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BOOLEAN CONGRUENCE LATTICES
OF ORTHODOX SEMIGROUPS

KARL AUINGER

1. Introduction. The problem of characterizing the semigroups with Boolean con-
gruence lattices has been solved for several classes of semigroups. Hamilton [9] and the
author of this paper [1] studied the question for semilattices. Hamilton and Nordahl [10]
considered commutative semigroups, Fountain and Lockley [7,8] solved the problem
for Clifford semigroups and idempotent semigroups, in [1] the author generalized their
results to completely regular semigroups. Finally, Zhitomirskiy [19] studied the ques-
tion for inverse semigroups. For a collection of various results concerning the relations
between the structure of a semigroup and the structure of its congruence lattice con-
sult Mitsch [13]. In [2] the author proved that in general the problem can be treated in
a similar way for the following lattice properties: sectionally complemented, relatively
complemented, complemented modular, Boolean, respectively, and it can be shown that
the same is true for the property dually sectionally complemented. The aim of this paper
is to give a structural characterization of those orthodox semigroups S whose congruence
lattice C(S) has one of these five properties, which we shortly denote by P. In Section 2
we shall give some basic definitions and then prepare a few results about subdirect prod-
ucts of rectangular groups and fundamental inverse semigroups. In Section 3 we shall
prove that for an orthodox semigroup S its congruence lattice C(S) has the property P if
and only if

(i) Sis a subdirect product of a rectangular group B = I X G X A and a fundamental
inverse semigroup A such that C(B) and C(A) have property P and

(i) each congruence p on S is the direct product of the congruences p4 and pg, respec-

tively, denoting the congruences on A and B which are induced by p (Theorem
1).

This description raises the problem to characterize all subdirect products S of B and A
such that each congruence on § can be written as the direct product of a congruence on
B and a congruence on A. Such a characterization is given in Section 4 in terms of ker-
nels of idempotent separating congruences on S and certain rectangular sub-bands of S
(Theorem 2). In Section 5 we study the problem for fundamental inverse semigroups and
prove that for this class only the case Boolean of property P is possible. We conclude that
for an orthodox semigroup S whose congruence lattice C(S)is P, C(S) is at least relative-
ly complemented. Finally, in Section 6 we use a characterization of general semigroups
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whose congruence lattice is P, given by the author in [2], to obtain a more detailed struc-
tural description of the semigroups under study. In the main Theorem of the paper this
characterization then is given in form of a list of seven classes of orthodox semigroups
which do have the desired property (Theorem 4). Furthermore, for such semigroups the
congruence lattice can be decomposed in a direct product of certain lattices in a natural
way.

2. Preliminaries. Throughout the paper, the congruence lattice of a semigroup S is
denoted by (C(S), V,N). The universal and identity relations on S are denoted by w = wg
and € = eg, respectively. For an arbitrary set X, E(X) is the lattice of all equivalence
relations on X and P(X) is the power set lattice of X. A lattice L with a least element
€ is sectionally complemented if each interval [e,£] in L is a complemented lattice. A
lattice L with a greatest element w is dually sectionally complemented if each interval of
the form [£,w] in L is a complemented lattice. A lattice L is relatively complemented if
each interval [£,n] in L is a complemented lattice. It is well known that the following
implications hold: Boolean = complemented modular = relatively complemented =
(dually) sectionally complemented.

For an arbitrary semigroup S, E(S) denotes the set of idempotents of S and < is the
natural partial order on E(S), thatis, e < f if and only if e = ef = fe for e,f € E(S).
In order to avoid confusion the symbol “<” is used for this order on E(S) whereas “C”
stands for the inclusion relation on C(S). Also by “<” we shall denote the natural partial
order on an inverse semigroup A which is defined by a < b if and only if a = eb for
some e € E(A) and a,b € A (see [17]). For x € S, V(x) is the set of all inverses of x in
S, thatis, V(x) = {y € S | x = xyxand y = yxy}. In what follows let S be a regular
semigroup. We shall need the following notions and results due to Pastijn and Petrich
(see [15,16)): For p,8 € C(S) let

p T8 & p|ES) = 0|ES),
pVO & pUSO and kerp = kerf

where kerp = U{ep : e € E(S)}. Then U, T, V are complete congruences on the
lattice C(S). The congruence classes pU(pT, pV) have a greatest and a least element to
be denoted by pV(pT, p") and py(pr, pv), respectively. Let K be a class of semigroups
and p € C(S). Then p is over K if ep € X for all e € E(S). Using this concept the
relations U, T, V can be characterized in the following way:

pUB p/pNnBandd/pNo
are over completely simple semigroups,

pTO & p/pN6andf/pN @ are over groups ,
pVO &p/pnoandf/pN 6 are over rectangular bands .
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A regular semigroup S is fundamental if e = ¢, that is, € is the only idempotent sep-
arating congruence on S. For a fundamental inverse semigroup we shall use the term
antigroup. The following results have been proved by the author [3]:

RESULT 1. An orthodox semigroups S has a complemented congruence lattice C(S)
if and only if
(1) S is isomorphic to a subdirect product of a rectangular group / X G X A and an
antigroup A,
(ii) C(G) and C(A) are complemented.

RESULT2. If £X and wy both have complements in C(S) then they are mutual com-
plements for X = U, T, V. ‘

For the remainder of this section we collect a few technical lemmas concerning subdi-
rect products of rectangular groups and antigroups. Let S be a regular subdirect product
of the rectangular group B = I X G X A and the fundamental inverse semigroup A. For
e € E(A) let

RG(e) = {(i,g,\) | (i,g.N,e) €S} =IxGx Ax{e} N Sand

RB(e) = {(i, ,A)| (i, LA, e) €S} =Ix {1} x Ax {e} NS.
Each inverse of (i,g, \, e) in Sis of the form (j, g~ ', i, €). So RG(e) is a regular subsemi-
group of / X G x A. Hence RG(e) is a rectangular group I(e) X G(e) X A(e) for some

subsets I(e) C I, A(e) C A and a subgroup G(e) C G. Also, RB(e) is the rectangular
band I(e) x {1} x A(e).

LEMMA 1. Iff < e for some e,f € E(A) then RG(e) C RG(f) and RB(e) C RB(f).

