jYCMS

http://dx.doi.org/10.4153/CMB-2017-019-3 ZSMC

Canad. Math. Bull. Vol. 61 (1), 2018 pp. 130-141 ]
© Canadian Mathematical Society 2017

Additive Maps on Units of Rings

Tamer Kosan, Serap Sahinkaya, and Yigiang Zhou

Abstract. Let R be aring. A map f:R — R is additive if f(a + b) = f(a) + f(b) for all elements
a and b of R. Here, a map f:R — R is called unit-additive if f(u +v) = f(u) + f(v) for all units
u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every
unit-additive map of M, (F) is additive for all n > 2, this paper is about the question of when every
unit-additive map of a ring is additive. It is proved that every unit-additive map of a semilocal ring R
is additive if and only if either R has no homomorphic image isomorphic to Z, or R/J(R) = Z, with
2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map of M, (R) is additive
for all n > 2. These results are further extended to rings R such that R/J(R) is a direct product
of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unit-
homomorphic if f(uv) = f(u)f(v) for all units u, v of R. As an application, the question of when
every unit-homomorphic map of a ring is an endomorphism is addressed.

1 Introduction

Let R be aring. A map f:R — R is called additive if f(a +b) = f(a) + f(b) for all
elements a and b of R. In 2012, Franca [1] observed that an additive map of the matrix
ring M, (F) over a field F is completely determined by its action on certain subsets
(e.g., the subset consisting of invertible matrices) of the ring M, (F). In [11], Xu, Pei,
and Yi proved that, for any field F and any #n > 1, every unit-additive map of M, (F)
is additive. Here, a map f:R — R is called unit-additive if f(u +v) = f(u) + f(v)
for all units u and v of R. This motivates us to consider the question of when every
unit-additive map of a ring is additive. In this paper, we first determine the semilo-
cal rings R such that every unit-additive map of R is additive by proving that every
unit-additive map of a semilocal ring R is additive if and only if either R has no ho-
momorphic image isomorphic to Z; or R/J(R) = Z, with 2 = 0 in R. Consequently,
for any semilocal ring R, every unit-additive map of M, (R) is additive for all n > 2.
This largely extends the main result in [11]. These results are further extended to rings
R such that R/J(R) is a direct product of exchange rings with primitive factors Ar-
tinian. We also consider a related notion: a map f: R — R is called unit-homomorphic
if f(u+v)=f(u)+ f(v)and f(uv) = f(u)f(v) for all units u and v of R. As an
application, we address the question of when every unit-homomorphic map of a ring
is an endomorphism.

Throughout, rings are associative with identity. The Jacobson radical and the set of
units of a ring R are denoted by J(R) and U(R), respectively. The n x n matrix ring
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over R is denoted by M,,(R). As usual, Z, denotes the ring of integers modulo n. A
ring R is called semilocal if R/J(R) is a semisimple Artinian ring.

2 Semilocal Rings

Definition 2.1 A map f:R — Ris called a unit-additive map if f is additive on units
of R,ie, flu+v)=f(u)+ f(v) forallu,v e U(R).

Notation 2.2 Fora,b e R, wewritea «» b (ora & b,to emphasize the element u)
ifa—u,b—ueU(R) for some u € U(R).

Lemma 2.3 Let f be a unit-additive map of R. If a € R and u € U(R) with —a «> u,

then f(a+u) = f(a) + f(u).
Proof As-—a < u, there exists v € U(R) such that a + v,u —v € U(R). So

f(a+u):f((a+v)+(u—v)) =fla+v)+ f(u-v)
=fla+v)+f(u)+ f(-v) = [fa+v)+ f(-v)] + f(u)
=f((a+v)=v) + f(u) = f(a) + f(u). u

The following observation is the key step in the proof of [11} Theorem 4.1].

Lemma 2.4 If1 <> x for all x € R, then every unit-additive map of R is additive.

