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Summary

The logistic or S-shaped curve of growth is one of the few universal laws in biology. It is certain

that there exist specific genes affecting growth curves, but, due to a lack of statistical models, it is

unclear how these genes cause phenotypic differentiation in growth and developmental trajectories.

In this paper we present a statistical model for detecting major genes responsible for growth

trajectories. This model is incorporated with pervasive logistic growth curves under the maximum

likelihood framework and, thus, is expected to improve over previous models in both parameter

estimation and inference. The power of this model is demonstrated by an example using forest tree

data, in which evidence of major genes affecting stem growth processes is successfully detected.

The implications for this model and its extensions are discussed.

1. Introduction

The phenotype of an individual, including its size,

shape, anatomy and metabolic rate, changes with age.

The genetic analysis of these age-dependent pheno-

types, termed growth trajectories, has long been of

interest to students in different disciplines of biology

and genetics. Plant and animal breeders, faced with

dramatic growth and morphological changes of

domestic species over times, are interested in the

genetic mechanism underlying these changes. With

this information, the yields of food or fibre can be

improved by altering growth patterns through artifi-

cial selection (e.g. Wu et al., 1992). Human geneticists

are concerned with age-specific gene expression

because of the potential to design specific drugs that

can remove human diseases at younger ages (Roses,

2000). The genetic basis of age-dependent fitness

components is essential for evolutionary biologists to

estimate the origin of trait evolution and predict the

evolutionary and developmental change of phenotypes
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within particular environmental contexts (Atchley,

1984; Rice, 1997).

Classic quantitative genetics based on a univariate

analysis provides a simple method for comparing the

genetic control of growth at different ages in a variety

of organisms (Cheverud et al., 1983; Kremer, 1992;

Wu et al., 1992; Dieters et al., 1995; Lynch & Walsh,

1998). By treating growth for each age as a different

trait, a multivariate analysis approach is developed to

capture the covariance information of growth among

different ages (Hughes & Charlesworth, 1994; Pletcher

et al., 1998). However, this approach is problematic

when the number of ages is large and when measure-

ments are taken at irregular intervals. Recognizing the

limit of the classical approach, Kirkpatrick and

colleagues developed an infinite-dimensional model

for estimating genetic parameters of growthby treating

growth trajectories as an infinite number of measure-

ments (Kirkpatrick & Hackman, 1989; Kirkpatrick et

al., 1990, 1994), rather than a finite number of

measurements, as can be manipulated by a classic

genetic model. Similar theoretical models for de-

velopmental genetic studies were also put forth using

random regression theory (Meyer, 1998) and stoch-

astic process theory (Pletcher & Geyer, 1999). Based
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on these studies, a widely accepted view of the genetic

basis of growth proposes that a given set of genes

affecting growth is progressively modified; after each

season a portion of the set is replaced and, several

years later, the original set has been totally modified

(Kremer, 1992; Meyer & Hill, 1997; Kirkpatrick,

1997; Pletcher & Geyer, 1999). This view is generally

confirmed by recent quantitative trait locus (QTL)

analyses from genetic maps, which further show that

growth variations may result from the activation and

repression of genes responsible for changes in growth

(Nuzhdin et al., 1997; Vaughn et al., 1999; Wu et al.,

2002).

Although current quantitative genetic and mol-

ecular mapping approaches are useful in detecting

development-dependent genetic components, they

have not been incorporated with universal growth-

curve laws within a statistical framework. Every cell,

organ, tissue, organism or population, and every

species, in a range in body size from microbes (10−"$ g)

to blue whales (10) g), follows as exponential growth

law or curve (von Bertalanffy, 1957). The objective of

this study is to embed one of the most commonly used

growth curves – logistic or sigmoid (Niklas, 1994) – in

the quantitative genetic analysis of growth trajectories.

A maximum-likelihood-based method implemented

with the EM algorithm is used to detect major genes

that are responsible for growth differentiation. In an

example using forest tree data, the logistic-based

genetic model put forth in this paper successfully

provides evidence of the existence of major genes

affecting stem height and diameter growth. The

differential patterns of the expression of these major

genes are consistent with the findings from earlier

quantitative and ecological genetic analysis of the

same material (Wu & Stettler, 1996).