PROOF. Lete,f € E(A),f < eand (i,g,\) € RG(e). Now x = (j,h,u,f) € S for
some (j, h, u) € IXGXA.Then(j, 1, u,f) = xx’X'xforsome X' € V(x)andso(j, 1, u.f) €
S. Since RG(e) is a rectangular group, (i, g, A, e) € S implies that (i, 1, A, e) € S. There-
fore, (i,g,\.f) = (i,g, A, e)G, 1, u,.f)(i,1,\,e) €S.

LEMMA 2. If(i,g,\,a) € Sand e € E(A) withe < a then (i,g,\,e) € S.

PROOF. An inverse of (i,g,\,a) is of the form (j,g~',u,a”!). Then
(i,1,\,aa 'a 'a) € S.If e < athenalso e < aa 'a'a.By Lemma 1, (i,1,\,e) € S.
Hence (i,g,\,e) = (i,g, A, a)(i,1,\,e) €.

COROLLARY 1. Ifforeacha € A there exists e € E(A) sothate < athenIXGXA =
U{RG(e) | e € E(A)}.

For the idempotents of S we find the following structure: E(S) = I x {1} x A X
E(A) N S. In fact, E(S) forms a strong semilattice of rectangular bands, namely E(S) =
[E(A), RB(e) x { e},tes] where 1.y denotes the inclusion mapping

tef (i, 1, X, ) = (i, 1, A, f).

The proof of the following statement can be found in [18]:
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LEMMA 3. Let E(S) = [E(A),RB(e) x {e},tes] and p be a congruence on E(S).
Then the relation

epYfe G, LA e)p QLA ef)and (G, 1, pu.f)p G, 1, p,ef)
forall (i,1,\) € RB(e), (j,1,u) € RB(f) is a congruence on E(A). Furthermore, an
equivalent definition of pY is given by

epYfe G, LA, p (i,1,A ef)and (,1,pu.f) p G, 1,1, ef)
for some (i,1,\) € RB(e) and (j, 1, 1) € RB(f).

In the following, to each congruence p on S we associate relations on the semigroups
I X G x A and A, respectively, which—as we shall see later—in our case just are the
congruences induced by the respective projections.

DEFINITION. Let S be a subdirect product of the rectangular group I X G x A and
the antigroup A and p € C(S). Let pja and p,4 be the relations defined by

(laga)‘) PIGA (jvh7 )u’) < (ivg,A’e) 4 (jv h7 I-L?e) for some e € E(A)v
apsbe aleapY b lebforall e € EA).

LEMMA4. The relation p, is a congruence on A. If, in addition, for each a € A there
exists e € E(A) such that e < a then pig is a congruence on I X G X A.

PROOF. Since pY is a congruence it is clear that p4 is an equivalence. Let a p4
band c € A. Then a'ea pY b 'eb for all e € E(A) implies that a'c 'eca pY
b~'c'ech for all e € E(A) and thus ca p, cb. On the other hand, a~'ea pY b~ 'eb im-
plies (i,1,X\,a"'ea) p (i,1,\,a leab™'eb) for all (i,1,\) € RB(a 'ea). Let (j, g, 11, ¢),
(k,g7L,v,c7)y € §; then (k,1,v,c 'a"leac) p (k,1,v,c 'a 'eab™ebc) =
(k,1,v,c'a 'eab ' ebcc™'c) = (k,1,v,c 'a 'eacc b 'ebc) so that ¢ 'a"'eac pY
c 'a leacc™'b~ebc. Dually we get ¢~ 'b~lebc p ¢ 'a~'eacc b~ 'ebc. This holds for
all e € E(A) so that ac ps bc. Under the given assumption on the idempotents of A, p;ga
is reflexive and trivially is symmetric. Transitivity is a consequence of Lemma 1 since
E(A) is a semilattice. Now let (i, g, \) piga (, h, p) and (k, [, v) € IXG X A. By definition,
(i,8 A,e) p (,h,p,e) for some e € E(A). Under the given assumption on the idempo-
tents of A, by Corollary 1, (k,l,v,f) € S for some f € E(A). An immediate consequence
then is the compatibility of p;ga.

LEMMAS. Letp € C(S). If (i,g, A,a) p (j,h,u,b) then (i,g,\,e) p (j,h,u,e) for
all e € E(A) such that e < a, b.

PROOF. By Lemma 2, (i,g,A,e),(j, h, u,e) € S. Since RG(e) is a rectangular group
(i,1,u,e) € S. So we obtain (i,g,A,e) = (i, 1, u,e)i, g, A,a) p (i, 1,u,e)j, h,pu,b) =
G hyp,e) = (G, 1, p, 00, h,pw,b)i, 1, p,0) p (1, p,€)(0, 8, M, a)(i, 1, p,0) = (i, 8,1, €)
=g A, a) L pu,e) p (o by, b)(A, 1, p,€) = (. b, 1y €).

If C(S), and thus by Result 1 also C(A) is complemented then by Result 2, (wa)7 = wx
since A is fundamental. In particular, A has no nontrivial group homomorphic image
which by [17] implies that in this case the assumption on the idempotents of A, needed
in Corollary 1 and and Lemma 4, holds.
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3. A necessary and sufficient condition. In what follows let S be an orthodox
semigroup. By [3] we may assume that if C(S) is P then S is a subdirect product of a
rectangular group / X G x A and an antigroup A and C(G) and C(A) are complemented.
In the next statements we formulate some important properties of such semigroups.

LEMMA 6.
(i) (g, ,a)wy (,h,p,b) & i=j,g=h\=pand
(ii) (i,g, X, a) eV (,h,p,b) & a=b.

PROOF. (i) Let the congruence p on S be defined by
(,8,X,a)p G,h,u,b) &i=j,g=h,\ =p.

By [16] wy = <*, that is, the congruence generated by the order on E(S). It can
be seen easily that (i,1,A,e) < (,1,u,f)ifandonlyifi = j,\ = pande < f.
Therefore < C p and thus wy C p. Conversely let (i,g,A,a), (i,g,A,b) € S. Now
(k,1,X,a"'a), (I, 1,\,b~'b) € Sfor some k,! € I. Since C(A) is complemented we have
dx = (wa)r = wy (Result 2) and therefore there exists e € E(A) such thate < a, b. Then
(k,1,X,e) € Sand (k, 1, \,a"'a) wy (k, 1, X, e). Multiplying (i, g, X, @) on the left yields
(i,8,A,a) wy (i,g, A, e). By analogy we obtain that (i,g,\,b) wy (i,g, A, e) implying
that p C wy.

