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RICE THEOREMS FOR D.R.E. SETS
LOUISE HAY

1. Introduction. Two of the basic theorems in the classification of index
sets of classes of recursively enumerable (r.e.) sets are the following:

(i) The index set of a class C of r.e. sets is recursive if and only if Cis empty
or contains all r.e. sets; and

(i1) the index set of a class C or r.e. sets is recursively enumerable if and only
if C is empty or consists of all r.e. sets which extend some element of a canoni-
cally enumerable class of finite sets.

The first theorem is due to Rice [7, p. 364, Corollary B]. The second was
conjectured by Rice [7, p. 361] and proved independently by McNaughton,
Shapiro, and Myhill [6]. (A proof of both (i) and (ii) is given in [9, p. 324,
Theorem XIV].) In this paper we consider the corresponding classification
problem in the case where C is a class of sets which are differences of r.e. sets
(d.r.e. sets). The main results are the following:

(1) The index set of a class C of d.r.e. sets is recursively enumerable if and
only if C is empty or contains all d.r.e. sets;

(ii) the index set of a class C of d.r.e. sets is d.r.e. if and only if C is empty or
consists of all d.r.e. sets which extend a single finite set.

In addition, a complete classification is given for the index sets of classes C
of d.r.e. sets which consist of all d.r.e. sets which extend some element of a
finite class of finite sets; these turn out to have maximum 1-degree at alternate
levels of the difference hierarchy generated by the r.e. sets (i.e., the levels
S5 of the hierarchy developed in [2]).

2. Notation. The basic recursion-theoretic notation will be that of [9].
{ W.} >0 denotes a standard enumeration of all r.e. sets. K denotes the complete
r.e. set {x[x € W,}. N denotes the set of natural numbers and 2V the class of
all subsets of N. & C 2% denotes the class of all r.e. sets and & the class of
all d.r.e. sets. If C C &, the index set of Cis {x|W, € C} and is denoted by
0C. Aset A C N is called non-trivial if 4 # @ or N.(x, y) denotes a standard
recursive pairing function N X N — N with recursive inverse functions
m1(2), m2(2), so that z = (m,(2), m2(z) ) forallz € N.If A, B C N, A denotes
N — A, |A] denotes the cardinalityof 4,and 4 X B = {(x,y)|x € A &y € B}.
=< and =, denote 1 — 1 reducibility and Turing reducibility respectively,
and =, =, denote the corresponding equivalences. If C C &, C denotes
9 — C.K' = {x|x € W,X} denotes the complete Z,° set. {D,},»o denotes the
canonical indexing of finite sets.
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3. Index sets of d.r.e. sets. Aset A C Nisd.re.ifandonlyif 4 = B — C
for some r.e. sets B, C. It is natural to associate with 4 the set
{(x, y)|4 = W, — W,}. This yields an enumeration {V,} 5, of all d.r.e. sets,
where V, is defined by: V, = Wy sy — Waryw. [t is easily verified that this
enumeration satisfies the usual recursion-theoretic properties; more precisely,
call a d.r.e. set 4 d.r.e.-complete if B <, A for every d.r.e. set B, and d.r.e.-

creative if A is productive with respect to d.r.e. subsets. The following then
holds:

THEOREM 3.1. (a) {x|x € V,} is a d.r.e.-complete set.

(b) A set is d.r.e.-creative if and only if it is d.r.e.-complete.

(c) (Fixed point property) If f is any recursive function, there is a number e
such that Vo, = V.

Proof. (a) and (b) are proved in [2, p. 28, Theorem 1 and p. 35, Theorem 4].
(c) is a simple consequence of the Smullyan double recursion theorem [9, p. 190,
Theorem X ()], which implies that for any recursive function f there exist
e1, e2 such that Wi ey, eon = We, and Wayp(er,esy = Wy, s0 that

V<el.ez) =W, — W€2 = Wﬂ'lf((el-ez)) - Wn.f((el.ez)) = V!((el,ez))~

It follows from Theorem 3.1 that there are d.r.e. sets whose complements
are not d.r.e., and which therefore are neither r.e. nor co-r.e. It has in fact
been shown by Cooper [1] that there are d.r.e. sets which are not Turing-
equivalent to any r.e. set. However, the familiar properties of the enumeration
{ V.}:>0 suggest that index sets for classes of d.r.e. sets may have properties
analogous to those of index sets of classes of r.e. sets, and it will be seen below
that this is indeed the case, using the obvious definition:

Definition. 1f C is a class of d.r.e. sets, the index set of Cis {x|V, € C}, and
is denoted by §C.

For our purposes, it will be useful to have the following characterization of
the complete d.r.e .set:

PropPOSITION 3.2. (a) K X K is a complete d.r.e. set.

(b)K XK £, K X K. _

(c) If A isd.re., then K X K €, A.

