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In this paper, which is a continuation of [4], the necessary theoretical background is
given to enable the calculation of the irreducible Brauer projective characters of a given
finite group to be carried out. As an example, this calculation is done for the alternating
group A (7) in §3. In a future paper the calculations for the Mathieu groups will be
presented.

Let K be any field and Kx denote its multiplicative group. Given a finite group G, a
mapping a:GxG—*K* is a K-cocycle if

a(x, y)a(xy, z) = a(x, yz)a(y, z),

and

a(x,l) = l = o(l,x)

for all x, y, z e G. An a-projective representation of G of degree n over K is a map
P:G -» GL(n, K) such that for all x, y e G

P(x)P(y) = a(x,y)P(xy)

and

where / denotes the identity n x n matrix.
The twisted group algebra K(G, a) is a K vector space with basis {(g) | ge G} and

multiplication obtained by extending by linearity that on the basis elements given by
(x)(y) = a(x, y)(xy). Thus an a-projective representation of G is the representation
afforded by some K(G, a)-module. Under suitable restrictions on K, there is a group H,
which is a central extension of G, such that, for suitable a, an a-projective representation
of G can be linearized by a representation of H. This fact is used, in Section 1, to
investigate the relationship between the principal indecomposable submodules of K{G, a)
and those of K(H). In Section 2, the results of Section 1 are used to establish the
orthogonality relations for Brauer projective characters.

1. Principal indecomposable projective representations. Let G be a finite group
and Ko be the algebraic number field obtained by adjoining a primitive |G|th root of unity
to the rationals. Let Ro be the algebraic integers of Ko and ^ 0 be the ideal of Ro

containing the rational prime p. Denote by vp the p-adic valuation associated with ^*0,
normalized so that vp(p)= 1. Let R denote the completion of Ro with respect to vp, 3>
denote the corresponding prime ideal and K be the field of quotients of R. Write K for
the field RI&, so that K = i V ^ o and let the coset of any element x of K modulo 9> be x.
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Now let H be a complex representation group of G so that H has a central subgroup
A with A<H' such that AsJJ2(G, Cx) and there is an isomorphism a:G—> HI A. For
each geG, choose an element r(g) of H such that cr(g) = Kg)A, with the convention that
r(l) is the identity element of H. Thus, if x, y e G, since a is a homomorphism,

r(x)r(y)=F(xy)A(x, y)

for some A(x, y)eA. Hence, if AeHom(A, Cx), the map a : G x G -» Cx defined by

a(x, y) = A(A(x, y))

for all x, y e G, is a complex 2-cocycle which we call the special cocycle associated with A.
Since the values of A are in Ro, and therefore in R, the map a defined by

d(x, y) = a(x, y)

for all x, y e G, is a K 2-cocycle of G.
Next, let k be the algebraic closure of K and Ap be a Sylow p-subgroup of A. It is

proved in [1], that H = H/A.p is a fc-representation group of G. Thus, denoting A./A.p by A
and the coset hAp by h, we have that A=H2(G, fcx) and the map cr:G -» H/A defined
by cr(g) = r(g)A, for all ge G, is an isomorphism. Also, writing A(x, y)Ap as A(x, y), we
have that

r(x)r(y) = r(xy)A(x, y).

For A eHom(A, Cx), we may define AeHom(A, Kx) by the rule

A(a) = A(a)

for all aeA. Thus the cocycle a defined above is the special cocycle associated with A in
the sense that, for all x, y e G,

a(x, y) = A(A(x, y)).

