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Character Density in Central Subalgebras
of Compact Quantum Groups

Mahmood Alaghmandan and Jason Crann

Abstract. We investigate quantum group generalizations of various density results from Fourier
analysis on compact groups. In particular, we establish the density of characters in the space of
fixed points of the conjugation action on L?(G) and use this result to show the weak* density and
norm density of characters in ZL*° (G) and ZC(G), respectively. As a corollary, we partially answer
an open question of Woronowicz. At the level of L!(G), we show that the center Z(L!(G)) is
precisely the closed linear span of the quantum characters for a large class of compact quantum
groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that
Z(L}(G)) is a completely complemented Z(L!(G))-submodule of L'(G).

1 Introduction

Asin the group setting, irreducible characters play a significant role in harmonic anal-
ysis on compact quantum groups [2,4,5,16]. In this note, we investigate the relation-
ship between the irreducible characters of compact quantum groups G and the cen-
tral subalgebras of the Banach algebras L?(G) and L'(G), and the operator algebras
C(G) and L*(G). We characterize the fixed points of the two canonical conjugation
actions on L*(G) as the closed linear span of the characters and quantum characters,
respectively, the latter being equal to the center Z(L*(G)). We then use these charac-
terizations to establish the weak* density of characters in ZL*(G) := {x € L=(G) |
[(x) = 2T(x)} and norm density in ZC(G) = {x € C(G) | I'(x) = ET(x)},
thereby partially answering an open question of Woronowicz (see [16, Proposition
5.11]), and generalizing the partial solution of Lemeux in the Kac setting [11, Theo-
rem 1.4]. For any compact quantum group whose dual has the central almost com-
pletely positive approximation property in the sense of [5, Definition 3], we show that
Z(L'(G)) is the closed linear span of the characters. We establish the same result for
arbitrary compact Kac algebras by showing that Z(L'(G)) is a completely comple-
mented Z(L'(G))-submodule of L'(G).

2 Compact Quantum Groups

A locally compact quantum group is a quadruple G = (L*(G), T, ¢, ), where L (G)
is a Hopf-von Neumann algebra with a co-associative co-multiplication I': L*°(G) —
L*(G)®L*(G), and ¢ and y are fixed (normal faithful semifinite) left and right
Haar weights on L= (G), respectively [9,10]. For every locally compact quantum
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group G there exists a left fundamental unitary operator W on L*(G, ¢) ®, L*(G, ¢)
and a right fundamental unitary operator V on L*(G, y) ®, L*(G, v) implementing
the co-multiplication I via

[(x)=W'(1lex)W=V(xe)V*, xecL=(G).

Both unitaries satisfy the pentagonal relation; that is,

WiaWisWas = Was Wi, and Vi VisVas = Vaz V.
At the level of the Hilbert spaces,

W*Apop(x®y) = Aq,@q,( F(y)(x@l)) and VAygy(a®b) = A,,,@,,( F(a)(l@b))

for x, y € N, and a, b € Ny,. By [10, Proposition 2.11], we can identify L,(G, ¢) and
L,(G,v), so we will simply use L?(G) for this Hilbert space throughout the paper.
The reduced quantum group C*-algebra of L (G) is defined as
I -
Co(G) = {([d®w) (W) [w e T(L2(G)]} .
We say that G is compact if Co(G) is a unital C*-algebra, in which case we denote
Co(G) by C(G). For compact quantum groups it follows that ¢ is finite and right
invariant. In particular, ¢ = y.

We let R and (7¢)cr denote the unitary antipode and scaling group of G, respec-
tively. The unitary antipode satisfies

(2.1) (R®R)oI'=ZoTloR,

where 2 : L (G)®L*(G) — L= (G)®L>(G) denotes the flip map. The antipode of
G is S = R1_;/5, and is a closed densely defined operator on L**(G), whose domain
we denote by D(S).
Let L'(G) denote the predual of L>°(G). Then the pre-adjoint of ' induces an
associative completely contractive multiplication on L!(G), defined by
<L(G)BLNG) > fog— f+g-T.(fog) e L'(G).
There is a canonical L'(G)-bimodule structure on L™ (G), given by

(fxx.g)={x.g+f) and (xxf.g)=(x.fxg), xeL™(G), f.geL(G).