Proof. (a) It is evident that K X K = (K X N) — (K X K) is d.r.e. To
show completeness, let A = W, — W, be any d.r.e. set. Define recursive
functions g(x), £ (x) as the indices of r.e. sets generated as follows:

N ifx€ Wa
Wow = {ﬂ otherwise;

% _ N lf x € Wb,
@ @ otherwise.
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Let f(x) = (g(x), h(x)). Then fis 1 — 1, and
x €W, = Wy= Wiy = N& Wiy =90
= g(x) € Wy &h(x) € Wi
= f(x) = (g(x), h(x)) € K X K;
while
x ¢ Wa— Wb:> Wg(z) =0 V Wh(z) =N
=gkx) € K Vhix) €K
= f(x) ¢ K X K.
Sod £,K X Kviaf. B
(b) now follows from (a) and Theorem 3.1(b), since K X K is d.r.e.-
creative and hence its complement cannot be d.r.e. ((b) also follows directly
from the fact that, as shown in [4, p. 39, Theorem 1], K X K is recursively
isomorphic to an index set #4 and hence cannot be 1 — 1 reducible to its

complement.) B
For (c), assume A4 is d.r.e. Then by (a), 4 <, K X K. If K X K £, 4,

then K X K <, 4 which implies K X K <, K X K, contradicting (b); hence

4. The first Rice theorem for d.r.e. sets. An examination of the proof
of Rice’s first theorem [9, p. 324, Theorem X1V (a)] shows that it can be given
the following more precise form:

THEOREM R-1. If C is a class of r.e. sets such that 6C is non-trivial, then
K =,60Cor K =,0C.

COROLLARY. If C is a class of r.e. sets such that 6C is r.e., then either 6C 1s
trivial or §C = K.

The analogous result for classes of d.r.e. sets is the following:

THEOREM 4.1. If C is a class of d.r.e. sets such that 6C is non-trivial, then
K XK z:8Cor K XK £,6C.

Proof. The theorem will be an immediate consequence of the following
lemma:

LeEMMA 4.2. Let C be a class of d.r.e. sets. If there are d.r.e. sets X, YV such that
Xisfinite, X CV,X € Cand Y ¢ C, then K X K £,5C.

Proof. Assume there exist d.r.e. sets X, ¥ satisfying the hypothesis. Then
X = D, for some u, while ¥ = W, — W, for some a, b. Since X € C but
Y ¢ C, it follows that X & Y so that D, & W, — W,. Hence D, C W, and
w,< W, — D,, and we can define recursive functions g(x), k(x) as the
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indices of r.e. sets generated as follows:

W = D,, ifr((x)¢ Kandm(x)¢ K,
0@ T A\ W,, otherwise;

W — Wb! if 7"2(x) e Kr
h@ W, — D,, otherwise.

Let f(x) = {g(x), h(x)). Then fis 1 — 1 and

x € KXK=mk) € K&m(x) ¢ K
= Wy = W& Wi = W,y
= Ve = Wy = Waewy = Wa— W, = Y ¢ C;

while

x¢d KXK=m)d KV mkx) K

= (W) = Du & Wiy = W)
V Wy = Wo& Wiy = W, — Dy)

= Ve = Wowy = Waw = Du € C.

Sox € KX K < f(x) € 6C,and K X K <,6C via f.

Theorem 4.1 now follows since if §C is non-trivial, then §C # @ and 6C # 9.
Suppose # € C; then for some ¥ 2@, ¥ ¢ C and by Lemma 4.2, K X K <,
6C. If on the other hand @ ¢ C, then @ € C and, by symmetry, K X K <,
6C = o8C.

CorOLLARY 4.3. If C is a class of d.r.e. sets such that §C is d.r.e., then either 6C
is trivial or 6C = K X K.

Proof. Suppose §C is d.r.e.; then by Proposition 3.2, 5C =, K X K and
K XK =<, 6} If 6C is non-trivial, then by Theorem 4.1, K X K <,6C or
K X K =,6C; since the latter cannot hold, it follows that 6C = K X K.

COROLLARY 4.4. The index set of a class C of d.r.e. sets is recursively enumer-
able if and only if C is empty or contains all d.r.e. sets.

Proof. If C is empty or contains all d.r.e. sets, then §C = @ or N and is hence
r.e. Conversely, suppose §C is r.e.; it follows that 6C is d.r.e., so by Corollary
4.3, either 8C is trivial or 6C = K X K. But if 6C = K X K then 6C is not
re., since K X K re.=K X K <,K=K £, K which is impossible. So
6C is r.e. only if §C is trivial.

