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Character Density in Central Subalgebras
of Compact Quantum Groups

Mahmood Alaghmandan and Jason Crann

Abstract. We investigate quantum group generalizations of various density results from Fourier
analysis on compact groups. In particular, we establish the density of characters in the space of
ûxed points of the conjugation action on L2(G) and use this result to show the weak* density and
norm density of characters in ZL∞(G) and ZC(G), respectively. As a corollary,we partially answer
an open question of Woronowicz. At the level of L1(G), we show that the center Z(L1(G)) is
precisely the closed linear span of the quantum characters for a large class of compact quantum
groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that
Z(L1(G)) is a completely complementedZ(L1(G))-submodule of L1(G).

1 Introduction

As in the group setting, irreducible characters play a signiûcant role in harmonic anal-
ysis on compact quantum groups [2,4, 5, 16]. In this note, we investigate the relation-
ship between the irreducible characters of compact quantum groups G and the cen-
tral subalgebras of the Banach algebras L2(G) and L1(G), and the operator algebras
C(G) and L∞(G). We characterize the ûxed points of the two canonical conjugation
actions on L2(G) as the closed linear span of the characters and quantum characters,
respectively, the latter being equal to the centerZ(L2(G)). We then use these charac-
terizations to establish the weak* density of characters in ZL∞(G) ∶= {x ∈ L∞(G) ∣
Γ(x) = ΣΓ(x)} and norm density in ZC(G) ∶= {x ∈ C(G) ∣ Γ(x) = ΣΓ(x)},
thereby partially answering an open question of Woronowicz (see [16, Proposition
5.11]), and generalizing the partial solution of Lemeux in the Kac setting [11, _eo-
rem 1.4]. For any compact quantum group whose dual has the central almost com-
pletely positive approximation property in the sense of [5, Deûnition 3],we show that
Z(L1(G)) is the closed linear span of the characters. We establish the same result for
arbitrary compact Kac algebras by showing that Z(L1(G)) is a completely comple-
mented Z(L1(G))-submodule of L1(G).

2 Compact Quantum Groups

A locally compact quantumgroup is a quadrupleG = (L∞(G), Γ, φ,ψ),where L∞(G)
is aHopf–von Neumann algebrawith a co-associative co-multiplication Γ∶ L∞(G)→
L∞(G)⊗L∞(G), and φ and ψ are ûxed (normal faithful semiûnite) le� and right
Haar weights on L∞(G), respectively [9, 10]. For every locally compact quantum
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groupG there exists a le� fundamental unitary operator W on L2(G, φ)⊗2 L2(G, φ)
and a right fundamental unitary operator V on L2(G,ψ) ⊗2 L2(G,ψ) implementing
the co-multiplication Γ via

Γ(x) =W∗(1⊗ x)W = V(x ⊗ 1)V∗ , x ∈ L∞(G).
Both unitaries satisfy the pentagonal relation; that is,

W12W13W23 =W23W12 and V12V13V23 = V23V12 .

At the level of theHilbert spaces,

W∗Λφ⊗φ(x⊗y) = Λφ⊗φ(Γ(y)(x⊗1)) and VΛψ⊗ψ(a⊗b) = Λψ⊗ψ(Γ(a)(1⊗b))

for x , y ∈ Nφ and a, b ∈ Nψ . By [10, Proposition 2.11], we can identify L2(G, φ) and
L2(G,ψ), so we will simply use L2(G) for this Hilbert space throughout the paper.
_e reduced quantum group C∗-algebra of L∞(G) is deûned as

C0(G) ∶= {(id⊗ω)(W) ∣ ω ∈ T(L2(G))}
∥ ⋅ ∥

.

We say that G is compact if C0(G) is a unital C∗-algebra, in which case we denote
C0(G) by C(G). For compact quantum groups it follows that φ is ûnite and right
invariant. In particular, φ = ψ.

We let R and (τt)t∈R denote the unitary antipode and scaling group of G, respec-
tively. _e unitary antipode satisûes

(2.1) (R ⊗ R) ○ Γ = Σ ○ Γ ○ R,

where Σ ∶ L∞(G)⊗L∞(G)→ L∞(G)⊗L∞(G) denotes the �ip map. _e antipode of
G is S = Rτ−i/2, and is a closed densely deûned operator on L∞(G), whose domain
we denote byD(S).

Let L1(G) denote the predual of L∞(G). _en the pre-adjoint of Γ induces an
associative completely contractivemultiplication on L1(G), deûned by

⋆∶ L1(G)⊗̂L1(G) ∋ f ⊗ g z→ f ⋆ g = Γ∗( f ⊗ g) ∈ L1(G).
_ere is a canonical L1(G)-bimodule structure on L∞(G), given by
⟨ f ⋆ x , g⟩ = ⟨x , g ⋆ f ⟩ and ⟨x ⋆ f , g⟩ = ⟨x , f ⋆ g⟩, x ∈ L∞(G), f , g ∈ L1(G).
We say that G is co-amenable if L1(G) has a bounded le� (equivalently, right or two-
sided) approximate identity (cf. [3,_eorem 3.1]).