2. Growth laws

A growth law can be visualized as the ‘force field’

propelling a point through a phenotype space, tracing

out the ontogenetic path. If the size of an organism is

denoted by y, its ontogenetic trajectory y(t) can be

generated through the differential dy}dt, which models

the growth rate. Many differential functions have

been established to describe growth trajectory. Basi-

cally, they are sorted into three categories : (1)

exponential, (2) saturating and (3) sigmoidal (von

Bertalanffy, 1957; Niklas, 1994). Each of these growth

models has a common feature that the development of

ontogenetic trajectory is regulated by a set of ‘control

parameters ’ such as onset age of growth, offset signal

for growth, growth rate during the period of growth

and initial size at the commencement of the growth

period. Also, each of these growth models exhibits an

initial phase of exponential growth simply due to the

geometricallymultiplyingpopulationofnewlydifferen-

tiated cells. This initial growth phase has the property

that small perturbations in growth rate or onset age

are amplified enormously during ontogeny. Thus, it is

easy to find examples of how a small ‘mutation’ in a

growth parameter causes a series of developmental

alterations that produce a phenotype qualitatively

different from the normal one.

The sigmoidal (or logistic) growth function, detected

for the first time by Pearl (1925), is regarded as being

nearly universal in living systems to capture age-

specific change in growth (West et al., 2001). The

logistic growth curve as a biological law can be

mathematically described by

g(t)¯
a

1­be−rt
, (1)

where a is the asymptotic or limit value of g when

t!¢, a}(1­b) is the initial value of g when t¯ 0 and

r is the relative rate of growth (von Bertalanffy, 1957).

The logistic growth curve consists of two phases : an

exponential phase and an asymptotic phase. The

overall form of the curve is determined by different

combinations of parameters a, b and r. If different

genotypes at a putative QTL have different combina-

tions of these parameters, this implies that this QTL

plays a role in governing the difference of growth

trajectories.

The logistic growth curve described in (1) can be

used to determine the coordinates of a biologically

important point in the entire growth trajectory – the

inflection point – where the exponential phase ends

and the asymptotic phase begins (Niklas, 1994). The

time at the inflection point corresponds to the time

point at which a maximum growth rate occurs. The

time (t
I
) and growth [g(t

I
)] at the inflection point for

a QTL genotype can be derived as

1

2
3

4

t
I
¯

log b

r

g(t
I
)¯

a

2

. (2)

The difference in the coordinates between different

genotypes provides important information about the

genetics and evolution of growth trajectories (Niklas,

1994). Moreover, the time at the inflection point,

together with the initial growth and asymptotic

growth, determine exclusively the difference of two

growth curves. Any two curves will not be dis-

tinguishable if they have the same values for these

three variables.

Many of the established growth models can only

describe the growth that has occurred, but cannot be

used to predict growth per se. From a mechanistic

perspective, the scaling of growth can be described in
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terms of the balance between the rate at which

metabolities are synthesized (anabolism) and the rate

at which metabolites are consumed (catabolism) (West

et al., 2001). Using this principle, Beverton & Holt

(1957) formulated the mathematical equations for

predicting the length L(t) and mass M(t) of an

organism at any time t :

L(t)¯L¢®(L¢®L
!
)e−rt,

M(t)¯ [M "/$¢ ®(M "/$¢ ®M "/$

!
)e−rt]"/$,

where L¢ and M¢ are the length and mass at time ¢,

L
!
and M

!
are the length and mass at time 0, and k is

the specific growth rate. These equations successfully

describe the growth curves of a variety of marine fish

(Beverton & Holt, 1957) and some plants under

natural conditions (Blackman, 1961). Other growth

functions (Richards, 1959), like the Gompertz equa-

tion

G(t)¯ ae−bexp(−rt),

can describe growth curves for particular kinds of

organisms or under particular environments.

3. Genetic design

To make our logistic-based genetic model more

applicable, we suppose a general full-sib family derived

from two arbitrarily heterozygous parent. With two

such assumed parents, there may be a varying number

of genotype classes in the progeny for a major gene

affecting growth trajectories. This major gene may

form a total of four different genotypes segregating

1 :1 :1 :1 in the progeny if these two parents carry

different alleles, e.g. Q
"
Q

#
¬Q

$
Q

%
(outcrossing design).