(ii) Let 9 denote the least inverse congruence on S. Then by [16], Prop. 8.5, ) = V.
So 9 C €Y and thus 9 U €Y. Equivalently, €Y/ 9 is over rectangular groups. Since
S/ is inverse, £V / 9 in fact is over groups, hence eV T . In particular, (V)" = 9T.
On the other hand, eV C (V)T C (eY)V = eV.Hence eV = 7. Using [15], Lemma 5.6
we therefore have (i,g, A,a) €V (j, b, 1, b) if and only if (i, g, X, a) 6ST/9, G h, 1, b)Y .
It can be seen easily that (i,g,\,a) & (,h, u,b) if and only if g = h and a = b. Thus
S/ 9 is a subdirect product of G and A, namely the projection of S onto G X A. For (g, a),
(h,b) € S/ 9 now it can be seen easily that (g, a) 537/9, (h, b) if and only if a = b since
A is fundamental.

LEMMA 7. If C(S) is sectionally complemented then p = pY forall p D €Y.

PROOF. Let p D Y and 7 be a complement of p in [e,pY]. Thene = pN 7N <
=(pN <) NEN <).Sincer C pY we also have 7V C pY and therefore 7 N <
= N <CpYnN <=pNn <. Weconclude that 1N <=¢ = ¢ N < implying
T CeV Cp.Thereforep = p V1 = pU.

LEMMA 8. If C(S) is dually sectionally complemented then p = pY forallp D €.

PROOF. Letp D £V and 7 be a complement of pV in [p,w]. Now p = 7N pY and
hencep N <=17N<Np/N<=rN<NpnN < thatis,pN <C7N <.
By [16] we obtain that py C 7y and hence pV C 7V. Noww = pY V1 = pV Vv 7V
sothat 7¥ = w. Then T D wy. Also eV C p C 7. Since C(S) is complemented,
w=wyV eV Crandthus p = pV.
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LEMMA9. Let¢: C(S)— CU X G X A) X C(A) be defined by p¢d = (piGa, pa)- If
either C(S) or C(A) has the property P then ¢ is surjective.

PROOF. Let(£,n) € C(I X G x A) X C(A) and let a relation p(§,n) be defined by

@(i,8. X,a) p&,n) G, h,pu,b) & (i,8,2) € (G,h,p)and a n b.

Let p(€,1)¢ = (piGa, pa)- We shall prove that £ =p;ga and n = pa. Let (i,g, ) &
(,h, p). There exists e € E(A) such that (i,g,\,e), (j,h,u,e) € S. Since e 11 e we
have (i,g,A,e) p(&,n) (,h, p,e) and therefore (i,g,\) piga G, h, p). If (i,8,X) piga
(J,h, 1) then (i,g,X,e) p (J,h, pu,e) for some e € E(A) and thus (i,g,A) § (j,h,p). We
have thus obtained pjga = &. Now let a n b. We have a 'ea n b 'eb for
all e € E(A). Let e € E(A) be fixed; now (i, 1, \,a 'ea) p(€,1) (i, 1, X, a 'eab™'eb) for
all (i,1,A\) € RB(a'ea) and (j,1,u,b"'eb) p(&.,n) (,1,pu,a 'eab 'eb) for
all(j, 1, 1) € RB(b~'eb). This can be done for each e € E(A). We obtaina 'ea pY b~ 'eb
for all e € E(A) and so a p4 b. Conversely, let a ps b, that is, a 'ea pY b~ 'eb for all
e € E(A). Then (i,1,\,a 'ea) p(€.,n) (i,1,\,a 'eab™'eb) for all ¢ € E(A) and all
(i,1,\) € RB(a"'ea), (j, 1,u,b’1eb) p&,n) (G, 1, u,a"eab_leb) for all e € E(A) and
all (j, 1, 4) € RB(b~'eb). We obtain a 'ea n b~ 'eb for all e € E(A) and thus a " b. If
C(A) has the property P then n = 57 since T = U (and using Lemmas 7 and 8) and so
a n b. Now suppose that C(S) has the property P. We define the relation 77 on S by

k,x,v,c) 7 (Ly,m,d) & cnd.

Then 7 is a congruence on S and eV C 7. By Lemmas 7 and 8 we have 7Y = 1 and
therefore 77 = 77 since 7 C 7 C V. We thus have (k,1,v,e) 7 ([, 1,7,.f) & enf &
enT f & (k1,v,e) (1)~ (I, 1,7,f). Therefore tr(n”)~ = tr7j and hence (n7)~ C 77
implying 7 = (7). We conclude that = 5. Therefore a n b in this case, too.

We have thus shown that if either C(S) or C(A) has the property P then the mapping
&,n) — p&.,n) — p(§,n)o is the identical mapping on C(I X G X A) X C(A) and
thus in both cases ¢ is surjective (we do not yet know that “C(S) is P” implies “C(A) is
P which is not immediate for the case sectionally complemented).

LEMMA 10. If either C(S) or C(A) is P then the mapping ¢ is a lattice homomor-
phism.

PROOF. (i) (p N 0)16a = pica N BiGa. Since ¢ is monotone we have to prove that
prca NOiga € (pN0)ioa-Letx,y € IXGX A and x(piga N i6a)y; we have (x,e) p (v, e)
and (x,f) 8 (y,f) for some e,f € E(A). Then (x,ef) pM 0 (x,ef)and so x (p N )6 y.

(1) (p N G)a = paN 4. Again we only have to prove that ps N 64 C (p M G)4. Let
e<feEA)ande paN By f.Then(i,1,A,e) pN G (i,1,),f) forall (i,1,\) € RB(f).
Hence tr(ps M 04) = tr(p N 6)4. By Lemmas 7 and 8 and the proof of Lemma 9 each
congruence on A is uniquely determined by its trace. Therefore ps N 64 = (p N 6)a.

