 1. Then we
choose nk so large that t:=xk"'>A and t>x" for all r=\,...,k — 1. By choice of N and t,
there are nl,...,nk_1^N such that x"/e[t,(1 + S)t) for r = \,...,k — 1. D

We now combine the previous lemma with Theorem 3.4.

Theorem 3.6. Let at be a unit vector in R \ Assume that, for each r=l,...,k, there is a
real sequence a.),<t],... such that
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(a) a"ca lies in one of the eigensurfaces Z'n i e N, for every n e N;

(b) the sequence a},a?,... is positive, nondecreasing and converges to infinity;

(c) limn_mtx" + i/a" = 1 for all r=l,...,k except possibly one r.

Then to lies in the asymptotic spectrum AS of (I.I).

Proof. Let K be any cone containing to in its interior, and let M be any positive
number. Let (5>0 be the constant according to Theorem 3.4. By Lemma 3.5, there is
t>2M such that the interval [t,(l+«5)t) contains at least one member of each sequence
a". Now Theorem 3.4 yields that K contains an eigenvalue X of (1.1) of norm greater
than M. Since K and M were arbitrary, this implies that <o is in AS. •

Let us consider the example given in the introduction with k = 2. The set C + is the
closed first quadrant. The eigencurves Z'j1, Z'2

2 are given by A1 = tliI-1 and A2 = t2l-2,
respectively. Thus the eigenvalues of the uniformly right definite two-parameter problem
are the pairs ^ = {tx,n,t2ti^. The asymptotic spectrum AS consists of the cluster points
of the double sequence X'/\\ A' ||. If at least one of the two conditions

timti,n+iAi,n = l, lim t 2 , n + 1 / t 2 , n = l
n-» oo n-* oo

holds then the above theorem shows that AS consists exactly of the unit vectors (o)1,o)2)
with o^ .o^^O. Of course, this could also be proved directly without reference to
multiparameter spectral theory. Consider now the case that t l jB lies in the union of the
intervals (24p,2*p+1),p = l ,2 ) . . . and t2in lies in the union of the intervals (24"+ 2 ,24 p + 3) ,
p = l , 2 , . . . for each n. Then no quotient tlijt2j2 lies between 1/2 and 2 and, therefore,
a> = ( \ l j l , \ j j t ) does not belong to AS. In addition, we can easily arrange the
sequences tln and tln in such a way that lim,,. ,^.^,. „= 1 for_r=l,2. This shows that
we cannot weaken condition (c) of Theorem 3.6 to limn_c o >ya"= 1 for all r= l , . . . , / c .

Assumption (a) of Theorem 3.6 can be formulated in a slightly different way as
follows. For given unit vector to = (OJ ! , . . . ,OJ J , define Wr by (1.6). Then assumption (a) of
Theorem 3.6 is equivalent to the condition that a" is an eigenvalue of the rth one
parameter problem (1.5).

The following lemma gives a sufficient condition for assumption (b) of Theorem 3.6.

Lemma 3.7. Let T and W be selfadjoint operators in a Hilbert space H where T is
bounded below with compact resolvent and W is bounded. For every neN, let there be an
n-dimensional subspace Fn of H such that (Wx,x)<0 for all x e F n , x # O . Then the
eigenvalue problem

(T + <xW)x=0, O^xeD(T)

admits a sequence 0 < a 1 g a 2 ^ . . . of eigenvalues which converges to oo.
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Proof. Let pn(<x) be the nth largest eigenvalue of T + txW counted according to
multiplicity. We can assume that Fn is contained in the domain of definition D(T) of T
because D(T) is dense in H. Then the minimum-maximum principle for pjjt) shows that
pa(tx) ̂  M — ea for a > 0 where M and £ are positive constants. If n is sufficiently large,
pn(0)>0 and it follows that the continuous eigencurve pn(a) has a positive zero. Let <xn

be the maximal zero of pn. Then these zeros converge to infinity as n-»oo because
another application of the minimum-maximum principle shows that pn(<x) ̂  pn(0) — Kcc
where K is a positive constant such that (Wu,u)^. —K for all unit vectors u in H. •

It would be of interest to find additional (verifiable) sufficient conditions for
assumption (c) of Theorem 3.6, i.e., conditions on T and W that imply that an can be
chosen so that an+1/an tends to 1 as n->oo.

4. Uniformly left definite eigenvalue problems

In this section we assume that the multiparameter eigenvalue problem (1.1) is
uniformly left definite, i.e.,

(1) there exists £>0 such that the cofactors of each entry in the kth column of the
matrix

(Vrsur,ur),r,s=l,...,k, (4.1)

are greater than or equal to E, and

(2) the operators Tu...,Tk are positive definite.
Moreover, we assume that

(3) for every tuple ( i 1 , . . . , i t )eN* there are subspaces £ , of Hr with dimension ir,
r=i,...,k, such that the determinant of the matrix (4.1) is negative for all ute
UlnEl,...,uknEk.