But three genotypes segregating 1 :2 :1 will result if the

two parents carry the same allelle system and both are

heterozygous, i.e. Q
"
Q

#
¬Q

"
Q

#
(F

#
design). Alterna-

tively, there are only two genotypes segregating 1 :1 if

one parent is heterozygous but the other is homo-

zygous, like Q
"
Q

#
¬Q

#
Q

#
(backcross design). We use k

to denote the number of genotypes in the progeny, k

¯ 2 for the backcross design, k¯ 3 for the F
#
design

and k¯ 4 for the outcrossing design. For a particular

genotype j, the parameters describing its logistic curve

are denoted by a
j
, b

j
and r

j
, j¯1,…, k for any possible

design. The comparisons of these parameters among

different genotypes can determine whether and how

this putative gene affects growth trajectories.

4. Statistical method

Assume that all N progeny in the pedigree are

measured for a quantitative trait at each of m times.

The trait phenotypes of progeny i measured at time t

can be expressed by a linear statistical model

(Kirkpatrick & Heckman, 1989; Pletcher & Geyer,

1999) :

y
i
(t)¯ 3

k

j="

x
ij
g
j
(t)­e

i
(t), k¯ 2 or 3,

where x
ij

is an indicator variable describing a possible

genotype j of the major gene for progeny i and defined

as 1 if a particular genotype is observed and 0

otherwise, g
j
(t) is the genotypic value of the trait at

time t, and e
i
(t) is the residual including the aggregate

effect of polygenes and error effect and distributed as

N(0, σ#
(t)

). The phenotypes of the trait at all time

points 1, 2,…, m for each genotype group follow a

multivariate normal density,

f
j
(y)¯

1

(2π)m/# rΣ r "/#
exp ²®(y®g

j
)TΣ−"(y®g

j
)}2´,

where g
j
is the vector of the expected genotypic values

of the trait for QTL genotype j measured for t times

and Σ is the residual variance–covariance matrix of y.

Unlike a usual single-trait analysis, the expected

genotypic values of an age-specific trait and its residual

variance–covariances among different time points are

fitted by mathematical or statistical models built upon

biological backgrounds.

Indeed, g
j
can be modelled by one growth equation

as described in Section 2. The choice of an appropriate

growth equation depends on its goodness-of-fit to

observational data. Although exponential-based

growth models have been found to fit a broad variety

of species (Niklas, 1994), the Beverton–Holt equation

(1957) and the Gompertz equation (Richards, 1959)

may be more suitable for the prediction of the growth

that has not occurred. To simplify our formulations,

we use a logistic curve (Eq. (1) ; West et al., 2001) as

an example to incorporate growth models into the

detection of a major gene affecting growth trajectories.

Thus, we model g
j
by

g
j
¯ (g

j
(t))

"×m
¯

E

F

a
j

1­b
j
e−rjt

G

H
"×m

.

In statistics, many approaches have been proposed to

model the structure of Σ. For simplicity, Σ can be

assumed identical among different genotypes and

modelled using AR(1) repeated measurement errors

(Davidian & Giltinan, 1995; Verbeke & Molenberghs,

2000) :

Σ¯σ#

A

B

1 ρ I ρm−"

ρ 1 I ρm−#

I I I I
ρm−" ρm−# I 1

C

D

. (3)

The matrix Σ of (3) assumes variance stationarity, i.e.

there is the same residual variance (σ#) for the trait at
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each time, and correlation stationarity, i.e. the

covariance between different measurements decreases

proportionally (in ρ) with increased time interval (see

also Pletcher & Geyer, 1999). The inverse matrix of Σ

and its determinant rΣ r are derived in Appendix A. It

should be pointed out that a more accurate fit of Σ

than (3) may exist. In practice, selecting an appropriate

fit of Σ should follow two rules : (1) an optimal

approximation to biological reality, and (2) ease of

mathematicalmanipulation(e.g. inversionorfactoriza-

tion).

Let vector Ω¯ (a
j
, b

j
, c

j
, ρ, σ#)T( j¯1,…, k) de-

note unknown parameters to be estimated. The

likelihood of a sample of N progeny, whose growth

trajectories are measured for k times and controlled

by a pleiotropic major gene, can be represented by a

mixture model

L(Ω)¯ 0
N

i="

A

B

3
k

j="

γ
ij

f
j
(y

i
)

C

D

, (4)

where γ
ij

is the proportion of each mixture normal

(i.e. genotypes) for a progeny i. This is ("
#

"

#
) for the

backcross, ("
%

"

#

"

%
) for the F

#
design, or ("

%

"

%

"

%

"

%
) for the

outcrossing design.