Proof First, we showthatf(a+v) fla)+f(v )foranya € Randv € U(R). In fact,
by our assumption, 1<»—v~'a for some w € U(R), s0 —a<»v. So f(a+v) = f(a)+f(v)

by Lemma[2.3

Now let a, b € R. We can write b = u + v with u,v € U(R). Then
fla+b)=f((a+u)+v) =fla+u)+f(v)
= f(a)+ f(u) + f(v)
= f(a)+ f(u+v) = f(a) + f(b). u
Next, we determine the semilocal rings R such that1 «» x for all x € R. A ring R is
said to satisfy the Goodearl-Menal condition if for any a, b € R, there exists u € U(R)

such that a—u, b—u™" € U(R). The equivalence (iii)<> (iv) in the next lemma belongs
to [6].

Lemma 2.5 Let R be a semilocal ring. The following are equivalent:

(i) l«raforallaeR;

(ii) u<«raforallacRandalluecU(R);

(i) R satisfies the Goodearl-Menal condition;

(iv) R has no factor ring isomorphic to Z or Zz or M,(Z,).

Proof (1)=(iv). InZ,,1 4> 1. In Z3,1 & 2 In M,(Z,), I, 4~ A, where A = ( )
To see this, assume on the contrary that IzkvA where U is a unit of M (Z,). Write
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U-= ( a s). It follows that U, I, — U, A — U all have determinant 1. That is,
ad+bc=1, (1+a)(1+d)+bc=1, ad+(Q+b)c=1

It follows that ¢ = 0, ad =1, and a + d = 1. This is certainly impossible. Hence, none
of Z, Zs and M,(Z,) satisfies (i). As condition (i) is inherited by factor rings, (i)
implies (iv).

(iii)<(iv). This is [6}, Theorem 2.2].

(iii)=>(i). Let a € R. By (iii), there exists u € U(R) such that a — u,1-u"' € U(R).
It follows that 1<>a.

(ii)=(i). This is obvious.

(i)=(ii). Letu € U(R) and a € R. By (i), 1 <& ylq for some v € U(R), so

uv
U «r q. |

A ring R is said to satisfy the 2-sum property if every element of R is a sum of
two units. One can quickly show that a direct product of rings satisfies the 2-sum
property if and only if every direct summand satisfies the 2-sum property, and that
a ring R satisfies the 2-sum property if and only if so does R/J(R) (see [2]]). On the
other hand, Wolfson [10] and Zelinsky [12], independently, showed that the ring of
linear transformations of a vector space V over a division ring D satisfies the 2-sum
property, except for dim(V') = 1and D = Z,. Thus, we have the following lemma.

Lemma 2.6 A semilocal ring satisfies the 2-sum property if and only if no image of R
is isomorphic to Z,.

Lemma 2.7  Suppose that R satisfies the 2-sum property. If f is a unit-additive map
of R, then f(0) =0 and f(-a) =—f(a) foralla € R.

Proof Writel = u + v where u, v are units of R. Then
JO) =flu+v)=fu)+f(v)=f1-v)+f(1-u)
=f) +f(=v) + fQ) + f(-u),
and so
0=f(-v)+f(-u)+ f(1) = f(-v-u)+ f(1) = f(-1) + f(1) = £(0).

Forw e U(R),wehave 0 = f(w—w) = f(w) + f(-w), so f(-w) = —f(w). Now let
a € R, and write a = u + v where u,v € U(R). Then

f(=a) = f(-u=v) = f(-u)+ f(=v) = = f(u) = f(v) = =(f(w)+f(¥)) = ~f(a). m

Theorem 2.8  Suppose that Z, is a homomorphic image of R. Then every unit-additive
map of R is additive if and only if R/J(R) = Z, with2 =0 in R.

Proof (<) Let f be a unit-additive map of R. For x € J(R),1+x € U(R), so f(x) =
fA+x)+f(1),ie, f(1+x) = f(1)+ f(x). Nowleta,b € R. AsR = J(R)u(1+J(R)),

we verify that f is additive in three cases.
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Casel: a,b € J(R). Then

f(a+b):f((1+a)+(1+b)) =f(l+a)+ f(1+b)
=f()+ f(a)+ f(1) + f(b) = f(a) + £(b).
Case2:a € J(R)and b € 1+ J(R). Write b =1+ y with y € J(R). So f(a+y) =
f(a) + f(y) by case 1. Thus,
fla+b)=f(1+(a+y) =f1)+fla+y)
=f)+ f(@)+ f(») = fla) + [ () + F()]
=f(a)+ f(1+y) = f(a) + f(b).
Case3:a,bel+J(R). Then f(a+Db) = f(a)+ f(b) as f is unit-additive.