Under these assumptions, there is exactly one eigenvalue (Ai,...,Xk) of (1.1) with Afc>0
for every oscillation count (iu...,ik); see [12,Thm. 2.5.3].

A consequence of left definiteness is stated in the following lemma.

Lemma 4.1. Let ( / ? , , . . . , / J k _ 1 )eR*~ 1 be a nonzero vector. Then there is pe{l,...,k}
such that the operator X*=i Ps^psIS uniformly positive definite.

Proof. Assume, if possible, that there are arecl(Kr) such that cr: = ar/J^0 for
r=\,...,k, where 0=(p\,...,/?*_,,()). Let A be the k by k matrix with rows a , , . . .^*
and /cth column replaced by (c^...,^. Then (Pl,...,pk_l, — 1) is in the kernel of this
matrix. It follows that the determinant of A vanishes. If we expand the determinant with
respect to the feth column, then assumption (1) and c , , . . . , c t g 0 show that cr = 0 for
each r. Since the k— 1 by k— 1 matrix obtained from A by deleting its fcth row and /cth

https://doi.org/10.1017/S0013091500022835 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022835


128 HANS VOLKMER

column is regular this implies that / ? !=• • •= /? t _ ,=0 which is contrary to the
assumption. This proves the lemma. •

We next state a result parallel to Lemma 3.1.

Lemma 4.2. Let R*+ = {(/•„..., A*): Ak^0}. Then C+ nR* + =cl(C" n R l t ) .

Proof. The inclusion "=>" is clear. In order to prove the reverse inclusion, let
X = (X1,...,kk)eC+ with Ak^0. Lemma 4.1 implies that Xk>0. Without loss of generality,
let lk=\. We remark that the operators Wr = Y^=\KKs cannot be positive semidefinite
for all r=l,...,k. In fact, the determinant of (4.1) remains unchanged if we replace Vrk

by Wr for all r=l,...,k. Then the expansion of this determinant with respect to the new
kth column together with assumptions (1) and (3) implies our remark. Since keC+,
there are arecl(Kr) such that a ^ ^ O for all r=\,...,k. Our remark shows that we can
assume that arA<0 for at least one r. The determinant of the matrix with rows a!,..., a*
remains unchanged if we replace its /cth column by ark,r = \,...,k. Hence this
determinant is negative and thus nonzero. We can now argue as in the proof of Lemma
3.1 and obtain k e cl(C~ n R*+). D

Theorem 4.3. Let k=(ku...,kk),lk>0, be the (uniquely determined) eigenvalue o/(l . l)
corresponding to the oscillation count \ = (iu...,ik). Let R = {ao>: <x>0} be the ray
generated by the vector <o = (a>l,...,cok), where (ok = l. Assume that the eigensurfaces Z'r

r

intersect the ray R at araifor r=l,...,k. Then

k k

min ar ^ kk ^ max ar.
r = l r = l

Proof. We first remark that the numbers ar are uniquely determined because every
eigensurface can intersect the ray R at most once in the left definite case. This follows
from the fact that an eigenvalue problem of the type (T + aW)u = 0 can have only one
positive eigenvalue for a given oscillation count if T is positive definite. In particular, if
k e R then <xr = kk for all r and the statement of the theorem is true. We now assume that
k£R. Then P: = Xkco—k is not zero. Consider the eigenvalue functions

fXt): = plik + tP) = irth eigenvalue of Tr+ £ (As + tps)Vrs, 0 ^ 1 .

By Lemma 4.1, there are p and q such that the operators £/?sVps and — £j3sK,s are
uniformly positive definite. Then the functions fp and fq are monotonically increasing
and decreasing, respectively. Since these functions vanish for t = 0 , we obtain

= pjr(V») > 0 and /,(1) = p'^w) < 0.

We note that
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p'r
r(sco)>0 for 0f£s<ar and p'r

r(s(o)<0 for s>a r .

This implies Xk < <xp and Xk > aq which proves the statement of the theorem. •

For fii,...,fikeR* we define sets

k k

r = l

where et = (0,...,0,1). We prove the following result analogous to Theorem 3.2.

Theorem 4.4. There is a constant L (depending only on the given uniformly left definite
eigenvalue problem (1.1)) such that

£ \\fi-Hr\\-

for all fi,fii,...,fikeRk and XeP{fiu...,pk).

Proof. Let X e P{pu..., pk). Choose ar e co Vr such that ar(A - ft,) = 0- It follows that

ar(A-/i) = a,(/i,-/i) for all r=l,...,k.

Let A = (ars) be the k by k matrix with rth row ar, and let A be the k — 1 by k — 1 matrix
obtained from 4 by deleting its last row and column. For w e R ' let w denote the vector
obtained from tu by deleting its last component. Then we have

The entries of all possible matrices A as well as those of all possible matrices A ~1 are
bounded. Therefore there exists a constant M independent of A,p,fiu...,fik such that

The definition of P(ftu...,fik) shows that jefc(>l—ft)\ ^maxl!=1 ||/i—/ir||. This gives the
statement with b= 2Af + 1. •

Using this theorem together with Theorem 4.3, we can now show that Theorem 3.4
also holds under the assumptions of this section if the fcth component of the vector to is
positive. In the proof we just replace Q(fii,--,fik) by P(pu...,pk).