(i) (p V 8)16a =pica V Bica- By monotonity of ¢ we have to prove (p V 8 )iga Cpica
VOiga-Letx,y € IXG x Aand x (pV 0)6a y, that is, (x,e) pV 8 (y,e) for some
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e € E(A). Then (x,e) = (x1,a;1) & (x2,a3) -+ &y (xn,an) = (y,e) for some (x;,a;) € S
and &; € {p,0}. By the lemmas of Section 2 and since C(A) is complemented, which
implies o4 = w4, we obtain that (x,f) = (x1,f) &1 (x2,f) - - & (xnnf) = (3,f) for some
f € E(A) with f < g, for all i. Hence x pjgp V 0ia y-

@iv) (pVO)s = paV 4. Again we only have to prove (pV 8)4 C psV Oy Lete < f €
E(A)ande (p V 0)af;then(i,1,A,e) pV 8 (i,1,\,f) for (i, 1,\) € RB(f). By [15] we
have that tr(p V 8) = tr(p) V tr(8). So there exist idempotents (ix, 1, A\, ex) € E(S) such
that (i, 1, A, e) & (i1, 1, A1,e1) & -+« &n (in, 1, A, €0) = (5,1, ,f) where &; € {p,0}.
Using this we obtain e p4 V 04 f. We have thus shown that tr(p V 0)4 = tr(ps V 64). By
Lemmas 7 and 8 and the proof of Lemma 9 we have that ¢ = ¢7 forall ¢ € C(A) and so
each congruence on A is uniquely determined by its trace. Therefore we get (p V 0)4 =
PA \Y HA.

LEMMA 11. A congruence p on S is idempotent separating if and only if (i,g,\,a) p
U, h, u,b) impliesi =j, A\ = p,a=b.

PROOF. Let p be idempotent separating and (i, g, A, a) p (J, h, i, b). Then a fortiori
p is over completely simple semigroups and thus p C V. By Lemma 6 we have a =
b. Let (k,g~',v,a™") € V((i,g,X,a)) then (k,1,X,a 'a) p (k,g"'h,pu,a”"a). Since
p is over groups (k,h 'g,u,a 'a) € S and (k,1,\,a"'a) p (k,h 'g, u,a 'a). Thus
(k,1,\,a"'a) p (k, l,u,a“la) which implies A = p. An analogous argument shows
that i = j. Sufficiency is clear since E(S) = I X {1} X A x E(A)N S.

COROLLARY 2. The greatest idempotent separating congruence ji = €' on S is
given by
U, ,a)p(,hv,b)&i=j,A=v,a=b.

COROLLARY 3. The kernel of u is given by

kerp = | J{RG(e) x {€}:e € E(A)} =1 x G x A x E(A)N S.

The next step is to show that ¢ is injective and thus an isomorphism if C(S) has the
property P.

LEMMA 12. If C(S) is sectionally complemented then ¢ is injective.

PROOF. (i) First we prove that (¢,€)¢ ! = {e}, thatis, p¢ = (e, ¢) if and only
ifp=-c.Letpgp = (e,e)and (i,1,\,e),(, 1, u,f) € E(S)and (i,1,X,e) p (j,1, u,f).
Then (i,1,X,ef) p (j,1,p,¢ef) and pjga= € imply that i = j, A = p. On the other
hand (i,1,A,e) p (j, 1, u,f) implies e ps f and thus e = f. Therefore p is idempotent
separating. Now let (i,g,A,a) p (j,h,u,b); by Lemma 11 we have i = j, A\ = p and
a = b. Since C(A) is complemented there exists e € E(A) such that e < a. We obtain
(i,g8,X,e) p (i,h, X, e) and thus (i, g, \) piga (i, h, A) implying g = h. Therefore p = ¢.
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(ii) Let p,0 € C(S) such that p¢p = 6 $. We may assume that p C 6 since ¢ is a
lattice homomorphism. Let { € C(S) be a complement of p in [e,0]. Thenp N & = ¢
andpV € =0.Now(e,e) =ep =ppNEP =06 NEP =0 NE) = E¢ since
£ C0O.Then =candthusp = 6.

LEMMA 13.  If C(S) is dually sectionally complemented then ¢ is injective.

PROOF. Let p,0 € C(S), p C 0 such that p¢ = 0¢. Suppose that (x,a) 6 (y,b).
Then (x,e) p (y.e) for some e < a,b. Let (¢,a™') € V((x,a)); then (Yx,a”'e) =
(¥x,e) < (Xx,a 'a). Therefore (X'x, e)p <s/p (Xx,a"'a)p. By [16] wy is the congru-
ence generated by the order on the idempotents. We obtain (X'x, e)p wy (¥'x,a 'a)p and
therefore (x,e)p wy (x,a)p where wy = (Ss/ p)*, the congruence generated by Ss/p.
The same procedure for (y, b) then yields (y, b)p wy (y, €)p and thus (x,a)p wy (y,b)p in
S/ p.On the other hand, let (i, 1, X, €), (j, 1, . f) € E(S)suchthat (i, 1,\,e) < (, 1, u,f);
theni=j A =pande <f.If(i,1,\,e) 0 (i,1,\,f) thene 6, f and thus e ps f. Hence
(i, 1L,A,e) p (i,1,),f). So ps = 6, in fact implies that p U 6. But then 0/p is over
completely simple semigroups and thus 8 /p C £V in S/ p. Now (x,a) 8 (y,b) im-
plies (x,a)p 6/ p (»,b)p in S/ p and therefore (x,a)p €Y (y,b)p in S/ p. We thus have
obtained that (x,a)p wy N Y (y,b)p. Since C(S) is dually sectionally complemented,
C(S/ p)is complemented and so by Result 2 wyM e¥ = ¢, the identity relation on S/ p.
Hence (x,a) p (,b).

DEFINITION. LetS C A X B be a subdirect product of semigroups A and B. A con-
gruence p on S is the direct product of the congruences £ on A and 1 on B if for all (a, b),
(c,d) €S

(a,b)p (c,d) = a€& cand b d.

By Lemmas 12 and 13 we have that if C(S) has the property P then each congruence
on S is the direct product of some congruence on / X G X A and some congruence on A. In
this case C(S) is isomorphic to C(I X G X A) X C(A). Therefore if C(S) has the property
P then C(I x G x A) and C(A) both have the property P. Conversely, if S is a subdirect
product of the rectangular group / X G X A and the antigroup A and C(I X G X A)and C(A)
have the property P then the mapping ¢ : p — (piga, pa) is a surjective homomorphism.
If, in addition, ¢ is injective, or equivalently: each congruence on S is the direct product
of a congruence on I X G X A and A, respectively, then C(S) is isomorphic to the direct
product of C(I X G x A) and C(A) and therefore C(S) itself has the property P. We thus
have obtained the following

THEOREM 1. Let S be an orthodox semigroup. Then C(S) has the property P if and
only if
(i) S is isomorphic to a subdirect product of a rectangular group I X G X A and an
antigroup A,
(ii) CU x G x A) and C(A) both have the property P,
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(iii) each congruence on S is the direct product of a congruence onI X G X A and a
congruence on A, respectively.