(=) By the hypothesis, R/I = Z, for an ideal I of R. If I = 0, then R = Z,. Hence,
we can assume that I # 0.

We next show that I = J(R). Assume on the contrary that I # J(R). Then1+1I #
U(R). Note that R =Tu (1+1I). Define f:R - Rby f(x) =2forx eI, f(1+x) =1
for x e Iwithl1+x € U(R),and f(1+x) = 2for x € [ with 1+ x ¢ U(R). Then, for
u,ve U(R),u=1+x,andv =1+ y, wherex, y € I, s0

flu+v)=fQ2+x+y)=2=1+1=f(1+x)+ f(1+y) = f(u) + f(v).

That is, f is a unit-additive map of R. As1+ 1 # U(R), there exists z € I such that
1+z ¢ U(R). Thus, f(1+2) =24 1+2 = f(1) + f(2), so f is not additive. This
contradiction shows that I = J(R). It remains to show that 2 = 0 in R. Note that
R=J(R)u (1+]J(R)). Define f:R - Rby f(x) =2and f(1+x) = 1for x € J(R).
Then for u,v € J(R),u =1+ x,and v = 1+ y, where x,y € J(R), so f(u +v) =
fQ2+x+y)=2=1+1= f(u) + f(v). Hence, f is a unit-additive map of R, so is
additive. Thus,1= f(1) = f(1+0) = f(1) + f(0) =1+ 2, s0 2 = 0 follows. [ |

The following definition is a key ingredient needed.

Definition 2.9 A ring R is said to satisfy condition (x) if, for any a € R and any
b € U(R), there exist units u,v such thata + b —u,a +v,b—u—v € U(R).

Obviously, a ring with (*) satisfies the 2-sum property.
Lemma 2.10 Ifaring R satisfies (+), then every unit-additive map f of R is additive.

Proof We first show that f(a + b) = f(a) + f(b) forany a € Rand any b € U(R).
By the hypothesis, there exist units u, v such thata + b —u,a+v,b—u—-v € U(R).
Then by Lemma[2.7}

fla+b)-f(a)-f(b) = f(a+b)+f(-a)~+ f(-b)
:f((a+b—u)+u) +f((—a—v)+v) + f(-b)
=fla+b-u)+f(u)+f(-a-v)+f(v)+f(-b)
=[fla+b-u)+f(=a-v)] + f(u) + f(v) + f(=b)
=fb-u-v)+f(u)+f(v)+f(-b)
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=[fb-u-v)+f(-D)] + f(u) + f()
=f-u=v)+f(u) + f(v)
=fu)+ f(=v) + f(u) + f(v)
=[Sy + f@)] +[f(=v) + f(0)]
=f(0)+f(0)=0+0=0.
So f(a+b)=f(a)+ f(b).
Now let x, y € R, and write y = u + v where u, v are units of R. Then
flxry)=flxrutv)=fleru)+f(v)=f(x)+fu)+f(v) = f0x) +f(p)-
So f is additive. ]

Lemma 2.11 (i) A ring R satisfies (+) if and only if R/J(R) satisfies ().
(ii) A ring direct product [] R; satisfies (x) if and only if each R; satisfies (*).

Proof (i) (=) Letx € R/J(R) and y € U(R/J(R)). Write x = d@ and y = b. Then
a € Rand b € U(R). By the hypothesis, there exist u,v € U(R) such thata+b—u,a+
v,b-u-veU(R). Thus, i, v, x+y—tt,x + v,y — i —v € U(R/J(R)).

(<) Letac Rand b € U(R). Then a € R/J(R) and b € U(R/J(R)). By the hy-
pothesis, there exist i, b € U(R/J(R)) such that a+b—ii, a+,b—ii—v € U(R/J(R)).
Thus, u,v,a+b-u,a+v,b—u—-veU(R).