As in Section 4, we can then prove that Theorem 3.6 holds as well if the fcth
component of a> is positive.
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Theorem 4.5. Let at be a unit vector in R* with (ok>0. Assume that, for each
r=l,...,k, there is a real sequence <x*,af,... such that

(a) <x"(o lies in one of the eigensurfaces Z'n i e N, for every neN;

(b) the sequence a^,<xj,... is positive, nondecreasing and converges to infinity;

(c) l i m n ^ o o a ; + l/a" = 1 for all r=l,...,k except possibly one r.

Then <o lies in the asymptotic spectrum AS of (I.I).

If we replace Vrk by — Vrk for every r = l,...,k and assume that the new eigenvalue
problem satisfies condition (3) of the beginning of this section, then the above results
applied to the new eigenvalue problem yield results for the eigenvalues of the original
problem with At<0.

5. The multiparameter Sturm-Liouville problem

As a special case of (1.1), we consider the multiparameter Sturm-Liouville problem.
For given compact intervals [a r ,b r ] , the Hilbert spaces are Hr = L2(anbr), and the
operators are given by

Tryr = - (Pry'rY+Wr, KJ,=vrsyr-

The functions pr,qnvrs are continuous, real-valued and defined in [ar&r], and pr is
positive and continuous differentiable. The domain of definition D(Tr) of Tr is the usual
one involving the boundary conditions

iry'Aar)=o, PuyXK)+^y'XK)=o.

The cone C + is given by

X A,vrJ(.xr)^0 for some xre[ar,br],r=l,...,k\.
J

Similarly, we obtain C~ by replacing " ^ " by " < " . The Sturm-Liouville eigenvalue
problem is uniformly right definite if the Stackel determinant det vr, satisfies

det vrs{xr)>Otora\\xlelal,bl],...,xke[ak,bk]. (5.1)
r,s=l *

Condition (1) of Section 4 means that the cofactors of the feth column of the Stackel
determinant are positive functions in [aubi]x ••• x [a»-i,fct-i]. Condition (3) means
that the Stackel determinant det vrs takes on at least one negative value.

Theorem 5.1. (a) / / the k-parameter Sturm-Liouville problem is uniformly right definite
then its asymptotic spectrum AS is equal to C+ n S*"1 =cl(C~) n S*"1.
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(b) The same result holds if the k-parameter Sturm-Liouville problem is uniformly left
definite and the Stdckel determinant det vrs takes on positive and negative values.

Proof, (a) Because of Lemma 3.1 and Theorem 2.1, it is enough to show that
C~ <=AS (AS is closed). So let «eC~. Then, for each r, the function

is negative on a (possibly small) subinterval of \_anbr]. Therefore, the multiplication
operator Wr induced by gr satisfies the assumption of Lemma 3.7. This lemma then
shows that (1.5) admits an increasing sequence of positive eigenvalues that converges to
infinity. In the Sturm-Liouville case, it is known [3, Thm. 2.3] that this sequence can be
chosen such that condition (c) of Theorem 3.6 is satisfied. Now Theorem 3.6 implies
that (o e AS and the proof is complete in the right definite case.

(b) Because of Lemma 4.2 and the remark at the end of Section 4 we know that
C+=cl(C~). Therefore, it is again enough to show that CczAS. So let coeC". By
Lemma 4.1, the fcth component of ca is not zero. Therefore, using Theorem 4.5 in place
of Theorem 3.6, we can argue as in the right definite case to obtain that to e AS. •

As an example, consider the fc-parameter Sturm-Liouville eigenvalue problem with
i?rJ(xr) = xJ~1,r,s=l,...,fc, and al<bl<a2<b2< •• • <ak<bk. A problem of this type
arises when we separate variables in the fe-dimensional wave equation transformed to

FIGURE 1: Intersection of C* with plane X3= -1
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ellipsoidal coordinates; cf. [12, Sec. 6.9]. This eigenvalue problem is uniformly right
definite because condition (5.1) is satisfied for the Vandermonde determinant
det r s = 1 kK~l- 1° order to determine the asymptotic spectrum, we have to find the
cone C+=cl(C"). A vector (Xly...,Xk) lies in C+ if and only if there exist xre[ar,fer]
such that p(xr)^0, r=\,...,k, where p is the polynomial p(x) = £J = 1 A,*5"1. If fe = 3 we
can compute this set explicitly. For example, let [fli,&i] = [ —3, — 2], \a2,b1'\ = \_—\, 1]
and [a3,b3] = [2,3]. Then (kuk2,\) belongs to C+ if and only if Xx + AfL — 2|A2|, and
(A!,A2,0) belongs to C+ if and only if k^-2\X2\. The set of pairs (XUX2) such that
{XUX2, ~ l ) eC + is given by the shaded set in Figure 1. The lines in this figure have
slopes ± 1, ± 1/2, ± 1/3, respectively.
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