Let L1
∗
(G) be the subspace of L1(G) deûned by

L1
∗
(G) = { f ∈ L1(G) ∶ ∃ g ∈ L1(G) s.t. g(x) = f ∗ ○ S(x) ∀x ∈D(S)} ,

where f ∗(x) = f (x∗), x ∈ L∞(G). It is known from [15, §1.13] that L1
∗
(G) is a dense

subalgebra of L1(G). _ere is an involution on L1
∗
(G), given by f o = f ∗ ○S, such that

L1
∗
(G) becomes a Banach *-algebra under the norm ∥ f ∥∗ = max{∥ f ∥, ∥ f o∥}.
A unitary co-representation of G is a unitary U ∈ L∞(G)⊗B(H) satisfying

(Γ ⊗ id)(U) = U13U23. Every unitary co-representation gives rise to a representation
of L1(G) via

L1(G) ∋ f ↦ ( f ⊗ id)(U) ∈ B(H).

https://doi.org/10.4153/CMB-2016-101-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-101-1


Character Density in Central Subalgebras of Compact Quantum Groups 451

In particular, the le� fundamental unitary W gives rise to the le� regular represen-
tation λ∶ L1(G) → B(L2(G)) deûned by λ( f ) = ( f ⊗ id)(W), f ∈ L1(G), that
is an injective, completely contractive homomorphism from L1(G) into B(L2(G)).
_en L∞(Ĝ) ∶= {λ( f ) ∶ f ∈ L1(G)}′′ is the von Neumann algebra associated
with the dual quantum group Ĝ of G. When G is compact with normalized Haar
state φ, the following holds [16]: every irreducible co-representation uα is ûnite-
dimensional and is unitarily equivalent to a sub-representation ofW , and every uni-
tary co-representation of G can be decomposed into a direct sum of irreducible co-
representations. We let Irr(G) ∶= {uα} denote a complete set of representatives of
irreducible co-representations of G that are pairwise inequivalent. Slicing by vector
functionals ω i j = ωe j ,e i relative to an orthonormal basis of Hα , we obtain elements
uαi j = (id⊗ω i j)(uα) ∈ L∞(G) satisfying

Γ(uαi j) =
nα

∑
k=1

uαik ⊗ uαk j , 1 ≤ i , j ≤ nα .

_e linear space A ∶= span{uαi j ∣ α ∈ Irr(G) 1 ≤ i , j ≤ nα} forms a unital Hopf
*-algebra that is dense in C(G).
For every α ∈ Irr(G) there exists a positive invertible matrix Fα ∈ Mnα(C) such

that the corresponding “F–matrices” implement the le� Haar weight of the dual Ĝ.
Without loss of generality,we can assume that Fα = diag(λα1 , . . . , λαnα) [6, Proposition
2.1]. Since tr(Fα) = tr(Fα)−1, it follows that

nα

∑
i=1

λαi =
nα

∑
i=1

1
λαi

= tr(Fα) =∶ dα ,

where dα is the quantum dimension of uα . If G is a compact Kac algebra, meaning φ
is tracial, then dα = nα and Fα = 1nα for all α ∈ Irr(G). For every α there exists a
conjugate representation α on Hα , such that

λαi = (λαi )−1 and uαi j =
¿
ÁÁÀ λαi

λαj
uα

∗

i j

(see [13, Proposition 1.4.6]).
In the general setting, the Peter–Weyl orthogonality relations are as follows:

φ((uβkl)
∗uαi j) = δαβδ ikδ j l

1
λαi dα

, φ(uβkl(u
α
i j)∗) = δαβδ ikδ j l

λαj
dα

.

From this it follows that {
√
dαλαi Λφ(uαi j) ∣ α ∈ Irr(G), 1 ≤ i , j ≤ nα} is an orthonor-

mal basis for L2(G).
For an element x ∈ L∞(G), we let x ⋅ φ and φ ⋅ x denote the elements in L1(G)

given by ⟨x ⋅ φ, y⟩ = φ(yx) and ⟨φ ⋅ x , y⟩ = φ(xy), y ∈ L∞(G). If x = uαi j , we denote
uαi j ⋅φ by φαi j . By the density ofA in C(G), it follows that L∞(G) ⋅φ is dense in L1(G).
Let