REMARK. Since for each a € A there exists ¢ € E(A) such that e < a it follows
that pjga = (p V miga) / miga Where mg is the kernel of the projection of S on I X
G x A. Similarly it can be seen that ps = ((o V m4)/m4)" = (9 V m4)/ s (by the
proof of Lemma 9). The reason for the artificial-seeming definitions we gave for these
congruences is that in this form they can be expressed by means of a closed formula
rather than by the transitive closures of the relations p U g and p U w4, respectively.

4. Subdirect products whose congruences are direct products. The next step is
to find necessary and sufficient conditions for a subdirect product S of a rectangular group
I X G x A and an antigroup A in order that each congruence on S be the direct product
of congruences on the rectangular group and the antigroup, respectively. Suppose that
C(A) has the property P. We are looking for necessary and sufficient conditions for the
mapping ¢ to be injective

By [6] each idempotent separating congruence on S is uniquely determined by its
kernel which is a full selfconjugate regular subsemigroup K contained in ker 1. Selfcon-
jugate means that ¥ Kx C K for all x € S and ¥ € V(x) and full says that E C K. For
each normal subgroup N of G the set NTI;' M ker p = I X N x A X E(A)N § is the kernel
of an idempotent separating congruence.

We now will show that necessary and sufficient conditions for ¢ to be injective are:

(i) Ilg, the projection of S onto G induces an order preserving bijection between
A(S), the set of all kernels of idempotent separating congruences and the lattice
of all normal subgroups of G,

(ii) |RB(f)| = 1if f is not minimal in E(A).

LEMMA 14. Let S be a subdirect product of the rectangular group I X G X A and the
antigroup A such that C(A) has the property P. Then the mapping ¢: p — (piGa, pA) IS
injective if and only if

(i) if (i,g,X,e),(i,g,\.f) € S foref € EA) and e < f then (i,g,\.f) is con-
tained in the full selfconjugate regular subsemigroup (contained in ker y) which
is generated by (i, g, A, e),

(i)) if i, 1,X,e), (,1,u,e) € ES) and f € E(A) with f < e then (i,1,\,e) &
U, 1, p,e) where £ denotes the congruence on S which is generated by the pair

{G1LXN.G LN}

PROOF. Necessity. Suppose that ¢ is injective. Let (i,g, A, e), (i,8,A.f) € S, e,f €
E(A) and e < f. Let N denote the full selfconjucate regular subsemigroup which is
generated by (i,g,A,e). Then N C kerp. Let M = (Nl'lcl'lgl) M ker u and let p(N)
and p(M) denote the idempotent separating congruences associated with N and M, re-
spectively. We have p(N)4 = p(M)4 = ¢ since both congruences are idempotent sepa-
rating. Also p(N) C p(M) implies p(N)ign € p(M)iga. Let (Lk,v) p(M)iga G, h, 1)
then (l,k,v,d) p(M) (j,h,pu,d) for some d € E(A) and thus | = j,v = p since
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p(M) is idempotent separating. Since RG(d) is a rectangular group (/,k~!,v,d) € S and
(I, 1,v,d) p(M) I,k 'h,v,d). Therefore Lk 'hyv,d) e M = NI"IGI'IE‘ M ker u and
thus k'h € NTlg. There exist p € I, m € A, ¢ € E(A) such that (p,k~'h, m,c) € N and
so(p,k~'h,m,c) p(N) (p, 1,7, c). Multiplying (, k, v, d) from the left and (/, 1, v, d) from
the right then yields ([, h,v,cd) p(N) (I, k,v, cd) implying (I,k,v) p(N)iga (I,h,v). We
obtain p(N);ga = p(M)ga. By injectivity of ¢ we get p(N) = p(M). Since (i, g, A,f) €
M we have shown assertion (i). Now let (i, 1,A,e),(j,1,u,e) € Sand f € E(A) sat-
isfying f < e. Then (i, 1, X,f),(j, 1, u,f) € S. Let £, and £ denote the congruences
generated by { (i, 1, X, e),(j, 1, u,e)} and { (i, 1, \,f),(, 1, u.f)}, respectively. It can be
seen easily that the G- and A-entries, respectively, of two {s({.)-equivalent elements
are equal and so both congruences are over rectangular bands (and in particular idem-
potent pure). A fortiori, both congruences are contained in eV so we have (£,)4 =
&p)a = €. If (k,g,v) (§o)iga (I, h, ) then (k,g,v,¢) & (I, h,m,c) and g = h. Then also
(k,1,v,c) & (1, 1,m,c). Therefore there exist xi, y;,... Xy, yn € S'suchthat(k, 1,v,¢) =
XIULYL, XiViYi = XistUis1Yiel, XnVaYn = (L, 1,7, ¢) and {w;, vi} = {(i, 1, X,e),(, 1, p,e)} .
Let a € E(A) such that a < x;I14 , yi[14 for all i such that x;,y; € Sand a < ¢,f. Let
7t = zlligax{a} forz = x,y, z¥ = 1ifz; € Sand z} = z;Ijga X {f} forz = u,v. Then
(k,L,v,a) = xjuiyy, x;viy; = xj ui i, xveyn = (L1, m,a), that is, (k,1,v,a) &
(/,1,m,a). Hence (k,1,v) (§)ica (I,1,7) and therefore also (k,g,v) (§p)iga (1,8, 7)
which implies (§r)ica = (§e)iga- By injectivity of ¢ we get &, = &;.