We say that G is co-amenable if L'(G) has a bounded left (equivalently, right or two-
sided) approximate identity (cf. [3, Theorem 3.1]).
Let L. (G) be the subspace of L'(G) defined by

Ly(G)={feLl'(G):IgeL'(G) st g(x)=f"oS(x) VxeD(S)},

where f*(x) = f(x*), x € L(G). It is known from [15, §1.13] that L. (G) is a dense
subalgebra of L' (G). There is an involution on L. (G), given by f° = f* oS, such that
L (G) becomes a Banach *-algebra under the norm | f| . = max{| f|, [ f°|}

A unitary co-representation of G is a unitary U € L*(G)®B(H) satisfying
(I ®id)(U) = Uy3Uy;. Every unitary co-representation gives rise to a representation
of L'(G) via

L(G)> f~ (f®id)(U) € B(H).
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In particular, the left fundamental unitary W gives rise to the left regular represen-
tation A:L'(G) — B(L*(G)) defined by A(f) = (f ® id)(W), f € L}(G), that
is an injective, completely contractive homomorphism from L!(G) into B(L*(G)).
Then L®(G) = {AM(f) : f € LY(G)}” is the von Neumann algebra associated
with the dual quantum group G of G. When G is compact with normalized Haar
state ¢, the following holds [16]: every irreducible co-representation u® is finite-
dimensional and is unitarily equivalent to a sub-representation of W, and every uni-
tary co-representation of G can be decomposed into a direct sum of irreducible co-
representations. We let Irr(G) := {u®} denote a complete set of representatives of
irreducible co-representations of G that are pairwise inequivalent. Slicing by vector
functionals w;; = w,,,., relative to an orthonormal basis of H,, we obtain elements

uj; = (id®w;;) (u®) € L= (G) satistying

g
T(uf;) = dYuf® ugp, 1<i,j<ng.
k=1
The linear space A := span{uf; [ a € Irr(G) 1 < i,j < ng} forms a unital Hopf
*-algebra that is dense in C(G).

For every « € Irr(G) there exists a positive invertible matrix F* € M, (C) such
that the corresponding “F-matrices” implement the left Haar weight of the dual G.
Without loss of generality, we can assume that F* = diag(Af, ..., )Lza ) [6, Proposition
2.1]. Since tr(F%) = tr(F*)7, it follows that

i/\? = i = - tr(F%) = do,
i=1 i A

where d, is the quantum dimension of u®. If G is a compact Kac algebra, meaning ¢
is tracial, then d, = n, and F* =1, for all a € Irr(G). For every a there exists a
conjugate representation « on H, such that

_ _ A% .
AY =A%) and uf‘] = 3 } A—;uf‘]
j

(see [13, Proposition 1.4.6]).
In the general setting, the Peter—Weyl orthogonality relations are as follows:

14

4 go(”fl(u;‘xj)*) :6aﬁ8ik8ﬂd7‘;‘

1

Bye a) _
§0( (“kz) uij) = 8aﬁ8ik6ﬂA;"d(x

From this it follows that {\/daA§ Ay (uf;) | @ € Irr(G),1 < i, j < ny} is an orthonor-
mal basis for L*(G).

For an element x € L= (G), we let x - ¢ and ¢ - x denote the elements in L'(G)
given by (x - ¢,y) = ¢(yx) and (¢ - x, y) = ¢(xy), y € L(G). If x = uj;, we denote
ijf‘j -9 by 9. By the density of A in C(G), it follows that L**(G) ¢ is dense in LY(G).

et

Jo:={fel"(G)| IM>0:|(f,x*)| < M| Ay(x)|Vx e L¥(G)}.
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Then J,, is a dense left ideal in L' (G) containing L (G) - ¢ such that for every f € J,,,
there exists a unique a(f) € L*(G) satisfying (a(f), Ay(x)) = (f,x*) forall x €
L= (G).Ifx e L(G), then a(x - ¢) = Ay(x).