For any .R-free R-algebra B, let B be the K-algebra BIB&. Notice that if B is
R(G, a), the twisted group algebra of G over R with cocycle a, then B is K(G, a). Let
Wx,..., Wr be a complete set of representatives for the isomorphism classes of principal
indecomposable R{G, a)-modules. By [3; 44.3], V 1 ; . . . , Vr is a complete set of represen-
tatives for the isomorphism classes of principal indecomposable K(G, d)-modules, where
Vi = W; ( l < i < r ) . Let L; = VJradiVd ( l < i < r ) , so that, by [3; 45.8], Lu ...LLr is a
complete set of representatives for the isomorphism classes of irreducible K(G, d)-
modules. Since R(G, a) <8)RK may be identified with K(G, a), [3; 48.1] implies that there
exists a set PU...,PS of finitely generated .R-free R{G, a)-modules such that every
irreducible K{G, a)-module is isomorphic to exactly one Pf(8)RK

DEFINITIONS, (i) Let ^ be the number of times L, occurs as a composition factor of
Pt. The matrix D = (dy) is the decomposition matrix of JR(G, a).

(ii) Let Cj, be the number of times Ly occurs as a composition factor of Wt = Vf. The
matrix C = (Cj,) is the Cartan matrix of K(G,d).
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The following is immediate from [3; 48.8].

THEOREM 1.1. With the above notation

(i) Wt®RKss(B d,t(P, ®RK); and

(ii) C = DTD, so that C is a symmetric matrix.

Let a be the special cocycle associated with A. The twisted group algebra K(G, a)
may be regarded as a (K(H), K(G, a))-bimodule with obvious right action and, for aeA,
geG, veK(G,d),

ar{g)v = K(a){g)v.

Thus, if V is any K(G, d)-module,

VH = K(G,a) ® V
K(G,S)

is a J£(H)-module.

PROPOSITION 1.2. Let a be the special cocycle associated with A. Let V be a principal
indecomposable K(G, a)-module. Then VH is isomorphic to a principal indecomposable
K(H)-module U and for each aeA, a acts on U as multiplication by A(a). Conversely, if U
is a principal indecomposable K(H)-module such that for ae A, a acts on U as multiplica-
tion by A(a), then there exists a principal indecomposable K(G, d)-module V such that VH is
isomorphic to U.

Proof. Let e be the idempotent of K{A) corresponding to A, so that for aeA,
ae = A(a)e, and let

K(H,\)= © Kr(g)e.
gsG

It is clear that K(H, A) is a iC-subspace of K(H). However, it is also a K(H)-submodule,
since for aeA, x,yeG,

ar(x)(r(y)e) = aA(x, y)r(xy)e

= r(xy)aA(x, y)e

= r(xy)A(a)A(A(x, y))e

= A(a)<5(x, y)r(xy)e.

Let 0: K(G, a)H -» K(H, A) be the K-linear map defined on basis elements by
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Then d is a K{H)-modu\e isomorphism, since for aeA, x,yeG

fl(ar(x)(l® (y))) = 0(A(a)((x)® (y)))

= A(a)0(l<g>a(x,y)(xy))
= A(a)a(x, y)r(xy)e
= aA(x, y)r(xy)e
= ar(x)r(y)e

= ar(x)0(l®(y)).

It is clear from the above that for each aeA, a acts on K(H, A) as multiplication by A(a).
Now if V is an indecomposable summand of K(G, a), VH is an indecomposable summand
of K(G, a)H. Thus 6(VH) is an indecomposable summand of K(H, A). Since K(H) has a
K(H)-module decomposition

K(H)=®K(H,fi) (1)

as ji ranges over Hom(A, K*), we see that 0(VH) is a principal indecomposable of K(H).
Conversely, if U is a principal indecomposable of K(H), equation (1) shows that U is

a summand of K(H, fl) for some /I e Hom(A, K*). In this case, for aeA, a acts on U as
multiplication by ji(a). Therefore, if for each aeA, a acts on U as multiplication by A(a),
[/ is a summand of K(H, k). Thus 6~l(U) is a principal indecomposable K(G, a)H-
module. Hence there is a principal indecomposable K(G, a)-module V, say, that VH is
isomorphic to U.

COROLLARY 1.3. Let Ll 7 . . ., L, be a complete set of representatives for the isomorphism
classes of K(G, d)-modules. Then (L^H, . . . , (Lr)H is a complete set of representatives for
the isomorphism classes of those irreducible K(H)-modules on which each aeA acts as
multiplication by A(a).