The maximum likelihood estimates (MLEs) of the

unknown parameters under the pleiotropic model can

be computed by implementing an EM algorithm

(Dempster et al., 1977; Meng & Rubin, 1993). The

log-likelihood is given by

log L(Ω)¯ 3
N

i="

log
A

B

3
k

j="

γ
ij

f
j
(y

i
)

C

D

, (5)

with derivatives

¦
¦Ω

m

log L(Ω)¯ 3
N

i="

3
k

j="

γ
ij

¦
¦Ω

m

f
j
(y

i
)

3k

j="
γ
ij

f
j
(y

i
)

¯ 3
N

i="

3
k

j="

γ
ij

f
j
(y

i
)

3k

j="
γ
ij

f
j
(y

i
)

¦
¦Ω

m

log f
j
(y

i
)

¯ 3
N

i="

3
k

j="

Γ
ij

¦
¦Ω

m

log f
j
(y

i
),

where we define

Γ
ij
¯

γ
ij

f
j
(y

i
)

3k

j="
γ
ij

f
j
(y

i
)
, (6)

which could be thought of as a posterior probability

that progeny i have QTL genotype j. We then

implement the EM algorithm with the expanded

parameter set ²Ω, Γ´, where Γ¯²Γ
ij
, j¯1,…, k ; i¯

1,…, N ). Conditional on Γ, we solve for the zeros of
¦

¦Ω
m

log L(Ω) to get out estimates of Ω (the M step).

The estimates are then used to update Γ (the E step),

and the process is repeated until convergence. The

values at convergence are the MLEs (see Appendix B

for another variant on this model). The standard

errors of the MLEs are estimated using the inverse of

the Fisher information matrix. The derivation of this

matrix needs the second derivatives of the log-

likelihood in (5) with respect to the unknown

parameters.

5. Hypothesis tests

A number of biologically meaningful hypotheses can

be tested based on the logistic-based genetic model.

The hypothesis about the existence of a major gene

affecting an overall growth curve can be formulated as

1

2
3

4

H
!
: a

"
¯I¯ a

k
, b

"
¯I¯ b

k
, r

"
¯I¯ r

k

H
"
: at least one of the equalities above

does not hold.

(7)

The test statistic for testing the above hypotheses is

calculated as the log-likelihood ratio of the full model

(H
"
) over the reduced model (H

!
) :

LR¯®2 log

A

B

L(Ω� )

L(Ωq )

C

D

,

where ΩN and Ω= denote the ML estimates of the

unknown parameters under H
!

and H
"
, respectively.

Unlike a usual situation, in which the LR is

approximately χ#-distributed with 3 degrees of free-

dom for the backcross or 6 for the F
#

design, the

distribution of the likelihood ratio test for the

detection of a segregating major gene is a mixture of

χ# and Dirac distributions (Loisel et al., 1994). Here

we use a simulation study to calculate the threshold

for acclaiming the existence of a gene affecting the

overall growth curves (Lynch & Walsh, 1998).

For a particular full-sib family, one should test

which design – backcross, F
#

or outcrossing – is the

best fit of the data. Because the three possible designs

are not nested, AIC based on Akaike’s (1974)

information criterion should be used:

AIC¯®2 ln(maximum likelihood)

­2(number of fitted parameters).

The design with the smallest AIC is chosen as the most

parsimonious.

A hypothesis test can also be performed on the time

that the detected major gene turns on or off to affect

growth trajectories, by comparing the difference of the

expected means between different genotypes at various

time points. At a given time t*, the hypothesis for a

general design is

1

2
3

4

H
!
: g

"
(t*)¯I¯ g

k
(t*)

H
"
: at least one of the equalities above

does not hold.

(8)
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If H
"
is accepted, this means that the major gene has

a significant effect on variation in growth at time t*.

Testing the hypotheses (8) is equivalent to testing the

difference between the model with no restriction and

the model with the restriction

a
"

1­b
"
e−r

"
t*

¯I¯
a
k

1­b
k
e−rkt*

.

Because t* is given, one of the six logistic parameters

can be expressed as a function of the other five and,

thus, there is (k®1) fewer parameters to be estimated

for the model with the above restriction (the reduced

model) than the model with no restriction (the full

model). The test statistic for (8) is approximately χ#-

distributed with k-1 degrees of freedom. By scanning

time points from 1 to m, one can find the time points

at which the major gene starts or ceases to exert an

effect on growth.