5. The second Rice theorem for d.r.e. sets. In [7, p. 359] a class C of
r.e. sets is called completely recursively enumerable (c.r.e.) if 6C is r.e. A precise
statement of what we shall call the ‘‘second Rice theorem’’ is then the following:

THEOREM R-2. 4 class C of r.e. sets is c.r.e. if and only if C is empty or there is
a recursive function f such that C = {W,|(Ju) (D, S W,)}.
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By analogy, call a class C of d.r.e. sets completely d.r.e. (c.d.r.e.) if 6C is
d.r.e. The following analogue to the second Rice theorem is then obtained:

THEOREM 5.1. 4 class C of d.r.e. sets is c.d.r.e. if and only if C is empty or
there is a single finite set D, such that C = {V,|D, & V,}.

Proof. 1f C is empty then §C = @ is d.r.e. Suppose there is a finite set D,
such that C = {VAD,‘ c Vx} Then 6C = {x|Du - W,,I(I) — W,rz(,;)} =
{2|Dy € Wi, (o} — {%|Du M Wayy # 0} which is evidently d.r.e. Hence in
either case C is c.d.r.e. The converse will follow from a sequence of lemmas.

LEMMA 5.2. Le W, be an infinite r.e. set. Then there is a recursive function g
such that for all x € N,

W, infinite = W‘,(I) = W,
W, finite = W, is a finite subset of WW,.

Proof. This is left to the reader.

Lemma 5.3. Let C be a class of d.r.e. sets. If there is a d.r.e. set X such that
X € Cbutno finite subset of X isin C, then K' =, 6C.

Proof. Suppose X € ( is an infinite d.r.e. set none of whose finite subsets are
in C. Let X = W, — W,; clearly W, must be infinite. Let g be as in Lemma 5.2,
and define a recursive function f(x) by f(x) = {(g(x), ). Then for all x € N,

Wz infinite = V](I) = Wﬂ(l) - Wb = Wu - Wb = X,

W, finite = V,(, is a finite subset of W, — W, = X — V,,, ¢ C.
Hence if D = (W W, is inﬁn_ite}, then 8D =<, 6C via f. But it is well-known
that 0D = K’; it follows that K’ <, 6C.

LemMMA 5.4. Let C be a class of d.r.e. sets. Suppose there exist finite sets D,
D, € Csuch that D, D, ¢ C. Then K X K <,5C.

Proof. Assume the hypothesis. Define recursive functions g(x), k(x) as
follows:

W = D,, if m(x) ¢ K V m(x) 4 K,
) D,\U D, otherwise;

w _ ﬂ, if 1I'1(x) e K,
A D, — D, otherwise.

Let f(x) = {(g(x), k(x) ). Then
xEKXK:W,,(I) —_—DM&W;,(:,;) =Du—D,,
= Vo = Wowy — Wawy = DuN D, ¢ C,
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while

x¢ KXK=m(x) ¢ K Vmkx) cK
= (Wyw = Du& Wiy = 0)
V Wy = Du\J D, & Wiy = Dy — D)
= Vio = Wiy = Wawy =Du € C V Vyy =D, € C.

Sox € KX K & f(x) € 6Cand K X K £,6C via f.

End of proof of Theorem 5.1. Assume C is c.d.r.e. and non-empty. We will
show that there exists a finite set D, such that C = {V,|D, C V,}. Since C is
c.d.r.e.,8Cisd.r.e. and hence by Proposition 3.2,6C <, K X KandK X K £,
8C. Let X be any set in C. If C contains no finite subset of X, then by Lemma
5.3, K' <,8C; but this implies K’ £, K X K, which is impossible since
KXK=<;K <;K' So X € C only if some finite subset of X is in C; it
follows that {9|D, € C} 5 @. Let D, be a finite set in C of minimum cardinality.
We claim C = {V,|D, C V,}. Suppose V, ¢ C for some V, D D,. Then since
D, € C, it follows by Lemma 4.2 that K X K <, é6C, which is a contradiction;
hence {V,|V, 2 D,} € C. Now suppose V, € C but D, € V,. It was shown
above that V, € C only if V, D D, for some D, € C, and D, € V, implies
D, € D,. Then D, \ D, & D, which implies |D, N\ D,| < |D,| and hence
D, N\ D, ¢ C since D, has minimum cardinality. But then by Lemma 5.4,
K X K =,38C which again gives a contradiction. Hence V, € C= D, C V,
and C = {V,|D. C V).

We note that Theorems R-2 and 5.1 can be given a topological interpreta-
tion by means of the “inclusion topology” on 2% [9, p. 217, Ex. 11-35], as
follows:

Definition. Let A C 2¥. Then
(a) A is a basic open class & A = {X|D, C X} for some D,.
(b) A is an open class < A is a union of basic open classes.

It follows that if we let 4, denote {X|D, C X}, then 4 is an open class
= A = Uyez Ay for some set Z C N. Clearly A is a basic open class if and
only if Z can be chosen to be a singleton. 4 is an r.e. open class if and only if Z
can be chosen to bere. If A C & (4 € 9) we call A a basic open class or
an open class if A = BN\ & (BN Z) where B is a basic open class or an
open class in 2V, respectively, and similarly for r.e. open classes. Theorems
R-2 and 5.1 then take the following form:

THEOREM R-2 (restated). Let C C & . Then 8C is recursively enumerable if
and only if C is an r.e. open class.