Proof. It is easily shown that K(G, a) is a Frobenius algebra and so each principal
indecomposable K(G, a)-module has a unique minimal submodule which is irreducible,
the result now follows by Proposition 1.2.

THEOREM 1.4. With a suitable ordering of the modules for H, the Cartan matrix of
K{G, d) is a direct submatrix of the Cartan matrix of K(H).

Proof. Let Ut,... ,Un be the principal indecomposable K(H)-modules with the
ordering chosen so that (7j = 0(( Vj)H) for 1 < i < r, where 6 is the map used in the proof of
Proposition 1.2, and V 1 ; . . . , Vr are the principal indecomposable K(G, a)-modules. Let
Lf be the unique minimal submodule of Vj (1 < i < r) and Mi be the unique minimal
submodule of L/,(l</<n). Because of the way A acts on Mf and L/,, it follows that for
1 < i < r the only composition factors of t/f are those in the set M 1 ; . . . , Mr. Furthermore,
if L, occurs k times as a composition factor of Vf then M, occurs k times as a composition
factor of t/j. This proves the result.
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COROLLARY 1.5. Let C be the Cartan matrix of K(G, a). Then detC is a power of p.

Proof. By [3; 61.5], the determinant of the Cartan matrix of K{H) is a power of p.
The result follows by Theorem 1.4.

To conclude this section, we obtain a similar result to Theorem 1.4 for the decompos-
ition matrix of R(G, a). Let a be the special cocycle associated with A. Then R(G, a) may
be regarded as an (R(H), R(G, a))-bimodule with natural right action and, for tie A,
geG, veR(G,a),

df(g)v = K(d)(g)v.

Thus if M is any R(G, a)-module

Mft = R(G,a)<g>R(G,a)M

is a JC(H)-module.

PROPOSITION 1.6. Let Pu ..., Ps be a set of finitely generated R-free R(G, a)-modules
such that every irreducible K(G, a)-module is isomorphic to exactly one Pt®RK. For
l<i<s, let

Then Pu ..., Ps is a complete set of representatives for the isomorphism classes of those
irreducible K(H)-modules on which elements a of A act as multiplication by A(d).

Proof. It is clear that each Pt is an irreducible K(H)-modu\e on which each element a
of A acts as multiplication by A(d). There is a one-to-one correspondence between
irreducible a-projective representations of G over K and those irreducible representa-
tions of K(H) which restrict to A as A times the identity matrix. This gives a one-to-one
correspondence between irreducible K{G, a)-modules and those irreducible K(H)-
modules on which elements d of A act as multiplication by A(d). Thus, in order to show
that for i =fc j , P{ is not isomorphic to P(, it is sufficient to prove that if D is an irreducible
K(H)-module on which each element tie A acts as multiplication by A (a) then D is
isomorphic to Pt for some i. By [3; 48.1], there is an R-free R(i5)-module Q such that
D = Q<2>RK. Now Q may be regarded as Q1; an R(G, a)-module, by defining for geG,
veQ

(g)v = r(g)u.

Then d is R-free and (QI)H is isomorphic to Q. Also Q^K is an irreducible
K(G, a)-module and so is isomorphic to Pi<8>RK for some i. Thus

D = Q<g>RK = ( Q O H ^ R K = (Pi)H<S>RK = t

proving the result.
In a similar way to the proof of Theorem 1.4, one can now prove

THEOREM 1.7. With a suitable ordering of the modules for H, the decomposition matrix
of R{G, a) is a direct submatrix of the decomposition matrix of K(H).
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2. Character relations. The Brauer projective characters i/^,... ,tpr of Lx_,... ,Lr

are defined as follows. Let <f>u ..., <f>r be the Brauer characters of the irreducible
IC(H)-modules (L^H, ...., (Ly)H and define, for g e G

Similarly, if TJ1, . . . , Tjr are the Brauer characters of (Vj)H, . . . , (Vr)H, the Brauer projec-
tive characters /x l 5 . . . , /xr of V x , . . . , Vr are defined by