Iφ ∶= { f ∈ L1(G) ∣ ∃ M > 0 ∶ ∣⟨ f , x∗⟩∣ ≤ M∥Λφ(x)∥∀x ∈ L∞(G)} .
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_en Iφ is a dense le� ideal in L1(G) containing L∞(G) ⋅φ such that for every f ∈ Iφ ,
there exists a unique a( f ) ∈ L2(G) satisfying ⟨a( f ),Λφ(x)⟩ = ⟨ f , x∗⟩ for all x ∈
L∞(G). If x ∈ L∞(G), then a(x ⋅ φ) = Λφ(x).
By le� invariance of the Haar state, the map I∶ L2(G) ∋ Λφ(x) ↦ Λφ⊗φ(Γ(x)) ∈

L2(G)⊗2 L2(G) is an isometry. Composing its adjoint I∗∶ L2(G)⊗2 L2(G)→ L2(G)
with the canonical contraction L2(G) ⊗γ L2(G) → L2(G) ⊗2 L2(G), where ⊗γ de-
notes the projective tensor product, we obtain a Banach algebra structure on L2(G).
On elementary tensors, themultiplication is given by

Λφ(x)⊗ Λφ(y)z→ a((x ⋅ φ) ⋆ (y ⋅ φ)) , x , y ∈ L∞(G).

Moreover, there exists a contractive homomorphic injection b∶ L2(G) → L1(G) sat-
isfying b(a( f )) = f for all f ∈ Iφ . We refer the reader to [7, §6.2] for details in the
Kac case, the proofs carrying over verbatim to general compact G.
As in the case of compact groups, the irreducible characters ofG play an important

role in the harmonic analysis. For α ∈ Irr(G), we let

χα ∶= (id⊗ tr)(uα) =
nα

∑
i=1

uαi i ∈ L∞(G)

be the character of α, and we let

χαq ∶= (id⊗Fα)(uα) =
nα

∑
i=1

λαi uαi i ∈ L∞(G)

be the quantum character of α. _e characters (as well as the quantum characters)
satisfy the decomposition relations

(2.2) χα χβ = ∑
γ∈Irr(G)

Nγ
αβ χ

γ ,

where Nγ
αβ is themultiplicity of γ in the tensor product representation α⊗ β (see [13,

Proposition 1.4.3]). It follows that χα = χα∗ , α ∈ Irr(G), so that span{χα ∣ α ∈ Irr(G)}
is aC∗-subalgebra ofC(G). Letting φαq ∶= χαq ⋅φ be the L1(G) elements corresponding
to the quantum characters ofG, it follows from the orthogonality relations that

⟨φαq ⋆ f , u
β∗
kl ⟩ = ⟨ f ⋆ φαq , u

β∗
kl ⟩ = ⟨ f , uβ∗kl ⟩

δαβ
dα

for all f ∈ L1(G) and β ∈ Irr(G). In particular,

φαq ⋆ φαq =
1
dα

φαq , α ∈ Irr(G).

By weak* density ofA in L∞(G), it follows that alg{φαq ∣ α ∈ Irr(G)} is a closed ideal
inZ(L1(G)), the center of L1(G). Belowwe establish the reverse inclusion for a large
class of compact quantum groups.
From the Peter–Weyl relations, one easily sees that

(2.3) ⟨Λφ(χα),Λφ(χβ)⟩ = δαβ = ⟨Λφ(χαq),Λφ(χβq)⟩ , α, β ∈ Irr(G),
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so spatially, there is no diòerence between the subspaces of L2(G) generated by
{Λφ(χα)} and {Λφ(χαq)}. _e multiplicative structure of these spaces is quite dif-
ferent, however, as we now investigate.

3 Central Subalgebras

Let G be a compact quantum group, and let β2∶ L1(G) → B(L2(G)) be the conjuga-
tion representation ofG, deûned by

β2( f ) = ( f ⊗ id)(W(1⊗U∗)W(1⊗U)) , f ∈ L1(G),

where U = Ĵ J, and J and Ĵ are the conjugate linear isometries arising from the GNS
constructions of φ and φ̂, respectively. One can easily verify that

W(1⊗U∗)W(1⊗U) ∈ L∞(G)⊗B(L2(G))

is aunitary co-representation ofG, so that β2 is indeed ahomomorphism. Let ZL2(G)
denote the set of ûxed vectors under β2, i.e., those ξ ∈ L2(G) satisfying β2( f )ξ =
⟨ f , 1⟩ξ for all f ∈ L1(G). We call ZL2(G) the space of central vectors of L2(G), and
in what follows we study its connection to the center Z(L2(G)). We begin with a few
lemmas.