For the F
#
design, one can typically test whether the

additive or dominant effects are significant on growth

trajectories. The test is formulated as:

1

2
3

4

H
!
: g

"
(t*)¯ g

$
(t*)

H
"
: g

"
(t*)1g

$
(t*)

, (9)

for the additive effect, and

1

2
3

4

H
!
: [g

"
(t*)­g

$
(t*)]}2¯ g

#
(t*)

H
"
: [g

"
(t*)­g

$
(t*)]}21g

#
(t*)

, (10)

for the dominant effect of the major gene, where

genotypes 1 and 3 are the homozygotes and genotype

2 is the heterozygote.

In addition, the genotypic differences in time (t
I
)

and growth (G(t
I
)) at the inflection point can be

tested. The test for the genotypic difference is based on

the restriction

log b
"

r
"

¯I¯
log b

k

r
k

, (11)

for t
I
at maximum growth rate, and

a
"

2
¯I¯

a
k

2
, (12)

for (G(t
I
)) at maximum growth rate.

6. Example

(i) Plant material

We use an example from an outcrossing forest tree to

demonstrate the power of our statistical model. As

one of our continuing genome projects, this example

was derived from the triple hybridization of Populus

(poplar). A P. deltoides clone designated I-69 was used

as a female parent to mate with a P. deltoides¬P.

nigra interspecific clone designated I-45 as a male

parent (Wu et al., 1992). The hybrids between P.

deltoides and P. nigra are called Euramerica poplar

(P. euramericana). Both I-69 and I-45 were selected at

the Research Institute for Poplars in Italy in 1950s

and were introduced to China in 1972. In spring 1988,

a total of 450 one-year-old rooted three-way hybrid

seedlings were planted at a spacing of 4¬5 m at a

forest farm near Xuchou City, Jiangsu Province,

China. The total stem height and diameter growth

were measured at the end of each of 14 growing

seasons. In this study, we use all available 14 year

measurements for a subset of 125 trees randomly

selected from this hybrid population.

By plotting annual measurements against year, we

observe marked evidence that each of the genotypes

followed the S-shaped growth curve (Fig. 1 ;P! 0±001,

results not shown). The statistical model built upon

this universal growth law (West et al., 2001) is used to

detect major genes responsible for these growth

trajectories. Since our hybrid material is highly

heterozygous, the segregation pattern of genes may

not be fixed. Hence, we will test all three designs – the

backcross, F
#

and outcrossing – from which a most

likely one is chosen using AIC.

(ii) Threshold �alue

The empirical estimate of the critical value for testing

the existence of a major gene is obtained from the

distribution of the LR values calculated from the

simulated phenotypic data assuming no QTL. The

experimental design used in this simulation mimics the

example, assuming 125 progeny and 14 measurement

points. A set of phenotypic values for these progeny

are simulated to follow a single logistic curve under

the assumption of no QTL involved in growth

trajectories. The three parameters describing the

assumed uniform logistic curve are given as a¯19±23,

b¯ 5±89 and r¯ 0±38 for height and a¯ 28±74, b¯
13±96 and r¯ 0±55 for diameter, which are the

corresponding MLEs of the logistic parameters under

the null hypothesis of no QTL for these two traits,

respectively. The phenotypic values simulated at a

total of 14 time points are constrained to be correlated

with the residual covariance matrix,

Σ¯

A

B

2±04 1±84 I 0±52

1±84 2±04 I 0±58

I I I I
0±52 0±58 I 2±04

C

D

,

for height, and

Σ¯

A

B

5±15 4±94 I 3±02

4±94 5±15 I 3±15

I I I I
3±02 3±15 I 5±15

C

D

,
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Fig. 1. Plots of height and diameter growth versus time for poplar hybrids.

Table 1. The 99th and 99±9th percentiles of the distribution of the LR

�alues under three different designs used as empirical critical �alues to

declare the existence of a QTL for growth trajectories in height and

diameter

Significant
level (α)

Height Diameter

Backcross F
#

Outcrossing Backcross F
#

Outcrossing

0±01 12±96 17±15 20±41 11±39 14±51 16±79
0±001 18±90 24±48 28±17 16±86 20±67 21±27

Fig. 2. Two growth curves each presenting a group of genotypes for both height and diameter when the backcross
design is assumed.

for diameter. Similarly, these are the MLEs of the

between-year residual covariance matrices for the two

traits, respectively, under the null hypothesis of no

QTL.