It follows by Proposition 1.2 and Theorem 4.1 of [4] that if

1 = 1

then
r

_ y
i-i

An element g of G is d-regular if d(g, x) = d(x, g) for all x e CG(g). If an element of
G is d -regular so are all its conjugates. A conjugacy class consisting of d -regular elements
is called an d-regular conjugacy class. By Theorem 4.2 of [4], the number of pairwise
non-isomorphic irreducible K(G, d)-modules is equal to the number of d-regular p-
regular conjugacy classes of G. Let x 1 ; . . . , xr be representatives for these classes.

Given complex valued functions /, g on G let

where Go denotes the set of p-regular elements of G. Finally, writing C = {cii) for the
Cartan matrix of K(G, d), we can state the projective modular orthogonality relations.

THEOREM 2.1. With the above notation,

(i) <^,^)' = 8y;

(ii) <Mi, f-j)' = <M-,, m>' = Cy;

(iii) <^,^)' = fcjJ, where ( h ^ C " 1 ; and

Proof. Since the map a.G^ HI A defined by cr(g) = r(g)A is an isomorphism, and
A is a p'-group, if g is p-regular then r(g) is p-regular as is ar(g) for any aeA.
Conversely if ar(g) is a p-regular element of H then g is a p-regular element of G. Now
let /, g be complex valued functions on the p-regular elements Go of G and h, k be
complex valued functions on the p-regular elements Ho of H such that for all a e A, x 6 G

h(or(x)) = A(a)/(x), and

k(ar(x)) = A(a)g(x),
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where A. eHom(A,C><). Then

l yeH0 |-"l aeA
xsG0

l aeA
xsG0

I " I aeA xsG0

= £! X /toito
l l

Thus, (i), (ii) and (iii) follow from the results in §1 together with the corresponding,
well-known, results in H.

In order to prove (iv), it should first be noted that without loss of generality, it may be
supposed that Brauer protective characters are class functions. This may be ensured by
making a suitable choice for the transversal {r(g) | g e G}. Once this is done, (iv) follows
from (i) and Theorem 4.2 of [4] using a similar proof to the one for the corresponding
result for linear characters.

COROLLARY 2.2. vP(|G|) = minlsiSr(/Xi(l)).

Proof. By 1.2, /xf has the same degree as a principal indecomposable Brauer charac-
ter Tjf of H. Since A is a p'-group, I = vp(\H\) = vp(\G\) and so, by [3; 59.7], p1 divides
T)J(I). However, evaluating 2.1(iv) at xk = l = x,, we see that no higher power of p can
divide each /x,(l).

Now let P1; P2 be projective representations of G. For g 6 G define (Pi<8>P2)(g) to be
the Kronecker product of P^g) and P2(g). The following result follows' easily from the
definitions

PROPOSITION 2.3. Let Pf be a projective representation of G with special cocycle dt and
t/f; be the Brauer projective character of Pt (i = 1,2). Then PX®P2 is a projective representa-
tion of G with special cocycle dra.2 and the Brauer projective character if/ of Pl®P2 is given
by

PROPOSITION 2.4. Let P be a projective representation of G over K with special cocycle a
and ip be the Brauer projective character of P. The complex conjugate ijj of ip is the Brauer
projective character of a projective representation P* of G over K with special cocycle d"1.

Proof. Let D be the linear representation of H defined by

D(ar(g)) = A(a)P(g)
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and let c/> be the Brauer character of D so that

for all g e G. Then the complex conjugate 4> of <f> is the Brauer character of the
representation D* of H defined by D*(h) = D(ft"1)T. For geG, define P*(g) to be
D*(r(g)). Then for x, y e G.

y) = D*(r(x))D*(r(y))

= D*(r(x)r(y))

= D*(A(x,y)r(xy))

= D(A(x, y)"1r(xy)-1)T

= d^x , y)P*(xy).