By left invariance of the Haar state, the map I: L*(G) 3 Ay(x) = Aygy(T(x)) €
L*(G) ®, L*(G) is an isometry. Composing its adjoint I*: L*(G) ®, L*(G) —» L*(G)
with the canonical contraction L*(G) ®” L*(G) — L*(G) ®, L*(G), where ®” de-
notes the projective tensor product, we obtain a Banach algebra structure on L*(G).
On elementary tensors, the multiplication is given by

Ag(x) @ Ag(y) —> a((x-9) x (y-9)), x,yeLl®(G).

Moreover, there exists a contractive homomorphic injection b: L?(G) — L'(G) sat-
isfying b(a(f)) = f forall f € J,. We refer the reader to [7, §6.2] for details in the
Kac case, the proofs carrying over verbatim to general compact G.

As in the case of compact groups, the irreducible characters of G play an important
role in the harmonic analysis. For « € Irr(G), we let

%= (detr)(u®) = iuf‘, e L=(G)
i=1
be the character of a, and we let
2= (1d@F) (%) = Y A%us € L*(G)
i=1

be the quantum character of a. The characters (as well as the quantum characters)
satisty the decomposition relations
(2.2) xyF = > Nzﬁxy,

yelrr(G)
where N” g s the multiplicity of y in the tensor product representation a ® f3 (see [13,
Proposition 1.4.3]). It follows that y* = % , a € Irr(G ), so that span{ y* | « € Irr(G)}

isa C*-subalgebra of C(G). Letting ¢ := y&-¢ be the L'(G) elements corresponding
to the quantum characters of G, it follows from the orthogonality relations that

Oap
da

(95 = o) = (F 05 ) = (Fou])
forall f € L'(G) and B € Irr(G). In particular,

1
do

%4

P *9g =g aclr(G).

By weak* density of A in L*(G), it follows that aTg{qJ;‘ | @ € Irr(G) } is a closed ideal
in Z(L'(G)), the center of L' (G). Below we establish the reverse inclusion for a large
class of compact quantum groups.

From the Peter-Weyl relations, one easily sees that

(23) <A¢(Xa)’A<p(Xﬁ)> = 5«/3 = (A(p(Xg))Arp(Xl;))’ a,Pe Irr(G),
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so spatially, there is no difference between the subspaces of L?>(G) generated by
{Ap(x*)} and {Ay(xq)}. The multiplicative structure of these spaces is quite dif-
ferent, however, as we now investigate.

3 Central Subalgebras

Let G be a compact quantum group, and let ,: L'(G) — B(L*(G)) be the conjuga-
tion representation of G, defined by

B(f) = (feid)(W1eU")W(1eU)), feL(G),

where U = JJ, and J and T are the conjugate linear isometries arising from the GNS
constructions of ¢ and @, respectively. One can easily verify that

Wle U )WAe U) e L= (G)®B(L*(G))

is a unitary co-representation of G, so that 3, is indeed a homomorphism. Let ZL*(G)
denote the set of fixed vectors under f3,, i.e., those £ € L*(G) satisfying B,(f)¢ =
(f,1)&for all f € L'(G). We call ZL*(G) the space of central vectors of L*(G), and
in what follows we study its connection to the center Z(L*(G)). We begin with a few
lemmas.

Lemma 3.1 Let G be a compact quantum group. Then for x € A,

n

Ba(@) A (x) = il(yi 9)Ap(xi) = 3 Ay ((p@id)(yi @I (xi)),

i=1
where I(x) = Y7, x; ® y;.

Proof Welet 0:L*(G) ® L*(G) — L*(G) ® L*(G) denote the flip map. If a € A,
we have

<ﬁ2(<p)A¢(x),A¢(a)) = < WoVoApgy(1® x), Apay(l® “))
= (00gay(T(x)), Apay(T(a))) = ¢ ® 9(T(a*)ZT(x))

n

P® (p(F(a*)ZF(x)) = Z(p ® (p(F(a*)y,- ®xi)

i=1

yi-9((ideg)(T(a)(1®x:))).