The simulated data are analysed by three different

genetic models under the backcross, F
#

and out-

crossing designs. For each design, the distribution of

the LR values over 1000 simulation replicates can be

approximated by a χ# distribution. The 99th and

99±9th percentiles of the distribution of the maximum

are used as empirical critical values to declare the

existence of a QTL for growth trajectories at the

significance levels α¯ 0±01 and 0±001. Table 1 lists

these percentiles simulated for height and diameter,

respectively, under the three different genetic designs.

(iii) Backcross design

Assuming that one parent used for the three-way

hybridization is heterozygous, whereas the other

parent is homozygous, the progeny has two different

genotypes segregating in a 1 :1 ratio. Under this

backcross model, a major gene with strong effect on

growth trajectories was detected (Fig. 2). The test

statistics for testing the existence of a major gene are

71±8 for heights and 281±0 for diameters, both
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Table 2. Parameter estimates (with standard errors in parentheses) of a

major gene affecting logistic cur�es in a poplar hybrid progeny under the

backcross design

Parameters

Height Diameter

Genotype 1 Genotype 2 Genotype 1 Genotype 2

a 20±1207 18±4219 31±7783 25±4435
(0±1666) (0±2124) (0±3103) (0±3206)

b 5±9866 5±3136 14±5797 14±0162
(0±2566) (0±2720) (0±7205) (0±8983)

r 0±4066 0±3431 0±5797 0±5168
(0±0094) (0±0100) (0±0097) (0±0115)

σ# 1±2058 5±2336
(0±0957) (0±4568)

ρ 0±8390 0±4568
(0±0136) (0±0061)

LR 71±74*** 281±07***

***P! 0.001.

Table 3. Parameter estimates (with standard errors in parentheses) of a major gene affecting logistic cur�es in

a poplar hybrid progeny under the F2 design

Parameters

Height Diameter

Genotype 1 Genotype 2 Genotype 3 Genotype 1 Genotype 2 Genotype 3

a 20±6283 19±2419 17±6023 32±7026 27±8490 22±0987
(0±2469) (0±1900) (0±3706) (0±3272) (0±3188) (0±5485)

b 6±2018 5±4560 4±9612 15±1740 14±3835 15±8718
(0±3197) (0±2256) (0±4341) (0±7866) (0±7736) (2±0699)

r 0±4180 0±3684 0±3189 0±5898 0±5370 0±5130
(0±0126) (0±0100) (0±0180) (0±0116) (0±0105) (0±0228)

σ# 0±9513 3±4207
(0±0746) (0±3028)

ρ 0±7976 0±9000
(0±0161) (0±0092)

LR 95±83*** 363±25***

***P! 0.001.

significantly greater than empirical critical thresholds

at α¯ 0±001, 18±90 and 16±86, respectively. Table 2

gives the ML estimates and their standard errors for

the logistic parameters for each genotype group at the

major gene. Small standard errors imply that our

estimates have high precision.

(iv) F2 design

Using the F
#
design, we detect a significant major gene

heterozygous in both parents. The segregation of

three genotypes in the progeny under the F
#

design

leads to three distinct growth trajectories, as seen

from the test statistics (Table 3). It appears that the F
#

design has a strikingly increased fit to diameter

growth (LR¯ 363±2) compared with the backcross

design (LR¯ 281±0).

The major gene detected from the F
#
design seems

to be additive, because the heterozygote (genotype 2)

is intermediate between the two homozygotes (geno-

types 1 and 3 (Fig. 3). This major gene displays

different effects on stem height and diameter growth

trajectories.

(v) Outcrossing design

Statistically, it is also significant that growth trajec-

tories are controlled by a quadri-allelic major gene
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Fig. 3. Three growth curves each presenting a group of genotypes for both height and diameter when the F
#

design is
assumed.