Lemma 3.1 Let G be a compact quantum group. _en for x ∈ A,

β2(φ)Λφ(x) =
n

∑
i=1

λ(y i ⋅ φ)Λφ(x i) =
n

∑
i=1

Λφ((φ ⊗ id)(y i ⊗ 1)Γ(x i)) ,

where Γ(x) = ∑n
i=1 x i ⊗ y i .

Proof We let σ ∶ L2(G) ⊗ L2(G) → L2(G) ⊗ L2(G) denote the �ip map. If a ∈ A,
we have

⟨β2(φ)Λφ(x),Λφ(a)⟩ = ⟨WσVσΛφ⊗φ(1⊗ x),Λφ⊗φ(1⊗ a)⟩
= ⟨σΛφ⊗φ(Γ(x)),Λφ⊗φ(Γ(a))⟩ = φ ⊗ φ(Γ(a∗)ΣΓ(x))

= φ ⊗ φ(Γ(a∗)ΣΓ(x)) =
n

∑
i=1

φ ⊗ φ(Γ(a∗)y i ⊗ x i)

=
n

∑
i=1

y i ⋅ φ((id⊗φ)(Γ(a∗)(1⊗ x i))) .
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Since S((id⊗φ)(Γ(a∗)(1⊗x i))) = (id⊗φ)((1⊗a∗)Γ(x i)) and S(S(y)∗)∗ = y for all
y ∈ A, we have (id⊗φ)(Γ(a∗)(1⊗ x i)) = S((id⊗φ)(Γ(x∗i )(1⊗ a)))∗. Continuing,

⟨β2(φ)Λφ(x),Λφ(a)⟩ =
n

∑
i=1

y i ⋅ φ(S((id⊗φ)(Γ(x∗i )(1⊗ a)))∗)

=
n

∑
i=1

(y i ⋅ φ)o((id⊗φ)(Γ(x∗i )(1⊗ a))) =
n

∑
i=1

φ(((y i ⋅ φ)o ⊗ id)(Γ(x∗i ))a)

=
n

∑
i=1

⟨Λφ(((y i ⋅ φ)o∗ ⊗ id)Γ(x i)) ,Λφ(a)⟩

=
n

∑
i=1

⟨((y i ⋅ φ)o∗ ⊗ id)(W∗)Λφ(x i),Λφ(a)⟩

=
n

∑
i=1

⟨ λ((y i ⋅ φ)o)∗Λφ(x i),Λφ(a)⟩ =
n

∑
i=1

⟨ λ(y i ⋅ φ)Λφ(x i),Λφ(a)⟩ .

_is establishes the ûrst formula. _e second follows from the general relation

((y ⋅ φ)o∗ ⊗ id)Γ(x) = (φ ⊗ id)((S(y)⊗ 1)Γ(x))

valid for all x , y ∈D(S), as is easily veriûed.

Lemma 3.2 Let G be a compact quantum group, and x ∈ A. _en x ⋅ φ ∈ L1
∗
(G)

with (x ⋅ φ)o = S(x)∗ ⋅ φ.

Proof First note that φ = φ ○ S on D(S). _en for y ∈D(S) we have

⟨S(x)∗ ⋅ φ, y⟩ = φ(yS(x)∗) = φ(S(x)y∗) = φ(S(x)S(S(y)∗))

= φ(S(S(y)∗x)) = φ(S(y)∗x) = ⟨x ⋅ φ, S(y)∗⟩ .

_us, x ⋅ φ ∈ L1
∗
(G) with (x ⋅ φ)o = S(x)∗ ⋅ φ.

Lemma 3.3 Let G be a compact quantum group. _en

{dα
√

λαi λαj λ(φ
α
i j) ∣ α ∈ Irr(G), 1 ≤ i , j ≤ nα}

forms a set ofmatrix units for the vonNeumann algebra L∞(Ĝ). In particular, for every
ξ ∈ L2(G), we have

ξ = ∑
α∈Irr(G)

dαΛφ(χαq) ⋆ ξ,

where the sum converges in L2(G).

Proof Let eαi j ∶= dα
√

λαi λαj λ(φαi j) for 1 ≤ i , j ≤ nα and α ∈ Irr(G). By Lemma 3.2,
φαi j ∈ L1

∗
(G) and φα

o

i j = S(uαi j)∗ ⋅ φ = uαji ⋅ φ = φαji . Since λ is involutive on L1
∗
(G)
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[10, Proposition 2.4], we have eα∗i j = eαji . _en

⟨φαi j ⋆ φβkl , u
γ∗
mn⟩ =

nγ

∑
r=1

⟨φαi j ⊗ φβkl , u
γ∗
mr ⊗ uγ∗

rn⟩ =
nγ

∑
r=1

φ(uγ∗
mruαi j)φ(u

γ∗
rnuβkl)

=
δαγδβγδ imδ jkδnl

λαk λ
α
i d2
α

=
δαβδk j

λαkdα
⟨φαi l , u

γ∗
mn⟩.