THEOREM 5.1 (restated). Let C C . Then 6C is d.r.e. if and only if C is a
basic open class.

The following question suggests itself: What can be said about 6C if C =
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Uuez Ay when Z is finite but |Z| > 1? This question is answered in the next
section.

6. Index sets of finite unions of basic open classes of d.r.e. sets.
Following [8, p. 306] we introduce the notion of the ‘‘core’” of a class of d.r.e.
sets.

Definition. Let C be a class of d.r.e. sets, Z € N. The set Z is a core of C if
(@Q)u € Z=D, € C;
®ifue Z, D, € Cand D, C D, then D, = D,.

Z is thus a core of C if it is the set of canonical indices of ‘“minimal’’ finite
sets in C. Since these ‘‘minimal’ finite sets are evidently uniquely determined
by C and since canonical indices are also unique, the core of C is uniquely
determined. Evidently C is a finite union of basic open classes if and only if C
is an open class with finite core. Hence the problem of classifying the index
sets of classes of d.r.e. sets which are finite unions of basic open classes reduces
to that of classifying the index sets of open classes with finite core. This
classification will require some notation for the highest 1-degrees of sets of
form U= (Ry;—1 — Ry;) where Ry, . . ., R, are r.e. sets. The existence of these
maximum 1-degrees was proved in [2, p. 33, Theorem 2] (where the class of
such sets is denoted by Z,,7!), and in [5] a descriptive notation was introduced
for these 1-degrees. In the following, if a is a 1-degree and X € N we shall
use X <,a (@ =<;X) tomean that X <,V (¥ =, X) for some ¥V € a.

ProposiTiON 6.1. Let a, b be any 1-degrees. Then

(a) there is a 1-degree which is maximum for sets X MY where X < a,
Y =.b;

(b) there is a 1-degree which is maximum for sets X \J Y where X <, a,
YV <,b.

Proof. This follows from [5, Proposition 2.9].
This justifies the following operation on 1-degrees;

Definition. Let a, b be any 1-degrees.

(a) a A b denotes the 1-degree described in Proposition 6.1(a).

(b) a V b denotes the 1-degree described in Proposition 6.2(b).

(c) For all » 2 1, a-n is defined inductively by a1 =a,a-(n + 1) =
(an) V a.

The following is then obtained:

PROPOSITION 6.2. Let €, a, denote the 1-degrees of the sets K, K respectively.

Thenif n 2 1,
(a) (e1 A ay)-misthe maximum 1-degree for sets of form \Jj=1 (Rai—1 — Ra;)
where Ry, . .., Ry, are arbitrary r.e. sets;

https://doi.org/10.4153/CJM-1975-043-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-043-4

RICE THEOREMS 359

(b) (e1 A a1)-nis the maximum 1-degree for sets of form \Ji—; (Ras_1 — Rs;)
where Ry, ..., Ry, are arbitrary r.e. sets satisfying Ry O R D ... 2 Ry;
(c) (&1 Aa))n < (1 Aa)-(n+1)foralln = 1.

Proof. (a) We use induction on #. For n = 1, note thate; A a; is the maxi-
mum 1-degree for sets X M ¥ where X <; K and ¥ <, K; but it is easy to
verify that forall sets S C N,S = X — YwhereX <, KandV <, Kk &S =
R, — R, where R;, R, are r.e. sets. Now assume that (a) holds for n. For
n + 1, note that (e; A a;)-(m+ 1) = (&1 A a1)'n V (€1 A a1) is the
maximum 1-degree for sets X \U ¥V where X =<, (e A a;)#n and ¥V =,
e; A a;. By the induction hypothesis, there are r.e. sets K;, Ko, ..., Koy
such that U= (K2;-1 — K2;) = (€1 A a;)-n and Koy — Koy = €1 A ay,
and the following holds:

XsieAha)n&V seshayeX £, 91 (Kaim1 — Koy) &

YV =1 Kso1 — Kopyo © there exist r.e. sets Ry, Ry, . . ., Royyp2 such that

X = in (Reim1 — Rey) & YV = Rony1 — Ropyo.
Hence (e; A a;)-(z + 1) is the maximum 1-degree for sets X \U ¥ for which
there exist r.e. sets Ry, Rs. . . ., Rapse such that X U ¥V = U] (Raimy — Ray),

which completes the induction.
(b) now follows from (a), using the fact that, as shown in [2, p. 29, Proposi-

tion 1] a set S has form Uj%—; (Rs;—1 — Ry;) for r.e.sets Ry, ..., Ry, & S has
form Uj-; (R2:-i’ — R»/) for r.e. sets R, ..., Ry, satisfying R,/ C ...2D
R,

(c) then follows from (b) and [2, §1].