Clearly, for geG, the Brauer character ip* of P* satisfies

^ = «Kg)-

Now let d be a special cocycle and /x",.. . , /x" be the Brauer characters of the
principal indecomposable d-projective representations and (ft,..., </<f be the Brauer
characters of the irreducible d-projective representations.

THEOREM 2.5. Let a, j3, 7 be special cocycles with aP = y. Suppose

then

k

where, by Proposition 2.4, </»f~' is the complex conjugate of tf/f.

Proof. Linearize all the underlying representations to linear representations of H.
The corresponding formulae hold in H by a result of Brauer and Nesbitt [2; (64) and
(76)]. The result now follows in view of the fact that, by Proposition 2.3, tpftj/f is
expressible in terms of <$ since d|3 = y.

3. Example. In this section, the Brauer projective characters of the group A (7) are
calculated. Schur [6] has shown that H2(G, Cx) has order six when G is A(7). Thus, if we
consider the representations of G modulo 2, H has order 6 |A(7)| and H has order
3 |A(7)|. The first task is to determine the irreducible Brauer projective characters, which
may be regarded as irreducible Brauer projective characters of the group f/ = 3.A(7).
Schur gives the ordinary projective character table for A (7) corresponding to a cocycle |3
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of order 3. This table is the following

97

1 (2)2 (2)(4) (5) (2)2(3) (7) (7)"1

6
15
15
21
21
24
24

2
-1
3
1

-3
0
0

0
-1
1

-1
1
0
0

1
0
0
1
1

-1
-1

2
2
0

-2
0
0
0

-1
1
1
0
0
A,
A2

-1
1
1
0
0
A2
A!

where A, = 5 ( - l + iV7) and A2 = A1. Also the conjugacy classes of cycle type (3) and (3)2

are /3-irregular and so all the (3-projective characters are zero on those classes. The
Brauer characters of A(7) modulo two are well-known (see [5]) and are as shown below.

1 (3) (3)2 (5) (7) (7)"

1
4
4
6
14
20

1
_2
-2
3
2

-4

1
1
1
0

-1
-1

1
-1
-1
1

-1
0

1
1 + A,
1 + A2

-1
0

-1

1
1 + A2

1 + A,
-1
0

-1

By Theorem 4.2 of [4], there are four irreducible Brauer (3-projective characters. The
two /3-projective characters of degree 24 may be linearized by characters of H and so,
since 8 is the highest power of two dividing |H|, their restriction to 2-regular conjugacy
classes gives two irreducible Brauer projective characters. There is a six-dimensional
P^-projective character, which we denote by 6, whose values, by 2.4, are the same as
those of the six-dimensional |3-projective character 6. By 2.3, the product character 6.6 is
a character of A (7). Its restriction to 2-regular conjugacy classes can be expressed as
2.1 + 14 + 20 and it therefore follows that 6 is an irreducible Brauer projective character.
It therefore only remains to find one further irreducible Brauer projective character.

Suppose 6 were a constituent of 15 as Brauer characters. Then their difference 9,
would be a Brauer character taking the value —2 on elements of order 7. The product of
9 with either of the four-dimensional Brauer characters of A(7) would be a Brauer
/3-projective character of degree 36 taking the value -\-i-Jl on a conjugacy class of
elements of order 7. This is impossible so 15 is irreducible and the irreducible Brauer
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|3-projective characters of A(7) are

1 (5) (7) (7)"1

6
15
24
24

1
0

-1
-1

-1
1

A,
A2

-1
1

A2
A,

The ordinary projective character table for A(7) corresponding to a cocycle of order
six is given by the following table

1 (2)(4) (5) (7) (7)"1

6
6
24
24
36

72
-y/2

0
0
0

1
1

-1
-1
1

-1
-1

A,
A2
1

-1
-1

A2
A,
1

It therefore follows that the decomposition matrix is

"l 0 0 0"
1 0 0 0
0 0 1 0
0 0 0 1
1 2 0 0

and so the Cartan matrix is

3 2 0 0
2 4 0 0
0 0 1 0
0 0 0 1
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