N

L1
—_
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Since S((id®¢)(T'(a*)(1®x;))) = (id®¢p)((1®a*)I(x;)) and S(S(y)*)* = yforall
y e A, wehave (id®g)(T'(a*)(1®x;)) = S((id®¢)(I'(xF)(1® a)))*. Continuing,

n

(B2(@)Ag(x), Ag(a)) = 3 yi 9(S((id®9)(D(x])(1® )))")

i=1

(i-9)((deg) (T8 0)) =Y. o(((r- 9)° @id) (T(x])a)

i=1

N

Il
—_

(Ap(((i-9)”" @IAT(x1)), Ag(a)

M= 1M

(i) ®id) (W) Ay (x1), Ag(a))

n

(A0 0)°) Ap(x:), Ag(@)) = Y (A(yi- @) Ag(x:), Ag(a)).

i=1

Il
—_

-

Il
—_

This establishes the first formula. The second follows from the general relation
((y-9)° @idI(x) = (p@id)((S(y) @ DI(x))
valid for all x, y € D(S), as is easily verified. [ |

Lemma 3.2 Let G be a compact quantum group, and x € A. Then x - ¢ € LL(G)
with (x-9)° = S(x)* - ¢.

Proof First note that ¢ = ¢ o S on D(S). Then for y € D(S) we have

(S(x)" - 9.y) = 9(yS(x)*) = p(S(x)y*) = p(S(x)S(S(»)*))
=o(S(S(»)*x)) = o(S(y)*x) = (x-9,S(y)*).

Thus, x - ¢ € LL(G) with (x- 9)° = S(x)* - ¢. [

Lemma 3.3 Let G be a compact quantum group. Then
{day/AEAA(9F) | @ € Trr(G), 1<, f < g}

forms a set of matrix units for the von Neumann algebra L (G). In particular, for every
£ e L2(G), we have

52 Z daA(p(Xg) * £>

aelrr(G)

where the sum converges in L*(G).

Proof Letef; := daVATATA(9f;) for1 < i, j < ng and a € Irr(G). By Lemma 3.2,
9% € L,(G) and go?‘; = S(uf;)* -9 = uf; - ¢ = ¢f. Since A is involutive on L} (G)
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[10, Proposition 2.4], we have e,] = ‘i. Then
* ny * *
(‘P;‘xj * 9"5:1’ uzﬂﬂ) = Z((P‘ixj ® ‘Pﬁp Uy ® ”rn Z ¢(”mr” )(/’(”rn”kl)
r=1
_ OayOpy8im0jkOni _ 5a55kj<¢q W)
AE18d2 Aed, TP
It follows that

efieh) = dadpy [N VAPA (5 + 9)) = Baplijess.
By the above, we know that 3.7, e = doA(9g) € Z(L=(G)), hence z, := d oApg)

is a central projection in L% (G) acting as the identity on the factor {e |1<14,j,<
n} = M, (C). Thus,

—

L(@)= @ zl”@)z @ M, (C). |

acelrr(G) acelrr(G)

1111

We now show that the central vectors in L?(G) are precisely the span of the char-
acters, generalizing the well-known fact for compact groups.

Proposition 3.4 Let G be a compact quantum group. Then
ZL*(G) =span{ Ay (x*) | a e Irr(G) } .

Proof Since ¢° = ¢ = ¢, by Lemma 3.1 we have

(Ba(0mg ). Ay () = 52 (Ag((9 @) (uE 1 @05)) g ()

5° ¢(<um)*uzm>¢(<uﬁ>*u;n)

n,m=1

- 6“/36k16’J )LaADCdZ

—5kz/wd {7y (X)A( D)

By density of irreducible coefficients, we obtain
@\ akl o
(1) Ba(@) Ay (ui;) = WA¢(X )
kYo

Lemma 3.3 implies that 8,(¢) is a self-adjoint idempotent, so 8,(¢) is the or-
thogonal projection onto its fixed points, namely ZL*(G). Equation (3.1) implies that
B2(@)Ap(x%) = Ap(x*) for all & € Irr(G) so that

span{A,(x*) | a e Irr(G)} € ZL*(G).
Conversely, if £ € ZL*(G) and (&, Ay(x*)) = 0 for all a, then

(E’Afl’(uil» = <£>ﬁ2(9")/\<p(”£1)) Sklla <£ Ap(X* )) =
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forall § € Irr(G), k, I = 1,..., ng. By density, we must have £ = 0. [ |

Proposition 3.5 Let G be a compact quantum group. Then
2(L*(G)) = span{ Ap(xg) lae Irr(G)}.

