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1. We assume F 1is a purely inseparable field extension of the
field K. The characteristic of K is p #0, and we assume F and K
are not perfect. For x e F, the exponent of x over K is the smallest
e
non-negative integer e such that x0

e(x)

e (x); x will denote x . For any subset S of F, e(x;S) will
denote the exponent of x over K(S); in case S = {y} we will write

e(x;y) for e (x;S).

¢ K and will be denoted by

For subsets A and B of F, ACB, we write x ¢ BVA in case
xe B and x d A.

For x, y ¢ F\K we define x ~y if and only if Kp(x) = Kp(y), i.e.,
if and only if x and y are p-dependent in K. It is immediate that
"~ is an equivalence relation on F\K. It is the purpose of this note
to establish a one~to-one correspondence between the equivalence classes

so determined and the subfields of K of the form Kp(a) where

ae(KN Fp)\Kp. For x e F\K, the equivalence class containing x will
be denoted by [x] and [x] will denote the set {y |y e[x]}. Itis

apparent that for a ¢ F\K, K& (2) = Kp([i]) .

For definitions and relevant theorems the reader is referred to
Chapter II of [1].

LEMMA 1. Let x, yeF. If ye K(x)\K, then x e K(y) or

y e K(xP).
n .
Proof. We assume y = = a_x1 where
i=0
a,¢eK,a #0,n>1. Iet i=qp+r,0gr <p,i=0,1,...,n
i n i i i

*The authors are indebted to the referee.
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Then

n . n q T p-1 .
i p, i i J
y=3% ax = Z a,(x") X = ¥ B.x" where
i=0 i=0 =0 !
qt
Bj =X a,t (xp) and the summation is over t suchthat 0 tgn
p-1 .
and t 2j(mod p). Let £(Z) = (B_-y)+ = Bz, £(2) ¢ K(xF,y)[2].
j=1

Suppose f(Z) 1is not the zero polynomial. Then the minimal polynomial

of x over K(xp,y) has degree not exceeding p-1, hence x is

separable over K(xp,y). But x 1is purely inseparable over K(xp,y)

S0 X ¢ K(xp,y). Hence K{(y)(x) = K(y)(xp) and so x is separable
over K(y). Since x is also purely inseparable over K(y), we have
xe K(y). If x¢ K(y), then f(Z) is the zero polynomial and
y = B0 is an element of K(xp).

THEOREM 1. Let y, xe F. y e K(x\K(x) if and only if
x e K(yNK(yP).

Proof. Assume y ¢ K(x)\K(xp). By Lemma 1, xe K(y).
Suppose x ¢ K(yp), then K(x) g_K(yp) and so vy ¢ K(yp).

But then K{(y) = K(yp) and y is separable over K. It follows that
y ¢ K, since y is also purely inseparable over K. This is a

contradiction so x ¢ K(y'r)\K(y P). The converse follows by symmetry.

COROLLARY 1. Let L be a subfield of

F,SCF, x, yeF, x ¢ LP(S). If ye LP(S,%) and y ¢ LP(S), then
xe LP(s,y).

THEOREM 2. Let y, xe F. If ye K(x) \K, then
pg g+1
v e K(x )\K(xp ) where g = e(x;V).

Proof. Let g be the largest non-negative integer such that
P g p gt p & p
ve K(x© NK(x ). By Theorem 1, x e K(y)\K(y") and so

g

P € K(Yp)

g>elxyy). If g>e(x;y) we obtain x , a contradiction.
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THEOREM 3. Let x,y ¢ FNK. Then e(x)> e(x;y) if and only

Py

it XP() = kP(y
-1 -1
Proof. If Kp(g) =KP(X_), then z{-p eK(zp

e(x;y) <e(x). Assume e(x)>e(x;y). By Theorem 2,

) and so

e (x)-1 t t+1 e(x)-1
x c K(yp '\ K(yp ) where t = e(y;x ).

t e (x)-1

Necessarily t <e(y). By Theorem 1, yp e K(xp NK and

so t+ 1>e(y). Hence t =e(y)-1 and x ¢ Kp(y). Corollary 1 of
Theorem 1 applies.

THEOREM 4. Let y, x e F\K. Then

Pe(X;Y) e(y;x)
(a) ely;x) =ely;x ) and e (x;y) = e (x;y " ) s
also
(b) ely;x) - e(x;y) =e(y) - e(x).
Proof. If e(x) = e(x;y), (a) and (b) obviously hold. Assume
e (y;x) |
e(x) > e(x;y). Then yp ¢ K(x)\K and by Theorem 2 we have
e (y;x) f f+1 e (y;x)
y € K(xp )\K(xp ) where f = e(x;yp ). One easily
obtains
Pe(y;x)
(1) e(y;x) =e(y) - e(x) + e(x;y ),
and
e (x;y)
(2) e(x;y) =e(x) - ely) + ely;x ).
From equations (1) and (2) we obtain
‘ pe(Y;X) e(x;y)
(3) e(x;y) - e(x;y ) =ely;x ) - ely;x).

The left member of (3) is not negative, the right member of (3) is not
positive, hence both are zero and we have part (a). From part (a) and
equation (1) we obtain

177

https://doi.org/10.4153/CMB-1969-017-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-017-3

e(y;x) =e(y) - e(x) + e(x;y)
and so we have
e(y;x) - e(x;y) = e(y) - e(x).

pe(y;X) pe(x;y)
THEOREM 5. Let y, xe FANK. Then K(y ) = K(x ).

Proof. If y R then both fields coincide with K. Suppose y ~ X.

pe(y;x)
Then vy ¢ K(x)\K, and by Theorem 2 we have
e (y;x) f f+1 e (y;x)
yp € K(xp )\K(xp ) where f =e(x;yp ). But by
e (y;x)
Theorem 4, e (x;y ) = e(x;y). We therefore have
pe(Y;X) e (x;y) e(x;y) pe(Y;X)
y e K(x ). Similarly we obtain x e Ky ).
e(y;x) pe(x;y)
Thus K(yF ) = K(x ).

THEOREM 6. There is a one-to-one correspondence between
the equivalence classes determined by ~ and the subfields of K of

the form Kp(a) where a¢ (KN Fp)\Kp.

Proof. Define { as follows: § ([a]) = Kp(i). b is well-defined
since Kp(a) = Kp([a]). { is one-to-one since KP(E) = Kp(_b_) implies
a~Db. Let ac (KﬂFp)\KP, then « =bp for some b ¢ F.
then acK®. Hence be F\K. ¢([b]) = K¥(b) = kP (bP) = KP(a).

It is also easy to show that if the number of equivalence classes
[a] of F\K is greater than one, then there are infinitely many of these
equivalence classes.
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