It follows that

eαi je
β
kl = dαdβ

√
λαi λαj

√
λβk λ

β
l λ(φ

α
i j ⋆ φβkl) = δαβδk jeαi l .

By the above, we know that ∑nα
i=1 e

α
i i = dαλ(φαq) ∈ Z(L∞(Ĝ)), hence zα ∶= dαλ(φαq)

is a central projection in L∞(Ĝ) acting as the identity on the factor {eαi j ∣ 1 ≤ i , j, ≤
n} ≅ Mnα(C). _us,

L∞(Ĝ) = ⊕
α∈Irr(G)

zαL∞(Ĝ) ≅ ⊕
α∈Irr(G)

Mnα(C).

We now show that the central vectors in L2(G) are precisely the span of the char-
acters, generalizing the well-known fact for compact groups.

Proposition 3.4 Let G be a compact quantum group. _en

ZL2(G) = span{Λφ(χα) ∣ α ∈ Irr(G)} .

Proof Since φo = φ = φ∗, by Lemma 3.1 we have

⟨β2(φ)Λφ(uαkl),Λφ(uβi j)⟩ =
nα

∑
n ,m=1

⟨Λφ((φ ⊗ id)(uα∗l n uαkm ⊗ uαmn)) ,Λφ(uβi j)⟩

=
nα

∑
n ,m=1

φ((uαl n)
∗uαkm)φ((uβi j)

∗uαmn)

= δαβδkl δ i j
1

λαi λαkd2
α

= δkl
1

λαkdα
⟨Λφ(χα),Λφ(uβi j)⟩ .

By density of irreducible coeõcients, we obtain

(3.1) β2(φ)Λφ(uαkl) =
δkl
λαkdα

Λφ(χα).

Lemma 3.3 implies that β2(φ) is a self-adjoint idempotent, so β2(φ) is the or-
thogonal projection onto its ûxed points, namely ZL2(G). Equation (3.1) implies that
β2(φ)Λφ(χα) = Λφ(χα) for all α ∈ Irr(G) so that

span{Λφ(χα) ∣ α ∈ Irr(G)} ⊆ ZL2(G).
Conversely, if ξ ∈ ZL2(G) and ⟨ξ,Λφ(χα)⟩ = 0 for all α, then

⟨ ξ,Λφ(uβkl)⟩ = ⟨ ξ, β2(φ)Λφ(uβkl)⟩ = δkl
1

λαkdα
⟨ ξ,Λφ(χα)⟩ = 0
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for all β ∈ Irr(G), k, l = 1, . . . , nβ . By density, wemust have ξ = 0.

Proposition 3.5 Let G be a compact quantum group. _en

Z(L2(G)) = span{Λφ(χαq) ∣ α ∈ Irr(G)} .

Proof Since {φαq ∣ α ∈ Irr(G)} ⊆ Z(L1(G)), it follows from the deûnition of con-
volution in L2(G) that span{Λ(χαq) ∣ α ∈ Irr(G)} ⊆ Z(L2(G)). Conversely, sup-
pose that ξ ∈ Z(L2(G)). Since b(L2(G)) is dense in L1(G), it follows that b(ξ) ∈
Z(L1(G)), which in turn makes λ(b(ξ)) ∈ Z(L∞(Ĝ)), so that dαλ(φαq)λ(b(ξ)) =
zαλ(b(ξ)) = cαzα = cαdαλ(φαq) for each α ∈ Irr(G). By injectivity of λ, we obtain
dαφαq ⋆ b(ξ) = cαdαφαq . But φαq = b(Λφ(χαq)), so injectivity of b implies dαΛφ(χαq) ⋆
ξ = cαdαΛφ(χαq). _us, by Lemma 3.3,

ξ = ∑
α∈Irr(G)

dαΛφ(χαq) ⋆ ξ = ∑
α∈Irr(G)

cαdαΛφ(χαq),

where the series converges in L2(G).

Remark 3.6 Let β′2∶ L1(G)→ B(L2(G)) be the representation deûned by

β′2( f ) = Uβ2( f )U∗ = ( f ⊗ id)((1⊗U)W(1⊗U∗)W) , f ∈ L1(G).

_en β′2 is another “conjugation representation” on L2(G)whose ûxed points are pre-
cisely Z(L2(G)). _us, for non-Kac compact quantum groups, the conjugation rep-
resentations β2 and β′2 distinguish the central vectors from the center of the Banach
algebra L2(G).