Proof Since {¢§ | & € Irr(G)} € Z(L'(G)), it follows from the definition of con-
volution in L?(G) that span{A(xg) | @ € Irr(G)} < Z(L*(G)). Conversely, sup-
pose that £ € Z(L?(G)). Since b(L*(G)) is dense in L'(G), it follows that b(£) €
Z(LY(G)), which in turn makes A(b(&)) € Z(L=(G)), so that daA(9g)A(B(8)) =
2eA(b(§)) = caza = cadaA(gpy) for each a € Irr(G). By injectivity of A, we obtain
dagg * b(&) = cadappg. But g = b(Ag(xg)), so injectivity of b implies do Ay (xg) *
&= cadaAq,(Xf;). Thus, by Lemma 3.3,

EZ Z dzfop(XZ)*g: Z CadrxArp(XZ)’

aelrr(G) aelrr(G)

where the series converges in L*(G). [ |

Remark 3.6 Let f5: L'(G) — B(L*(G)) be the representation defined by

Bi(f) = UB(U* = (feid)((1e V) W1 U )W), feL'(G).

Then B} is another “conjugation representation” on L?(G) whose fixed points are pre-
cisely Z(L?(G)). Thus, for non-Kac compact quantum groups, the conjugation rep-
resentations f3, and 8 distinguish the central vectors from the center of the Banach
algebra L2(G).

In the group setting, W and (1® U)W (1® U*) belong to L (G)®VN(G) and
L= (G)®VN(G)’, respectively, and therefore commute. Hence, for f € L'(G), we
have

B =Bi(1) = [ FOMEp(s)ds

where A and p are the left and right regular representations of G, respectively, and ds
is the normalized Haar measure on G.

We now establish the corresponding density theorems at the level of L*(G) and
C(G). In particular, we show that ZC(G) = {x € C(G) | T(x) = Z['(x)} is precisely
the closed linear span of the characters, which partially answers an open question of

Woronowicz (see [16, Proposition 5.11]).

Theorem 3.7 Let G be a compact quantum group. Then

ZL®(G) = {x* | a e Irr(G) }".
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Proof Theinclusion {y* | a € Irr(G)}" € ZL*(G) is clear. Let x € ZL*°(G). Then
forany y € L*(G),
(/32(90)/\(/)(35)’ Aq)(y*)) = < WUVO'Aq)@tp(l ® x)> Atp@(ﬂ(l ® )/*))

= {(08pay (T(x)), Apey (T (7))

=9 @ 9(I(y)ZT(x)) = 9 ® 9(I'(yx)) = ¢(yx)

= <Atp(x)’A(p(y*)) .
It follows that 5(¢)Ay(x) = Ay(x). Hence, Ay (ZL=(G)) ¢ ZL*(G) by Proposi-
tion 3.4, and

ZIX(G) = A, (ZL=(@))

as the reverse inclusion is clear.

Note that equations (2.2) and (2.3) entail the traciality of ¢ on the von Neumann
algebra {x* | a € Irr(G)}". In particular, the map ZL*(G) 3> Ay(x) = Ag(x*) €
ZL*(G) is an isometry. Given, x,y € ZL*(G), take sequences (x,) and (y,,) in
span{x® | & € Irr(G) } such that Ay (x,) = Ag(x) and Ay(ym) = Ay(y). Then

go(x*y) = <A(P(y),A¢(x)> = liin(Ago()’n)’Arp(x)) = liznlinIP(A<p(}’n)>A<p(xm)>
=limlim ¢ (x}, y,) = limlim ¢ (y,.x;,) = limlim{ Ay (x7,), Ay ()
=lim{Ag(x"), Ap(y7)) = @(yx").

Thus, ¢ is a faithful trace on ZL=(G), so there is a unique conditional expectation

E:ZL®(G) - {x* | « € Irr(G) }" satisfying Ay (E(x)) = B2(9)Ag(x) = Ay(x),
x € ZL*(G). Then E(x) = x,and ZL*(G) € {3* | a € Irr(G) }". [

Corollary 3.8 Let G be a compact quantum group. Then
ZC(G) =span{y" | a« € Irr(G)}.