It was shown in [4, p. 39, Theorem 1] and, independently in [2, p. 41,
Theorem 6] that the 1-degrees (e; A a,)-nfor n = 1 are exactly the 1-degrees
of index sets 6C where C is a non-empty finite class of finite sets such that
@ ¢ C. It will be shown below that these 1-degrees are also exactly the 1-degrees
of index sets 6C of non-trivial open classes of d.r.e. sets with finite core. First
we require some machinery for eliminating ‘“‘redundant’’ information from
the core.

Definition. Let C be an open class of d.r.e. sets with finite core Z. The se-
quence (D, ..., Dy,) (n = 2) will be called regular for C it

@)u; € Zforl £1 = m;

(b) (VE)igksa(Vu € Z) [Du 4 ( U D,,,-) N ( U D,,,-):I‘

1<i<k k<ign

If such a sequence exists, we say C has a regular sequence of length n. Note
that if C has a regular sequence of length n = 2, then # ¢ C and that
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if (Dy,, ..., D,,) isregular for C, then D,; # D,; for i # j. We remark that
it is necessary to consider sequences (D, ..., D,,) rather than just sets
{Duy ..., Dy,}. For example, if D,, = {1, 2, 3}, D,, = {1, 3, 4} and D,, =

{2, 3, 5} and Z = {u1, us, us}, then it can be checked that (Dy,, Dy, D, ) is
regular for C but (D, Du,, Dy, ) is not (since Dy, © Dy M (Duy, \J Dy,)).

LEMMA 6.3. If C is an open class of d.r.e. sets with core Z and |Z| = 2, then C
has a regular sequence of length 2.

Proof. Let |Z| = 2, and suppose u1, #s € Z, u1 #£ us. If (D, Dy, ) is not
regular for C, then for some « € Z, D, & D,, M D,,; but then D, C D,, and
D, C D,, which implies D, = D,, = D,, since u1, us € core C. But then u; =
s, contrary to assumption. Hence (D,,, D,, ) must be a regular sequence for C
of length 2.

LEMMA 6.4. Let C be an open class of d.r.e. sets which has a regular sequence of
length n = 2. Then (&1 A a;)n <,6C.

Proof. Assume C is an open class with core Z, and let (D,,, ..., Dy,)
(n = 2) be a regular sequence for C. As noted above, this implies @ ¢ C. By
Proposition 6.2(b) it suffices to show that if Ry, R,, ..., R,, are arbitrary r.e.
sets satisfying Ry D R, D ... D Ry, then Uio; (Ru—1 — R) <, 6C. Suppose
R 2D Ry D ...2 R, and generate r.e. sets W), Wy according to the
following instructions: For 1 < k < n,

(i) put all elements of D, into W, © x € Ry_y;
(i1) put all elements of Dy, — Ui<isn Du; into Wiy < x € Ry
Let f(x) = (g(x), h(x)); we claim that

x € k\_Jl (Rop—1 — Ro) & f(x) € 86C.

Assumex € Ry 1 — Ry forl £ k £ n. Thenx € R;forallj, 1 £j <2k — 1,
so that Ui<i<i Du; © Wiy, Moreover, x € Ry; if and only if 1 < j < k, so
2 € Wi © (37)1=5<(2 € Dy; — U jei<aDu;). But

DuN U (Dy— U D) =0,

1<j<k j<izn

which implies Dy, M Wiy = 0; so Dy, © Wy — Wi = Vi which im-
plies f(x) € 6C. Conversely, suppose x ¢ Uj—1 (Rax—1 — Ry). Since R; O
Ry D ... 2D Ry, this implies x € R, \U Ry, \J U1, (Rox — Roxs1).

Case 1. x € Ry;: Then (V k)i<i<nx € Ry, which implies W,q =@ and
Vi = Wewy — Waew = 0; hence f(x) ¢ 8C.

Case 2. x € Ry,: Then (V k)izk<,x € R;, which implies Wy = Wy =
Uigikgn Du- But then Vi) = 0 and f(x) ¢ 6C.

Case 3. x € Rox — Ropyr for some k, 1 < k < n: Then W,y = Ui<j<i Da,
and Wi = Ulé]‘ék (DuJ - Uj<i§nDuz'); hence

Vi = Wowy = Waw = (U Du,») N(U D,,,)‘

1<jgk k<ign
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But then by the hypothesis that (D, ..., D,,) is regular, WV u € Z)
(Du € Vi), which implies f(x) ¢ 6C. It follows that f(x) € 6C=x €
Uk=1 (Rax—1 — Ry), and Uk—y (Ros—1 — Ra) <10C via f.

LeEMMA 6.5. Let C be an open class of d.r.e. sets with finite core, and assume
n 2 1. If C has no regular sequence of length n + 1, then 6C < (e1 A a,)-n.