Sufficiency. Suppose that (i) and (ii) hold and that p¢ = 8¢ for some p,0 € C(S).
First we show that p and 6§ have the same trace. Let (i, 1, A, e),(j, 1, u,f) € E(S) and
G, LAe) p (,1,u,f). Then (i,1,X,e) p (i, 1,A,ef) p (G, . ef) p (,1,u,f). We
have e ps ef pa f and therefore e 04 f implying that (i,1,X,e) 8 (i,1,)\,ef) and
G, L, u.f) 0 (,1,u,ef). Furthermore (i, 1, A, ef) p (.1, u,ef) implies (i, 1,\) pioa
U, 1, ). By piga= 0i6a we obtain that (i, 1X,g) 0 (j,1, u,g) for some g € E(A). Then
also (i, 1, A, efg) 0 (j, 1, u, efg). Applying (ii) we obtain that (i, 1, X, ef) 0 (J, 1, i, ef) and
hence (i, 1,\,e) 0 (j, 1, u,f). We have proved thattr p C trf and an analogous argument
shows tr 6 g)t_rp. Now let (i,g,,a) € kerp, thatis, (i,g,A,a) p (J, 1, u,e) for some
e € E(A). The kernel is inverse closed (see [12]) so that (k,g~!,v,a™") p (I, 1,7, f) for
certaink,/ € I, v,m € A and f € E(A). We conclude that a p, ef. Since A has the prop-
erty P each congruence on A is uniquely determined by its trace and so a (ps)r ef, that
is, ah = efh for some h € E(A) satisfying a~'a p4 ef pa h. Now (m,1,k,h) € E(S) and
we get (i,8,k,ah) = (i, g, K, efh) p (J, 1, k,eh). Multiplying (m, 1, k, efh) on the right we
get (i,g,k,efh) p (j,1,K,efh). Then (i,8,k) pica (,1,k) implies (i,g,k) Oiga (G, 1,K)
and therefore (i, g,k,¢) 0 (j, 1, K, c) for some ¢ € E(A). So (i, g, K, cefh) 8 (j, 1, k,cefh)
and hence (i,g,k,d) 0 Np (i,1,K,d) for ad < cefh. By assumption (i) we obtain
(i,g,k,efh) 0 (i,1,k,efh) and therefore (i,g,k,ah) = (i,g,Kk,efh) € kerf. Multi-
plying (k,1,\,a 'a) on the right we obtain (i, g, \,aha='a) = (i,g,\,ah) € kerf.
Also a~'a ps h implies a'a 64 h and therefore (k,1,X,a 'a) 0 (k,1,\,a 'ah).
Multiplying (i, g, A, a) on the left we get (i,g,A,a) 6 (i,g,A,ah) € kerf and hence
(i,8,A,a) € kerf. Sokerp C kerf and an analogous argument shows kerf C kerp.
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COROLLARY 4. Iff is not minimal in E(A) then |RB(f)| = 1.

PROOF. Lete,f € E(A), e < fand (i,1,A,f),(j,1,u,f) € S and suppose i # j.
We have (i,1,),e),(j,1,u,e) € S. By Lemma 14 there exist x;,y; € S'(i = 1,...n)
such that (i, 1, A, f) = xju1y1, Xiviyi = XieiMis1Yist> XnVayn = G, L p,f) and {w;, v} =
{G,1,X,e), (,1,p,e)}. Since j # i there exists k such that x; & S. Let k be the smallest
index such that either x; & Sory; & S.Leta; and b; denote the entries in the A-component
of x; and y;, respectively. Thenf = ajeb; = - - -ay—1eby—| = are (or = eby). Butf = aie
(or = eby) implies f < e, a contradiction to e < f.

LEMMA 15. Let (i,g, A, e) € ker u. The full selfconjugate regular subsemigroup of
S which is generated by (i, g, X, €) is the set of all products of the form X yix; - - - X, ynx,
where x; € S, X, € V(x;), yi € ES)U {(i,g, X, e), (i,g7 1, X, e)}.

PROOF. Let K be the set of all these products. Then E(S) C K and K is a regu-
lar subsemigroup. Let x = (j,h,u,a) € Sand ¥ = (I,h~',v,a”!) be an inverse of
x;xi = (i, hi, u;,ai),x/i = (li,h,-—l,l/i,ai_l) and yi = (ki, 1,7, e;) or yi = (i,g:H,)\,e).
Now z = XjyixiXpys - - - XyynXn = (I, hy'grhihy - - - hy ' guhn, pn, a7 €101 - - - a; ' enay)
where g; € {1,g,87'}. Multiplying ¥’ on the left and x on the right we get ¥zx =
(L 'h'gihihh™" - - h 7 b Y guhyh, p,a ay eray - - - ay enana). For the
A-component we have a"al’lelal .. -a;'e,,a,,a = a_laa_‘al_‘elal .. -a;'e,,a,,a =
a~'ay'ejajaa"'azy'e; - - -aa~'a; 'e,a,a since idempotents in A commute. Then also x'zx
= (X1 (1 0)(Xxy)yz - - - (X x)y(x,x). Since XX, is an inverse of x;x we see that X'zx €
K.

LEMMA 16. Let (i,g,),e), (i,g,A.f) € kerp, g # 1 and e < f. Then (i,g,\.f) is
contained in the full selfconjugate regular subsemigroup which is generated by (i, g, \ , €)
if and only if there exist x; = (ji, hi, wi»a;) € S(i = 1,...n) such that

g= hl——lg:tlhlhz—lg:tlhz‘ "h;lgilhn and

f <ai'eaja;'ea; - -a, ' eay.

PROOF. Sufficiency.

Let K denote the full selfconjugate regular subsemigroup generated by (i, g, A, e). Let
¢ = a;leaia;' - a;'ea, then (I1,8, pn,c) € K for some
Iy € I Since RG(f) is a rectangular group (i,1,A,f) € S and so (i,g, A.f) =
@ LA, 8 pns 0, 1, AL f) € K.

Necessity.

By Lemma 15 there exist x; = (ji, hi, pi» ;) and X, = (I, h',vi,a7') € V(x;) such
that (i, g, \,f) = X y1x1X,y2%2 - - - X, yux, and y; € E(S)U { (i, g, X, e), (i, g7, X, e)}. Let
i1,...,is denote those indices such that y; & E(S). Since g # 1 this set is not empty.
Then we have g = h; 'g*'h;, - -h;'g*'h; and f < a;'eq;, - - -aj'ea,.

We thus have obtained
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THEOREM 2. Let S be an orthodox semigroup. Then C(S) has the property P if and
only if there exist a rectangular group I X G X A and an antigroup A such that
(i) Sis a subdirect product of I X G X A and A,

(ii) C(I x G x A) and C(A) have the property P,

(iii) for (i,g, X, e), (i,8,A.f) € kerp,g # 1, e < f there exist x; = (I, hj, pj, a;) €
SG = 1,...n) such that g = hy{'g'mhyt- b lg* h, and f <
ay'ea, ---ay,'ea,

(iv) |RB(f)| = 1 iff is not minimal in E(A).