Proof Let ZL'(G) := span{¢® | a € Irr(G)}. As ¢ is a normal faithful trace on
ZL>(G), it follows that ZL=(G) = (ZL'(G))* completely isometrically and weak*-
weak* homeomorphically. Let

rL7(G) 3 x — x|zp(c) € ZL7(G)

be the completely contractive restriction map. The orthogonality relations imply

Y
r(uf;) = ; “y%, aelr(G), 1<4,j < ng.
In particular, 7(C(G)) c span{x* | « € Irr(G)}, and r(x*) = x* for all « € Irr(G).
Since r is weak*-weak* continuous, by Theorem 3.7 it follows that r(x) = x for all
x € ZL=(G). Hence, if x € ZC(G), then x = r(x) € span{y® | « € Irr(G)}. Since
the reverse inclusion is obvious, we are done. ]

Remark 3.9 For a compact quantum group G, let C,(G) be its correspond-
ing universal C*-algebra (see [8] for details). There is a universal co-multiplica-
tion I,: C,(G) - C,(G) ®min Cu(G) satisfying (7 ® m) o I, = T o &, where
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7: C,(G) - C(G) is the canonical quotient map. This gives rise to a universal com-
pact quantum group structure on C,(G). In particular, there is a *-algebra A, of
universal matrix coefficients that is dense in C,(G), and there are universal charac-
ters x5 € C,(G) satisfying (x%) = %, a € Irr(G). In [16], Woronowicz asks whether
ZC,(G)n A, is dense in ZC,,(G) = {x, € C,(G) | T,,(xy) = =T, (x,)}. Theorem
3.7, therefore, answers this question, in the affirmative, for all co-amenable compact
quantum groups, i.e., those for which C,(G) = C(G) (see [3, Theorem 3.1]). This
generalizes the partial result of Lemeux in the co-amenable Kac setting [11, Theorem
1.4].

For compact groups G, the standard proof that Z(L!(G)) is the closed linear span
of the characters utilizes a central bounded approximate identity (BAI) for L'(G). A
similar argument applies for any compact quantum group G for which L'(G) has a
BAI (fi) in span{gg | & € Irr(G)}, which is bounded in the completely bounded
multiplier norm; i.e., the maps L'(G) > g — f; » g € L'(G) are uniformly completely
bounded. Any G whose dual has the central almost completely positive approxima-
tion property (ACPAP) in the sense of [5, Definition 3] has this property. Thus,

(3.2) 2(L'(G)) = span{g§ | a e Irr(G)}

for any compact G with the central ACPAP. By [5, Theorem 25], this includes SU, (2),
q € [-1,0) u (0,1], as well as any free orthogonal and unitary quantum groups Of
and Uy, for any parameter matrix F € GL(n, C) (see [5, §1.4,§4.2], for instance). We
conjecture that (3.2) is valid for arbitrary compact G. We now provide support for the
conjecture by showing that it holds for arbitrary compact Kac algebras. In turn, we
generalize a result of Mosak [12, Proposition 1.5 (i)].

Theorem 3.10 Let G be a compact Kac algebra. Then B,(9):L*(G) — L*(G) ex-
tends to a completely contractive projection py: L' (G) — Z(L'(G)) satisfying

Bif*g)=f*Pi(g), feZ(L(G)) geL'(G).

Proof The argument in [14, Lemma 3.2] shows that the map ®: L= (G)®L>(G) —
L*(G) given by

O(X) = (wp, ) ® )W (U* @ DX(US )W, X ¢ L™(G)BL™(G)

is a normal, unital, completely positive left inverse to I' satisfying I o @ = (® ®
id)(id ®I'). Moreover, since W € L= (G)®L*(G) and UA,(1) = Ay (1), we have

P(0(x®y)) = (w0r,0)®@9)(UxU YW (18 y)W) = ¢(x)9(y)

for all x, y € L*°(G). By normality it follows that  ® ¢ = po @ = 9 ® p o T 0 D, 50

that I o @ is a normal conditional expectation onto I'(L*(G)) preserving ¢ ® ¢.
By Lemma 3.1, the map b o $,(¢) 0 a:J, —» L'(G) satisfies b o f5(¢) o a(x - ¢) =