Proof. Suppose C is an open class with finite core Z. If C has no regular se-

quence of length # + 1, then for all uy, #s, . .., Uyy1 € Z,
ARrzs@u € 2)[Duc (U Du)N (U Du)]
1<1<k k<isn+l
By Proposition 6.2(a), it suffices to show that 6C = Uj—; (Ru_1 — Ry) for
some r.e. sets Ry, Ry, ..., Ry, This isdone as follows: For notational conveni-
ence, we will use (Jui, ..., u; € Z) to abbreviate (Ju, € Z)Jus € Z) . ..
(Qu; € Z),and for 1 = j < n, we let ®;(v1, ..., v, 41, ..., ;1) denote the

following formula:

Duj+1 c Wﬂ(z)&Duj c Wn(z)&Dujﬂ N ( U -Dvi =0

1<1<j
& (Vu E Z) (Dug U Dui—)DumDvi # ﬂ)
1<i<j
Define the sets R;, Rs, ..., R, as follows:

R, = {x‘G uy € Z)(Duy € Wayn))}s
Ry = {2|Qus € Z)[Dyy € Wiye) & Duy N Wayy # 0135
and for 1 < k < n,
Rop1 = {x|Qur,uzy ..., ux € Z)Qv1, ..., 0-1) Dy S Wiy
& fbl(vl, Ui, uz) & ‘I’z(vl, Vg, Uy, U, u3)
&.. & By, Vmyy Uy e, u)])

Ry = {x|(3 Uy, oy ty € Z)Q01, ., 94-1)[Dyy © Wi

& 1 (v1, uy, uz) & Bo(v1, v2, Uy, Uz, us)

&...& & _1(vy, ..., Vo1, Uy o v v, Uy)

& (Vu € Z)(Du c U Du.‘ - D, N sz(z) # ﬂ)]}

1<i<k

It is clear that since Z is a fixed finite set, each ®,(vy, ..., v;, %1, ..., Uj41)
is an r.e. condition and hence each set R;isr.e., 1 £ 7 £ 2#x; in addition it is
easily verified that Ry, D Ry D ... D Ry, It remains to show that

Uk=1 (Rax—1 — Ry) = 8C.

(€) Assume x € R; — R,. Then for some u; € Z, D, € Wy, (). If for this
w1, Dyy M Weyy # 0 then x € Ry, contrary to assumption. Sox € R, — R, =
Qur € Z)(Dyy © Wiy — Weyny) which implies x € 6C. Next assume
x € Ror—1 — Ry for some k, 1 < k < n. Then for some uy, ..., u € Z,

(3 U1y o+« ,v,,_l)[D,,, g Wﬂ(z) & fbl(vl, Ui, uz)
&... & Cbk_l(vl, e ey Op—1, Uyy . .. ,uk)].
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Note that for each j,

Qj(vlv ceey vjy ULy o o oy uj+1) = Duj+1 2 W""l(l)’
so that UléiékDu; c an(z)- If for all u € Z, Du - U1§i§kDui implies Du N
Wiy # 0, then x € Ry, contrary to assumption. So

X E R?k—l - R2k=> (Hu E Z) Du g U Du.‘ g er(z)&Dum W1r2(z) = ﬂ]

1<igk
= (au € Z) [Du c Wﬂ(x) - Wrz(x) = Vx]=>x € oC.

Hence Uj=1 (Rar—1 — Rax) C 6C.

(D) Assume x ¢ Uj=1(Raox—1 — Ry). Then again since Ry D R; D ... 2D
Ryp % € Ry \U Ry, U USZ1 (Rox — Rur).

Case 1. x € Ry: Then (W uy € Z)(Dyy € Way(n), which implies (V u, € Z)
(Duy €V, = Wayey — Wapw). Hence x € Ry = x ¢ 6C.

Case 2. x € Rop — Ryyyq for some k, 1 £ k < n: Suppose x € §C; then for
some ug € Z, Dyy C Wiy — Wryy- Now x € Ry, implies that for some

Uy, ..., u € Zand some vy, . .., v,
Dm - Wﬂ(z) A @1(1)1, Uy, Mz) &...& <I>k_1(v1, ooy U1, ULy 0.y, uk)
&(Vu € 2) (DuS U Du= D\ Weo # 0.
1<i<k
Then since for each j, ®;(v1, ..., vj, w1, ..., #;41) = Dy; © Wiy, Ursick

D,; € Wr,» which implies Dy, M Ui<ick Dy = 8. Let
Zk = {u € ZlDu g Ulgingui};

then Dy M Wiy #= B foreachu € Z;. Foreachu € Z,, choosez, € D, M Wr,,
and let v, be such that D, = {z,Ju € Z;}. Then D,  C W,,«), and, since
D, N\ D, # 0 for each u € Z,, it follows that

(u€2) (DS U Dui=>DumD,,k¢ﬂ).