Table 4. Parameter estimates of a major gene affecting logistic cur�es in a poplar hybrid progeny under the

outcrossing design

Parameters

Height Diameter

Genotype 1 Genotype 2 Genotype 3 Genotype 4 Genotype 1 Genotype 2 Genotype 3 Genotype 4

a 18±7483 20±8837 19±3391 16±8294 31±2871 33±1284 27±2570 22±2130

b 5±4871 6±1716 5±3658 4±4931 16±3684 16±6571 13±8161 16±1576

r 0±3490 0±4091 0±3879 0±2911 0±6572 0±5424 0±5330 0±5148

σ# 0±7610 3±1284

ρ 0±7488 0±8990

LR 104±02*** 445±03***

***P! 0.001.

Fig. 4. Four growth curves each presenting a group of genotypes for both height and diameter when the outcrossing
design is assumed. The times (t

I
) and growth (g(t

I
)) at the inflection point are indicated by four coordinates for

genotypes 1–4 at the major gene identified.

segregating in the poplar hybrid family studied (Table

4; Fig. 4). Similar to the backcross and F
#
design, the

outcrossing design displays a better fit to diameter

than height growth.

According to Akaike’s (1974) information criterion

(AIC), a most likely design used to fit both height and

diameter growth is the outcrossing design, whose AIC

value is 1728±0 for height, smaller than 1738±1 in the

backcross and 1729±1 in the F
#
, and is 1628±6 for

diameter, smaller than 2704±5 in the backcross and

2666±5 in the F
#
. In this study, we do not know

whether this is the same major gene that affects height

and diameter growth in the poplar hybrids. We will

use the outcrossing design to analyse age-specific

differentiation of the effect of the major gene on height

and diameter growth.
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The gene detected for the overall curve of height

growth from the outcrossing design significantly

affects the time at which trees grow most rapidly in

height (the inflection point), as indicated by the test

statistics of LR¯ 21±65 which is calculated as the log-

likelihood ratio of the full model and the reduced

model with a restriction of Eq. 11 (χ#

!
±
!!"($)

¯16±27).

The gene detected for diameter growth from the

outcrossing design also affects the inflection point of

this trait, given LR¯ 30±32 larger than χ#

!
±
!!"($)

¯
16±27. The genetic control of the inflection point

suggests that growth trajectory can be genetically

modified to increase a tree’s capacity to effectively

acquire spatial resources.

Although at a similar time point (both around age

2 years) the major gene detected exerts an effect on

height and diameter according to results from test (8)

(data not shown), it generates different shapes of

growth curves for these two growth traits. It appears

that height tends to have reduced differentiation after

year 14, whereas diameter maintains a high degree of

differentiation after this time point. This finding is

consistent with ecological viewpoints of allometric

scaling (Wu & Stettler, 1996). From year 14, strong

competitive interactions occur among poplar trees

due to the closure of canopies. Thus, to maintain

vigorous growth, larger individuals must allocate

more stem biomass to radial growth than to height

growth, whereas smaller individuals tend to emphasize

height growth at the cost of radial growth to gain

access to light. Such changes in biomass allocation

during canopy closure result in reduced differences in

height but increased differences in diameter. It is not

surprising that genes are responsible for this transition

of growth phases.

7. Discussion

We have incorporated ubiquitous growth curve laws

into a statistical framework for detecting a major gene

governing growth trajectories. While many current

statistical models are criticized for their loose ties with

biological realities, our model represents an attempt

to explore biological questions in a way that integrates

biology and statistics. The statistical and biological

power of this new model was well demonstrated by

the successful detection of major genes affecting

growth trajectories in an example from a forest tree.

Compared with earlier attempts to adapt quantitative

genetics to growth trajectories, our model offers

significant advantages and has potential to improve

current quantitative developmental genetic studies.

First, this model views growth traits as a full

trajectory rather than a set of landmark ages. Classic

quantitative genetic methods, as widely used in the

literature (Kremer, 1992; Wu et al., 1992; Hughes &

Charlesworth, 1994), have no power to analyse and

model the data of growth as a continuous function of

time and measured at uneven time intervals. Currently,

three alternative methods have been suggested for

genetic analyses of growth trajectories : random

regression (RR; Meyer, 1998), orthogonal polyno-

mials (OR; Kirkpatrick & Heckman, 1989) and

character process (CP; Pletcher & Geyer, 1999;

Jaffrezic & Pletcher, 2000). The RR method employs

a particular function to model the age-dependent

deviation from the population mean due to an

individual’s genotype, whereas the other two attempt

to model the structure of covariances among different

ages using Legendre polynomials or stochastic proces-

ses. The OP and CP models may be limited in

practical data analysis because the pattern with which

covariances change with age is not observable. Our

model is similar in spirit to, but an improvement on,

the RR model built upon genotypic deviations. Our

model implements universal growth curve laws and

allows for the detection of individual genes (rather

than overall gene effects) responsible for growth

differentiation.