In the group setting,W and (1 ⊗ U)W(1 ⊗ U∗) belong to L∞(G)⊗VN(G) and
L∞(G)⊗VN(G)′, respectively, and therefore commute. Hence, for f ∈ L1(G), we
have

β2( f ) = β′2( f ) = ∫
G
f (s)λ(s)ρ(s)ds,

where λ and ρ are the le� and right regular representations of G, respectively, and ds
is the normalizedHaar measure on G.

We now establish the corresponding density theorems at the level of L∞(G) and
C(G). In particular, we show that ZC(G) = {x ∈ C(G) ∣ Γ(x) = ΣΓ(x)} is precisely
the closed linear span of the characters, which partially answers an open question of
Woronowicz (see [16, Proposition 5.11]).

_eorem 3.7 Let G be a compact quantum group. _en

ZL∞(G) = {χα ∣ α ∈ Irr(G)}′′ .
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Proof _e inclusion {χα ∣ α ∈ Irr(G)}′′ ⊆ ZL∞(G) is clear. Let x ∈ ZL∞(G). _en
for any y ∈ L∞(G),

⟨β2(φ)Λφ(x),Λφ(y∗)⟩ = ⟨WσVσΛφ⊗φ(1⊗ x),Λφ⊗φ(1⊗ y∗)⟩
= ⟨σΛφ⊗φ(Γ(x)),Λφ⊗φ(Γ(y∗))⟩
= φ ⊗ φ(Γ(y)ΣΓ(x)) = φ ⊗ φ(Γ(yx)) = φ(yx)
= ⟨Λφ(x),Λφ(y∗)⟩ .

It follows that β2(φ)Λφ(x) = Λφ(x). Hence, Λφ(ZL∞(G)) ⊆ ZL2(G) by Proposi-
tion 3.4, and

ZL2(G) = Λφ(ZL∞(G))
∥ ⋅ ∥

,
as the reverse inclusion is clear.

Note that equations (2.2) and (2.3) entail the traciality of φ on the von Neumann
algebra {χα ∣ α ∈ Irr(G)}′′. In particular, the map ZL2(G) ∋ Λφ(x) ↦ Λφ(x∗) ∈
ZL2(G) is an isometry. Given, x , y ∈ ZL∞(G), take sequences (xn) and (ym) in
span{χα ∣ α ∈ Irr(G)} such that Λφ(xn)→ Λφ(x) and Λφ(ym)→ Λφ(y). _en

φ(x∗y) = ⟨Λφ(y),Λφ(x)⟩ = lim
n

⟨Λφ(yn),Λφ(x)⟩ = lim
n

lim
m

⟨Λφ(yn),Λφ(xm)⟩

= lim
n

lim
m

φ(x∗m yn) = lim
n

lim
m

φ(ynx∗m) = lim
n

lim
m

⟨Λφ(x∗m),Λφ(y∗n)⟩

= lim
n

⟨Λφ(x∗),Λφ(y∗n)⟩ = φ(yx∗).

_us, φ is a faithful trace on ZL∞(G), so there is a unique conditional expectation
E∶ ZL∞(G) → {χα ∣ α ∈ Irr(G)}′′ satisfying Λφ(E(x)) = β2(φ)Λφ(x) = Λφ(x),
x ∈ ZL∞(G). _en E(x) = x, and ZL∞(G) ⊆ {χα ∣ α ∈ Irr(G)}′′.

Corollary 3.8 Let G be a compact quantum group. _en

ZC(G) = span{χα ∣ α ∈ Irr(G)}.

Proof Let ZL1(G) ∶= span{φα ∣ α ∈ Irr(G)}. As φ is a normal faithful trace on
ZL∞(G), it follows that ZL∞(G) ≅ (ZL1(G))∗ completely isometrically andweak*-
weak* homeomorphically. Let

r∶ L∞(G) ∋ x z→ x∣ZL1(G) ∈ ZL∞(G)
be the completely contractive restriction map. _e orthogonality relations imply

r(uαi j) =
δ i jλαi
dα

χα , α ∈ Irr(G), 1 ≤ i , j ≤ nα .

In particular, r(C(G)) ⊆ span{χα ∣ α ∈ Irr(G)}, and r(χα) = χα for all α ∈ Irr(G).
Since r is weak*-weak* continuous, by _eorem 3.7 it follows that r(x) = x for all
x ∈ ZL∞(G). Hence, if x ∈ ZC(G), then x = r(x) ∈ span{χα ∣ α ∈ Irr(G)}. Since
the reverse inclusion is obvious, we are done.