1< i<k
Hence ®;(vy, ..., v, 1, . . ., U, #o) holds, which implies that
(Fua, ooy ugr € Z)(Jva, - oo, 0)[Duy © Wiy
& ‘bx(ﬂly uy, u2) & ... & (I)k—l(vly ce Uy Uy e, Ug)
& & (vy, ..., Uy U,y ., Urs1)].
But then x € Rg;y1, contrary to assumption. Hencex € Ry — Roy1 = x ¢ 6C.
Case 3. x € Ry,: Then for some u;, ..., u, € Z and some vy, ..., 0,_1,
Du1 g W,.-l(,;) & <I>1(v1, Ui, uz) &... & ‘I’,,,_l(‘vl, [ /s P 75 IR u,,) &
(Vi € 2) (DuS U D= Dy Wiy # 0).
1<ign

Suppose x € §C. Then for some u,41 € Z, Dypyy € Wiy — Wiy By the
hypothesis that C has no regular sequence of length n + 1, thereisa u’ € Z
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and a k', 1 £ k' < n, satisfying

Du’ g ( U Du.‘) M ( U Dui)-
11k’ K< iZn+l
If ¥ = n, then D, C D,,,, which since «’, u,., € Z implies D, = D,,,, by
minimality. But then D,,,, € Ui<i<s Dy, which implies D,,,, N Wi, # 0,
which contradicts Dy,.;, © Wiy — Waw. So k' < m, which implies

& (1, . .y Vs, U1y« . ., Ugprg1) holds. Then Dy © Ui<i<pr Doy = D (M Dy # ¢
Letz € Dy M Dy, then 2 € Dy (M Dypr M Wi,y since

Dy (1, . oy U, Uny e, Uprgr) = Doy & Wiy Now
Du’ g U Du.’ =2 E U Dui‘
K <ign+1 K <ign+l
Butforeachj, i/ <j <n, ®;(i, ..., 0541, ... ,%541) = Dy, N Urgig; Dy =

@, which implies 2 € Dy;,,; so that 2 ¢ Up<igy Du,. Thus z € D,,,,, which
implies Dy, M Wiyy # 0 again contradicting Dy, ,, € Wiy — Wayw-
Hence x € Ry, = x ¢ 6C, which completes the proof that 6C C Uj=; (Re—1 —
Ray).

We can now classify the 1-degree of index sets of open classes of d.r.e. sets
with finite core, by means of the following theorem:

THEOREM 6.6. Let C be a non-trivial open class of d.r.e. sets with finite core
Z ={u1,...,unt,m = 1. Then

(a)oC = (e1 AN ay) &m = 1;

(b) if m = 2, let ne be the largest n such that C has a regular sequence of length n.
Then 2 £ ng < m, and 6C = (&1 A a1)nc.

Proof. Assume C is an open class with core containing m elements. If m = 1,
then C is a basic open class; hence 6C is d.r.e. by Theorem 5.1 and, since 4C is
non-trivial by hypothesis, 6C = K X K by Corollary 4.3. But K X K =
e; A a; by Propositions 6.2(a) and 3.2(a). Conversely, 6C = e; A a; implies
§C is d.r.e. by Proposition 6.2(a); that m = 1 then follows from Theorem 5.1.
Now assume m = 2, and let R, = {#|C has a regular sequence of length n}. By
definition of ‘“‘regular sequence,” n € R¢ = n < m, while by Lemma 6.3,
2 € R¢. Hence ne = max R, exists and satisfies 2 < ne < m. By Lemma 6.4,
(e1 A a1)me =16C, and since ne + 1 ¢ R, it follows that 6C =,

(e; A a;)mc. Hence 6C = (e; A a1)-nc.

To complete the classification it remains to show that in Theorem 6.6(b),
ne can take on all possible values. If a, b € N we use [a¢, b] to denote
{k € Nla <k =<5} if a £b and the empty set otherwise. We require the
following lemma:

LEMMA 6.7. Assume n < m. For each j, 1 £ j<m —n+2, let F;=
Li—-1YU[i+1,m—n+2]
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(a) Suppose 1 < ji, jo, js S m — n + 2 and jo # js; then Fy, © Fy, \J Fy,.
(b) Let {Hi, ..., H,) be a sequence of finite sets with p = 3 and H, # H;
for 1 # j. Suppose that for some iy, 1s, 13, j1, Jo, 3 Satisfying 1 < 41 < 1s < 13 S p
and 1 £ 41, jo, s <m—n+2 H;, =F;,, H, = F;, and Hy; = F;,. Then

Hoo (U H)N( U H).
1gi<u 1<isp

Proof. (a) Suppose 1 = j1, jo, js = m — n + 2 and j, # j3; thenj, € Fj, =
(I,m —n+ 2] — {js}.Hence F;, C{1l,m —n+ 2] = (I,m —n+2] —
{72}) U {ja} S Fp U Fy.