Furthermore, in this case C(S) 2 C(I X G X A) x C(A).

Property (i) of Lemma 14 and thus property (iii) of the above theorem simply are
technical formulations for the fact that Il induces an order preserving bijection between
AL(G), the lattice of all normal subgroups of G, and A(S), the lattice of all kernels of
idempotent separating congruences on S. Suppose that (i) of Lemma 14 holds. Let N, M €
A(S) such that NT1g = MI1g and let (i, g, A,e) € N. Then (j, g, u,f) € M for somej, u,f.
Since RG(e) is a rectangular group (i,1,A,e) € S. So (i,1,A,e)(j, g, 1.1, 1, X, e) =
(i,g, X\, ef) € M. In particular, M contains the full selfconjugate regular subsemigroup
generated by (i, g, A\, ef). By (i) we obtain that (i,g,A,e) € M and thus N C M. By
symmetricity, N = M. The mapping N — NIlg (N € A(S)) therefore is injective (and
obviously is surjective and monotone in both directions). Conversely suppose that N —
NIl is injective. Let (i,g, A, e),(i,g, A,f) € S and N(i,g, A, e) and N(i, g, A,f) denote
the full selfconjugate regular subsemigroups of S generated by the respective element.
By Lemma 15 it follows that N(i, g, A, e)[Ig = N(i, g, A,f)llg and thus N(i,g, \,e) =
N(i, g, \.f).

REMARK. For inverse semigroups an equivalent formulation of Theorem 2 was
proved by Zhitomirskiy [19] (for the Boolean case). In this case, I and A are trivial one
element sets and (iv) can be omitted. The methods of his paper can be applied to the
weaker variants of property P, too.

5. Antigroups. The aim of this section is to prove that for antigroups the only pos-
sibility of property P is Boolean. Let A be an antigroup and suppose that C(A) has the
property P. By Lemmas 7 and 8 we observe that p” = p forall p € C(A). Hence each
congruence on A is uniquely determined by its trace. Therefore, the congruence lattice
C(A) is isomorphic to A (E(A)), the lattice of all normal congruences on E(A) which is
a sublattice of C (E(A)). The following result for congruence lattices of semilattices was
proved by Papert [14]:

Let7,p € C(Y)and £ C C(Y) for some semilattice Y. If c N p = 7 foralloc € X
then (V{o € £})N p = 7.1t is clear that this property also holds for each complete
sublattice of the congruence lattice of a semilattice and therefore holds in C(A). In par-
ticular C(A) is pseudocomplemented, that is, for each p € (C(A) there exists a greatest
element p* satisfying p N p* = €. Furthermore, Papert showed that the elements of the
form p* form a complete Boolean sublattice of C(A) in which * is the operation of unique
complementation. Now we are ready to prove the desired results:
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LEMMA 17. If for an antigroup A, C(A) is sectionally complemented then C(A) is
Boolean.

PROOF. Let p € C(A) and £,n be complements of p. By the above result £ V 7 is
also a complement of p. Since C(A) is sectionally complemented there exists { € C(A)
satisfying( N € = eand(VE =€V n.By¢ C ¢V nwehave pN({ = ¢ and
thereforee = (§ V p)N{ = wN ¢ = ¢{.Hence { = £ V 5. Therefore, C(A) is uniquely
complemented. Since p and p** are complements of p*, p = p**. By the cited result of
Papert, C(A) is Boolean.

LEMMA 18. If for an ‘antigroup A, C(A) is dually sectionally complemented then
C(A) is Boolean.

PROOF. Letp € C(A)and e # p # w. Let Co(p) denote the set of all complements
of p and Nu(p) = {7|7 N p = €}. Then Co(p) C Nu(p) and thus V Co(p) C V Nu(p).
We obtain that p* = V Nu(p) is a complement of p, in fact the greatest element of
Co(p). Now let 7 € Co(p). Since C(A) is dually sectionally complemented there exists
€ € C(A)satisfyingE Np* =7 and € V p* = w. First{ D 7 implies £ V p = w. Also
ECE&™andp Cp™implye* =w =V p™=(¢*Np*)*.Hence {*Np*=¢ =
E*NE.Thereforee = E*N(P*VE) =" Nw=E(*Byé*V{=wwegetf =w.
Then T = p*N £ implies T = p*. Again C(A) is uniquely complemented and thus, by
the same argument as above, even is Boolean.

Now let { A;|j € J} be aset of congruence free antigroups (for an extensive treatment
of these semigroups consult [17]). An inverse subdirect product S of the semigroups A; is
adirect sum of the semigroups A; if for all (a)), (bj) € S, a; = b; forallj € J\ K where K
is a finite subset of J. In this case we write § = -{ Aj|j € J} . Furthermore, given a direct
sum of congruence free antigroups S = >~ A; we may assume that the representation is
reduced, that is, for each j € J I, the projection of S onto l'[{Ai[i # j},is not injective.
For a direct sum of congruence free antigroups S = >{A;|j € J} and aset K C J the
relation (a;) px (bj) <> ax = by for all k € K is a congruence on S. By a result of Tanaka
(see [5]) we get that the congruence lattice of an antigroup A is Boolean if and only if
A = ©{A)|j € J}, adirect sum of congruence free antigroups such that each congruence
on A is of the form pg for some K C J. In this case C(A) = P(J). The problem now is
to give a characterization of those direct sums of congruence free antigroups such that
each congruence on such a semigroup is of the form px for some subset of the index set.
This question is answered only partially (see next section).

A conclusion for orthodox semigroups is the following:

COROLLARY 5. If the congruence lattice C(S) of an orthodox semigroup S has the
property P then C(S) is at least relatively complemented.