Remark 3.9 For a compact quantum group G, let Cu(G) be its correspond-
ing universal C∗-algebra (see [8] for details). _ere is a universal co-multiplica-
tion Γu ∶Cu(G) → Cu(G) ⊗min Cu(G) satisfying (π ⊗ π) ○ Γu = Γ ○ π, where
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π∶Cu(G) → C(G) is the canonical quotient map. _is gives rise to a universal com-
pact quantum group structure on Cu(G). In particular, there is a ∗-algebra Au of
universal matrix coeõcients that is dense in Cu(G), and there are universal charac-
ters χαu ∈ Cu(G) satisfying π(χαu) = χα , α ∈ Irr(G). In [16],Woronowicz askswhether
ZCu(G) ∩Au is dense in ZCu(G) = {xu ∈ Cu(G) ∣ Γu(xu) = ΣΓu(xu)}. _eorem
3.7, therefore, answers this question, in the aõrmative, for all co-amenable compact
quantum groups, i.e., those for which Cu(G) = C(G) (see [3, _eorem 3.1]). _is
generalizes the partial result of Lemeux in the co-amenable Kac setting [11,_eorem
1.4].

For compact groups G, the standard proof that Z(L1(G)) is the closed linear span
of the characters utilizes a central bounded approximate identity (BAI) for L1(G). A
similar argument applies for any compact quantum group G for which L1(G) has a
BAI ( f i) in span{φαq ∣ α ∈ Irr(G)}, which is bounded in the completely bounded
multiplier norm; i.e., themaps L1(G) ∋ g ↦ f i ⋆ g ∈ L1(G) are uniformly completely
bounded. Any G whose dual has the central almost completely positive approxima-
tion property (ACPAP) in the sense of [5, Deûnition 3] has this property. _us,

(3.2) Z(L1(G)) = span{φαq ∣ α ∈ Irr(G)}

for any compactGwith the centralACPAP. By [5,_eorem 25], this includes SUq(2),
q ∈ [−1, 0) ∪ (0, 1], as well as any free orthogonal and unitary quantum groups O+

F
and U+

F , for any parameter matrix F ∈ GL(n,C) (see [5, §1.4,§4.2], for instance). We
conjecture that (3.2) is valid for arbitrary compactG. We now provide support for the
conjecture by showing that it holds for arbitrary compact Kac algebras. In turn, we
generalize a result ofMosak [12, Proposition 1.5 (i)].

_eorem 3.10 Let G be a compact Kac algebra. _en β2(φ)∶ L2(G) → L2(G) ex-
tends to a completely contractive projection β1∶ L1(G)→ Z(L1(G)) satisfying

β1( f ⋆ g) = f ⋆ β1(g), f ∈ Z(L1(G)), g ∈ L1(G).

Proof _e argument in [14, Lemma 3.2] shows that themap Φ∶ L∞(G)⊗L∞(G)→
L∞(G) given by

Φ(X) = (ωΛφ(1) ⊗ id)W∗(U∗ ⊗ 1)X(U ⊗ 1)W , X ∈ L∞(G)⊗L∞(G)

is a normal, unital, completely positive le� inverse to Γ satisfying Γ ○ Φ = (Φ ⊗
id)(id⊗Γ). Moreover, sinceW ∈ L∞(G)⊗L∞(Ĝ) and UΛφ(1) = Λφ(1), we have

φ(Φ(x ⊗ y)) = (ωΛφ(1) ⊗ φ)((U∗xU ⊗ 1)W∗(1⊗ y)W) = φ(x)φ(y)

for all x , y ∈ L∞(G). By normality it follows that φ ⊗ φ = φ ○Φ = φ ⊗ φ ○ Γ ○Φ, so
that Γ ○Φ is a normal conditional expectation onto Γ(L∞(G)) preserving φ ⊗ φ.
By Lemma 3.1, themap b ○ β2(φ) ○ a∶ Iφ → L1(G) satisûes b ○ β2(φ) ○ a(x ⋅ φ) =

∑n
i=1(y i ⋅φ)⋆(x i ⋅φ) for x ∈ A,where Γ(x) = ∑n

i=1 x i⊗y i . Recalling that φ is invariant
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under the unitary antipode, for y ∈ L∞(G) we have

⟨b ○ β2(φ) ○ a(x ⋅ φ), y⟩ =
n

∑
i=1

⟨(y i ⋅ φ) ⋆ (x i ⋅ φ), y⟩ =
n

∑
i=1

⟨(y i ⋅ φ)⊗ (x i ⋅ φ), Γ(y)⟩

=
n

∑
i=1

φ ⊗ φ(Γ(y)(y i ⊗ x i))

= φ ⊗ φ(Γ(y)ΣΓ(x)) = φ ⊗ φ(Γ(R(x))(R ⊗ R)(Γ(y)))
= φ ⊗ φ(Γ ○Φ(Γ(R(x))(R ⊗ R)(Γ(y))))
= φ ⊗ φ(Γ(R(x))Γ ○Φ((R ⊗ R)(Γ(y))))
= φ ⊗ φ(Γ(R(x)Φ((R ⊗ R)(Γ(y)))))
= φ(R(x)Φ((R ⊗ R)(Γ(y))))
= φ(R(Φ((R ⊗ R)(Γ(y))))x)
= ⟨x ⋅ φ, R ○Φ ○ (R ⊗ R) ○ Γ(y)⟩.