Second, our model provides a method for analysing

patterns of genetic variation that reveal evolutionary

changes in growth trajectory. Currently, the study of

difference in ontogenetic trajectories between a de-

scendant and its ancestor, namely heterochrony, is an

active area for integrating development and evolution

to shed light on fundamental biological questions

(Rice, 1997). The characterization of genetic factors

underlying ontogenetic trajectories from our model

helps to unravel the origin of morphological novelties.

Third, the model can increase the precision of

parameter estimates by reducing the number of

unknowns. For example, using our logistic model

there are only 8 unknown parameters for a 10-year

measurement data set under the backcross design,

whereas based on classic models one would estimate

10 overall effects, 10 additive effects, and 55 residual

variances and covariances for the same question. In

this study, it is assumed that residual variances and

covariances among different ages are stationary. This

assumption simplifies the mathematical manipulation

of the residual variance–covariance matrix (inversion,

factorization, etc.), but may deviate from reality. The

extension of our analysis to non-stationary variance–

covariance structures is possible, as proposed by

Nunez-Anton (1997) and Nunez-Anton & Zimmer-

man (2000) in their structured antedependent models.

Other more complicated methods for modelling age-

specific covariances (e.g. Davidian & Giltinan, 1995)

also deserve exploration.

Our model can be extended to more general

situations. In the current model, we assume that

growth at time t is decomposed into the effect due to

a major gene and residual effect confounded by

polygenes and random errors. It is essential to split the
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residual effect into the polygene and error components

and examine the relative role of a major gene and

polygenes in determining growth trajectories. Given

the complexity of growth trajectories, it is worthwhile

modelling two or more major genes, their epistatic

interactions and their dependence upon environments

in which organisms are grown. The incorporation of

molecular markers into our growth analysis can

provide additional insights into the genetic mech-

anisms underlying growth trajectories.

Finally, ourmodel can be improved from knowledge

about growth equations. We have based our analysis

on a commonly used growth curve – logistic – in this

study. The choice of an appropriate growth equation

can be based on the goodness of fit to observed data.

An increasing interest now is to derive a growth model

from a mechanistic perspective of biological processes

(West et al., 2001). Despite possible technical com-

plexities, it is worthwhile integrating our idea for

detecting biologically meaningful major genes with

the derivations of the mechanistic models specifying

developmental and physiological processes. With such

integration, we are truly in an interplay between

genetics, development, physiology and statistics to

push the frontiers of biological research forward.
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Appendix A

Three results about the matrix Σ are :

(1) Σ−" is a tridiagonal symmetric matrix. Its diagonal

elements are (1, 1­ρ#, 1­ρ#,…, 1­ρ#, 1­ρ#,1)«}
[σ#(1®ρ#)] and its second diagonal elements are

all ®ρ}[σ#(1®ρ#)].

(2) rΣr¯ [σ#(1®ρ#)]m−"σ#.

(3) Let z¯ (z
"
,…, z

m
)«¯ y®g(i), i¯1, 2 for the

backcross or 1, 2, 3 for the F
#
, then

z«Σ−"z¯3m−"
i="

(z
i
®ρz

i+"
)#­(1®ρ#)z#

m

σ#(1®ρ#)
.

Appendix B

The EM algorithm of Section 4 can be thought of as

an average of a completed-data EM algorithm as

follows: For i¯1,…, n, define the augmented variable

Z
i
to satisfy

Y
i
rZ

i
¯ j«C f

j«
(y),

P(Z
i
¯ j« )¯γ

ij«
.

Then (4) is the observed data likelihood, and the

complete-data likelihood is given by

L(Ω rY, Z)¯ 0
N

i="

0
k

j="

fz
i
(y

i
). (B1)

We could now estimate Ω using a Gibbs sampler that

generates Ω rZ from (B1), and Z rΩ from

P(Z
i
¯ j« rΩ)¯

γ
ij«

f
j«
(y

i
)

3k

j«="
γ
ij«

f
j«
(y

i
)
.

The posterior models obtained from this Gibbs

sampler are the MLEs of the EM algorithm of Section

4 as Γ
ij
¯P (Z

i
¯ j rΩ).
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