PROOF. By [11], CUXGxA) = E(I)x C(G) X E(A) and so if C(S) has the property
P then C(S) & E(I) X C(G) x E(A) X C(A). Now C(G) is complemented and hence
complemented modular, C(A) is Boolean and the lattice of all equivalence relations of a
set is relatively complemented.
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6. A further decomposition of S. We use a result of the author to give a more
detailed description of orthodox semigroups whose congruence lattices are relatively
complemented (complemented modular, Boolean). For an arbitrary semigroup S, $* = §
if S has no zero and $* = S\ {0} if 0 is the zero of S. A semilattice X is a locally finite
tree if each interval [x, y] in X is a finite chain. In a locally finite tree X to each element
a € X* there exists a unique o+ € X which is covered by a, denoted by o > «a+, that
is,& > a+and a > 3 > a+implies § = a+. We need the following

CONSTRUCTION. Let X be a locally finite tree, to each o € X associate a 0-simple
semigroup I, (# {0})sothatl, NI = Qif« # B.Fora € X* letfo: I}, — I, be a
partial homomorphism where o + denotes the unique element of X such thata > a+. Let
fa.a = idpy and f, g be defined by fo 3 = fofa, - * - fo, Where the elements «; are defined
by @ = a; > ay - -, > 3. We suppose that for arbitrary a € I, and b € 1;; the set

D(a,b) = {7 € X: (afar)(bfsy) is defined in I3 }

is not empty. Let é (a, b) denote the greatest element of D(a, b). Let S = U(l}: a € X)
and define a multiplication x on S by the rule

axb = (afasaup)bfpsap) (a€l,b el
where the right hand side product is defined in [, .

DEFINITION. The groupoid S is a tree of 0-simple semigroups, to be denoted by S =
(X; I, fap) If each I, @ € X, is congruence free (with zero and not the null semigroup
of order two) then S is a tree of congruence free semigroups.

If X has a least element p then by definition Jj is closed under multiplication and
thus is a simple semigroup. If, in addition, S is a tree of congruence free semigroups then
the congruence freeness of 7}, U {0} implies that I, consists of exactly one element. A
straightforward verification shows that S is a semigroup.

Let P be one of the following lattice properties: sectionally complemented, relatively
complemented, complemented modular, Boolean. In [2] the author has proved the fol-
lowing

THEOREM 3. Let S be a globally idempotent semigroup. Then C(S) has the property
P if and only if S is isomorphic to one of the following:
(i) a simple semigroup I such that C(I) has property P,
(ii) a tree of congruence free semigroups (X;lq,fag) such that for each x € I,
y € [} there exists ¥ < a, 3 satisfying xfay = Yfp,
(iii) a tree of 0-simple semigroups (X; 1o, fo ) such that X has at least element p, I},
is of type (i) and S| I, is of type (ii).

Furthermore C(S) = P(X*) for type (ii) and C(S) = C{}}) x P(X*) for type (iii).

REMARK. This theorem also is true for the property dually sectionally
complemented.
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In the light of this theorem we recognize that the contribution of this paper to the
characterization of orthodox semigroups whose congruence lattice is P in fact only is of
relevance if S is simple. If S is simple then A is simple. Suppose E(A) has a least element
e. Since C(A) is complemented to a € A there exists f € E(A) satisfying f < a. Then
also e < a for all a € A. In this case e is the zero of A, a contradition to simplicity if
|A| > 1. Therefore if A is simple and [A| > 1 by condition (iv) of Theorem 2 we obtain
|1] = |A] = 1. Thus for the case when S is simple we have two alternatives: S is a
rectangular group / X G X A or a subdirect product of a group G and a simple antigroup
A. Furthermore if an orthodox semigroup S is congruence free then S is inverse since
e¥ = e ore¥ = w in which latter case S is a rectangular band and hence trivial (see also
[4]). Now ‘E(X) is relatively complemented for each set X, it is modular (Boolean) if and
only if |X] < 3 (]X| < 2). The congruence lattice of a group G is complemented (and
clearly modular) if and only if G is a direct sum of simple groups, and it is Boolean if
and only if it is a direct sum of simple groups in which no Abelian factor appears twice
(see [7]). We are ready to formulate

THEOREM 4. Let S be an orthodox semigroup. Then C(S) is relatively complemented
(complemented modular; Boolean) if and only if S is isomorphic to one of the following:
(i) arectangular band I x A (|1|,|A| <3;|1|,|A] <2),

(ii) a direct sum of simple groups (in which no Abelian factor appears twice for the
Boolean case),

(iii) a direct product of a semigroup of type (i) and a semigroup of type (ii),

(iv) a simple direct sum of congruence free antigroups A = >-{ A;|j € J} such that
each congruence p on A is of the form (a;) p (b;)) & a; = b, foralli € K for
some set K C J,

(v) a subdirect product of a semigroup of type (ii) and a semigroup of type (iv)
such that for (g,e), (g,.f) € S, g # 1, e < f where e,f € E(A) there exist

(x1,a1),...(xp,an) € S such that g = xl‘lgilxl---x;lgi’x,, and f <

'ea1 .. -a;lean,

a
(vi) a tree of congruence free inverse semigroups (X; lo,fo g) such that for each x €
IY, y € I}, there exists Y < «, 3 satisfying xfuy = ¥f3.,
(vii) a tree of 0-simple semigroups (X; ly,fa ) where X has a least element p, S/ I
is of type (vi) and I, is of type (i)~(v).

Furthermore, for the general case (vii) the congruence lattice can be factored in a
direct product in the following way:

C(S) 2 E(D) x C(G) X E(A) X P(J) x P(X*).

(For the cases (i)—(vi) some of these factors may be trivial.)

Semigroups of type (v) do exist, an example is the direct product of simple group
and a simple congruence free antigroup.The structural description of the semigroups of
type (iv) is still an open problem. For the remainder we use the factorization of C(S) to
give some simple characterizations of the congruences U, T, V and the greatest and least

https://doi.org/10.4153/CJM-1991-012-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-012-5

240 KARL AUINGER

elements of their classes. Each congruence p € C(S) can be represented uniquely by a
quintuple (py, pG, Pa» Ps, px) € EI) X C(G) X E(A) X P(J) x P(X*). The congruences
U, T, V can be characterized in the following way:

p UB & p; = 0;and pxy = by,
p TO ﬁp/=91,p/\ =9A,p1 :91,/)X = Oy,
p Ve 4=>p(;=0(;,p1 =01,px=0x.

Therefore, for the greatest and least elements of the associated congruence classes we
obtain
pu = (e.€,€,p5,px), pU = (W,w,w, py, px)

pr = (p1,€, P, P15 Px), P = (P1,W, PA, P, PX)s
pv = (€,p6,€,p1,Px), P’ = (W, pG,w, ps, px)-

Furthermore, for the congruence lattice we obtain
COXpUx CO/UXpTx pVx CS)/U  (p € C(S)).

Similar characterizations can be obtained for the congruences T, and 7; (for a definition
see [15,16]).
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