(b) Suppose 1 £ 7, < 42 <43 < pand H;, = F;,, Hy, = F;,, H; = Fy,
for 1 <41, jo, s=m—n+2 Now t2#i3=>H;,,#H;;,= F;, # F;, =
Je # js. Then by (a), Hi, =F; C Fi,UF;; =H;, JH;; CUuy<izp Hi
since 7; < 19, 13. Hence

HoC (U H)N( U Hy).
1gigiy 1<izp

THEOREM 6.8. For each m = 2 and n satisfying 2 < n < m there is an open
class of d.r.e. sets whose core contains m elements and whose index set has 1-degree
(e1 A\ al)"l’l.

Proof. By Theorem 6.7(b), it suffices to show that for all m = 2 and any
satisfying 2 < » =< m there is an open class X of d.r.e. sets whose core contains
m sets and whose longest regular sequence has length #. We define the core of C
as the set of canonical indices of the finite sets Fy, . . ., F,, defined by

Fi=[1,j—-1V[j+1,m—n+2,forlsj=m-—n+2
F,=[1,m—n)U\{j}, form —n+2<j=<m

Case 1. m = n: Then F, = {2}, F, = {1} and F; = {j} for 3 < j < m, and
it is easily verified that the sequence (Fi, ..., F,) is regular for C; hence the
longest regular sequence for C has length n = m.

Case 2. n < m: We first show that C has a regular sequence of length #:
Consider the sequence (Gi, ..., G,) where G, = F,_,+4, 1 £ 17 = n. Then
Gi=[1l,m—nlU{m—n+2},Go=[1l,m —n+1land G, = [1,m — n]\J
{m —n + i} for3 <=7 < n Foreachk, 1 =k < n,let P, =Uigi<xGi, Sk =
Ui<iza Gi. We claim that foreach j, k, 1 £ j <m, 1 =k <n, F, L P, N S,.
For suppose 1 = j<m —n+ 1. Then m —n 4+ 2 € F;, but it is easily
checked that m — n +2 € G, whilem — n +2 ¢ G, for 1 <1 £ n. Hence
foreachk, 1=k <nu,m—-—n+2€ P, —S,,and F; L P,NSifl £j =
m —n + 1. Now suppose j = m — n + 2; then F; = [1, m — n + 1]. But
m—n+1€¢ G, =P,s0 F, P NS, while m —n+1¢ G, for i > 2,
so F; & Syfork = 2. Hence F; € P, M S;if j = m — n + 2. Finally suppose
m—mn-+3=j=m. Thenj € F; whilej € G;only if ¢ = j — m + n; but
then foreach k,1 =k = n,j€ P, — S;ifk2j—m+nandjc S — Pif
k < j — m + n. This completes the proof that the sequence (G, ..., G,) is
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regular for C. It remains to show that C has no regular sequence of length > 7.
Suppose (Hy, ..., H,) is such a sequence; then p > n = 2 and H; # H; for
i # j. Since at most # — 2 of the sets H; can be from among
{Fjlm —n + 3 < j < m}, at least 3 of the sets H, must be from among
{Fl1<j<m+n-2),sayH, =F;,H,;, = F;,, H, = F;, for1 €4, <
iy <13 = p, 1 = j1, jo, j3s = m + n — 2. But then by Lemma 6.7(b),

Hoc (U H)N( U H),

1<i<i 01<i<p
which contradicts the assumption that (H;, ..., H,) is regular. Hence the
longest regular sequence for C has length 7, and the 1-degree of 6C is
(e1 A al)-n.

COROLLARY 6.9. If m = 2, there are m — 1 possible 1-degrees for index sets §C

where C is an open class of d.r.e. sets whose core contains m elements.

REFERENCES

. S. B. Cooper, Degrees of sets bounded-truth-table reducible to creative sets (to appear).
. Y. L. Ershov, A4 hierarchy of index sets, I, Algebra and Logic 7 (1968), 25-43.
. L. Hay, A discrete chain of degrees of index sets, J. Symbolic Logic 37 (1972), 139-149.
——— Index sets of finite classes of recursively enumerable sets, J. Symbolic Logic 34 (1969),
39-44.
. L. Hay, A. B. Manaster, and J. G. Rosenstein, Small recursive well-orderings, many one-
degrees and the arithmetical difference hierarchy (to appear in Ann. Math. Logic).
. J. Myhill, 4 fixed point theorem in recursion theory, Abstract, J. Symbolic Logic 20 (1955),
p. 205.
7. H. G. Rice, Class of recursively enumerable sets and their decision problems, Trans. Amer.
Math. Soc. 74 (1953), 358-366.
On completely recursively enumerable classes and their key arrays, J. Symbolic Logic 21
(1956), 304-308.
9. H. Rogers, Jr., Theory of recursive functions and effective computability (McGraw-Hill, New
York, 1967).

3] RN =

(=)

Unawversity of Illinois at Chicago Circle,
Chicago, Illinois

https://doi.org/10.4153/CJM-1975-043-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-043-4