S (yir9)x (xi-¢) for x € A, where I'(x) = Y7, x; ® y;. Recalling that ¢ is invariant
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under the unitary antipode, for y € L*°(G) we have

> {(yi-9) * (xi-9).) =S (i 9) ® (51 9). (7))

i=1

®¢(T(y)(yi ®x:))

=¢® (F(y)EF(X)) 9® ¢(T(R(x))(R®R)(I(y)))
=9 ®¢(To@(I(R(x))(R®R)(T(»))))

=9 ®¢(T(R(x))T o @((R®R)(T())))

=9 ®9(T(R(x)@((R® R)(I()))))

= p(R(x)P((R®R)(T())))

- p(R(D((R® R)(T(1))))x)
= (x-9.Ro®o (R®R) o I(y)).

(bopa(p)oal(x-9),y) =

T M: EM:

Since the span{x - ¢ | x € A} is dense in L' (G), it follows that the map b o f,(¢) o a
has a completely contractive extension to a map B;: L'(G) — L'(G) whose adjoint
Bi:L=(G) - L=(G) is given by B (y) = Ro® o (R® R) o I'(y) for y € L=(G).
Moreover, since 3 (¢)a(x- @) = ab(B2(¢)a(x-¢)) for x € A, and ,(¢) is idempo-
tent, we have

Bi(x- @) =bPa2(9)B2(¢)a(x-¢) = bPa(p)acbPar(g)a(x @) =Piofi(x- ),

which, by density, implies that f3; is also idempotent.
To establish the module property, fix g € L'(G) and f € Z(L'(G)). Then

R®R(I(f*x))=R®R(I'((id®f)I(x)))
=R®R((ideidef) (I ®id)(I'(x)))
= (ideidef)((R®R)(I ®id)(I(x))
= (ideidef)(2r ®id)(R®id)(I(x)) (equation (2.1))
= (id®id®R.(f)) (ETr ®id)(R ® R)(T(x))
= (id®id®R.(f)) (EI ®id)( Z[(R(x)))
= (id®id®R.(f)) (id®2I)( =T (R(x))) (co-associativity)
= (id®id®R.(f)) (id®T)(ZI(R(x))) (fe2(LY(G))).

— — — —

Applying the map @, we obtain
O(R®R(T(f *x))) = (id®R.(f)) (® ®id)(id ®T)( =L (R(x)))
= (id®R.(f)) I(D(ZL(R(x))))
= (id®R.(f))I(®(R®R(I(x))))
=R.(f) » D(R®R(I(x))).
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Therefore,
Ro®o(R®R)oT(f*x)=Ro®o(R®R)ol(x)*f=f+~Ro®o(R®R)oI(x)

as f is central. The pre-adjoint of the above relation yields the desired module prop-
erty.

Now, let f € L'(G). Taking a sequence (A, (x,)) in L*(G) such that b(Ay(x,))
converges to f, it follows that 8;(b(A4(x,))) converges to B;(f). But

Bi(b(Ag(xn))) = b(B2(9)Ag(xn)) € b(Z(LX(G))),
so that 81 (f) € b(Z(L*(G))), which, by Proposition 3.5, is contained in
span{¢® | a € Irr(G)} € Z(LY(G)).

Conversely, let f € Z(L'(G)). By Proposition 3.4 we have ;(¢*) = ¢* for all
a € Irr(G), so the module property of f3; entails

Bi(f) » 9% = Bi(f x 9%) = [+ Bi(9) = f x 9%, aclrr(G).
Hence, by Lemma 3.3, for every ¢ € L*(G),

MOE= Y dad(fr9")E= 3 dad(Bi(f) * 9")E= A(B(f))E.

aclrr(G) aclrr(G)
By injectivity of 1 we then get f = B;(f) so that Z(L'(G)) = Bi(L(G)). [ |

Corollary 3.11 Let G be a compact Kac algebra. Then
2(LY(G)) = span{¢® | a € Irr(G)}.

Remark 3.12 Regarding conjecture (3.2), it would be interesting to first examine
the class SU, (21 +1), n > 1, as their duals have recently been shown to exhibit central
property (T) [1, Corollary 8.9].
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