Since the span{x ⋅ φ ∣ x ∈ A} is dense in L1(G), it follows that themap b ○ β2(φ) ○ a
has a completely contractive extension to a map β1∶ L1(G) → L1(G) whose adjoint
β∗1 ∶ L∞(G) → L∞(G) is given by β∗1 (y) = R ○ Φ ○ (R ⊗ R) ○ Γ(y) for y ∈ L∞(G).
Moreover, since β2(φ)a(x ⋅φ) = ab(β2(φ)a(x ⋅φ)) for x ∈ A, and β2(φ) is idempo-
tent, we have

β1(x ⋅ φ) = bβ2(φ)β2(φ)a(x ⋅ φ) = bβ2(φ)a ○ bβ2(φ)a(x ⋅ φ) = β1 ○ β1(x ⋅ φ),

which, by density, implies that β1 is also idempotent.
To establish themodule property, ûx g ∈ L1(G) and f ∈ Z(L1(G)). _en

R ⊗ R(Γ( f ⋆ x)) = R ⊗ R(Γ((id⊗ f )Γ(x)))
= R ⊗ R((id⊗ id⊗ f )(Γ ⊗ id)(Γ(x)))
= (id⊗ id⊗ f )((R ⊗ R)(Γ ⊗ id)(Γ(x))
= (id⊗ id⊗ f )(ΣΓ ⊗ id)(R ⊗ id)(Γ(x)) (equation (2.1))
= ( id⊗ id⊗R∗( f ))(ΣΓ ⊗ id)(R ⊗ R)(Γ(x))
= ( id⊗ id⊗R∗( f ))(ΣΓ ⊗ id)(ΣΓ(R(x)))
= ( id⊗ id⊗R∗( f ))(id⊗ΣΓ)(ΣΓ(R(x))) (co-associativity)
= ( id⊗ id⊗R∗( f ))(id⊗Γ)(ΣΓ(R(x))) ( f ∈ Z(L1(G))) .

Applying themap Φ, we obtain

Φ(R ⊗ R(Γ( f ⋆ x))) = ( id⊗R∗( f ))(Φ⊗ id)(id⊗Γ)(ΣΓ(R(x)))
= ( id⊗R∗( f ))Γ(Φ(ΣΓ(R(x))))
= ( id⊗R∗( f ))Γ(Φ(R ⊗ R(Γ(x))))
= R∗( f ) ⋆Φ(R ⊗ R(Γ(x))) .
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_erefore,

R ○Φ ○ (R⊗ R) ○ Γ( f ⋆ x) = R ○Φ ○ (R⊗ R) ○ Γ(x)⋆ f = f ⋆ R ○Φ ○ (R⊗ R) ○ Γ(x)
as f is central. _e pre-adjoint of the above relation yields the desiredmodule prop-
erty.

Now, let f ∈ L1(G). Taking a sequence (Λφ(xn)) in L2(G) such that b(Λφ(xn))
converges to f , it follows that β1(b(Λφ(xn))) converges to β1( f ). But

β1(b(Λφ(xn))) = b(β2(φ)Λφ(xn)) ∈ b(Z(L2(G))) ,

so that β1( f ) ∈ b(Z(L2(G))), which, by Proposition 3.5, is contained in

span{φα ∣ α ∈ Irr(G)} ⊆ Z(L1(G)).
Conversely, let f ∈ Z(L1(G)). By Proposition 3.4 we have β1(φα) = φα for all

α ∈ Irr(G), so themodule property of β1 entails

β1( f ) ⋆ φα = β1( f ⋆ φα) = f ⋆ β1(φα) = f ⋆ φα , α ∈ Irr(G).
Hence, by Lemma 3.3, for every ξ ∈ L2(G),

λ( f )ξ = ∑
α∈Irr(G)

dαλ( f ⋆ φα)ξ = ∑
α∈Irr(G)

dαλ(β1( f ) ⋆ φα)ξ = λ(β1( f ))ξ.

By injectivity of λ we then get f = β1( f ) so that Z(L1(G)) = β1(L1(G)).

Corollary 3.11 Let G be a compact Kac algebra. _en

Z(L1(G)) = span{φα ∣ α ∈ Irr(G)}.

Remark 3.12 Regarding conjecture (3.2), it would be interesting to ûrst examine
the class SUq(2n+ 1), n ≥ 1, as their duals have recently been shown to exhibit central
property (T) [1, Corollary 8.9].
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