(ii) This is easily seen. u

We point out a needed fact about the ring R := M,(Z;,): for any non-unit a4 in R
and any unit  in R, either a «» u or a + u € U(R). For example, let a = ( 3 (1)) We

-5 (0 Y D e
A S T B e
(o o) o moe= () 6 0)2 (6 1) e 7).
((1) (1))+(? i):(i ?)eU(R), (0 0)+(1 ?):(? i)eU(R).

The following observation is crucial to proving our main result.

—_— O

1 1) «
Lo
0
1 1)
<o
O )
1

1
0
1
0
1

Lemma 2.12  Let R be a semilocal ring. Then R satisfies (*) if and only if R satisfies
the 2-sum property.

Proof We just need to show the sufficiency. Because of Lemmas[2.6|and 2.11} we can
assume that R is a simple Artinian ring not isomorphic to Z,. We verify that, for any
a € Rand any b € U(R), there exist u,v € U(R) suchthata+b—-u,a+v,b-u-ve
U(R). We proceed with three cases.
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Casel: R=7Z;.1fa=0,takeu =2bandv=>b.1fa # 0,takeu =band v = a.

Case 2: R = M,(Z,). First assume that a is not a unit. Then either a + b € U(R) or
a« b Ifa+beU(R),write a + b = x + y with units x and y, and take u = x and
v=>b.1Ifa « b, writea = ¢+ d and b = ¢ + d’ with units ¢, d, d’ and take u = d and
v=d.

If a is a unit, write a = x + y with units x and y, and take u = b and v = x.
Case 3: R is not isomorphic to Z; and M, (Z,). Then by Lemma —a «r b. Write
—a=c-dand b =c+d with units ¢c,d,d’ and take u = d and v = -d. [ |

Now we are ready to present the main result in this section.

Theorem 2.13  Let R be a semilocal ring. The following are equivalent:
(i)  every unit-additive map of R is additive;
(ii) R has no image isomorphic to Z,, or R/J(R) = Z, with2 = 0 in R.

Proof (i)=(ii) This follows from Theorem[2.§]

(ii))=(@i) In view of Theorem we can assume that R has no image isomorphic
to Zj. So, by Lemma[2.6] R satisfies the 2-sum property. Hence, R satisfies () by
Lemma 2.12} and so (i) holds by Lemmal[2.10} [ ]

Corollary 2.14 If R is a semilocal ring, then every unit-additive map of ML, (R) is
additive for all n > 2.

Proof If R is semilocal and n > 2, then M, (R) is a semilocal ring with no image
isomorphic to Z,. So the Corollary follows from Theorem [2.13 ]

3 Exchange Rings with Primitive Factors Artinian

In this section, we extend Theorem|2.13Jand Corollary[2.14Jto alarger class of rings. For
anideal K< Rand a € R,leta = a + K € R/K, and so the notation (a;;) € M, (R/K)
means that (a;;) = (a;; + K).

Lemma 3.1 Let {K,} be a chain of ideals of a ring R, and K = Uy K. If (ai;) €
M., (R/K) is a unit, then (a;;) € M, (R/K}) is a unit for some A.

Proof Assume that (a;;) € M, (R/K) isa unit. Then there exists (b;;) € M, (R/K)
such that

(@) (biy) = (bij) (as;) = diag{L1,....1}.

Thus, (aij)(bij)—1I,and (bi;)(a;j)—I, arein M, (K). Because {K} } is a chain, there
exists some K such that (a;;)(b;;) — I, and (b;;)(aij) — I, are in ML, (K} ). Hence,
(@) (bij) = (bij) (as;) = diag{L1,.... T}
in M, (R/Ky). So, (@i;) € M, (R/K}) is a unit. [ ]

The notion of an exchange ring was introduced by Warfield [9]] via the exchange

property of modules. By Goodearl-Warfield [4] or Nicholson [8]], a ring R is an ex-
change ring if and only if for each a € R there exists e* = e € R such that e € aR and
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1-e € (1- a)R. Every semiprimitive exchange ring is an I-ring (i.e., every nonzero
right ideal contains a nonzero idempotent), and the class of exchange rings is closed
under homomorphic images.

Lemma 3.2  Let R be an exchange ring with primitive factors Artinian. The following
are equivalent:

(i) R satisfies (x);
(ii) R satisfies the 2-sum property;
(iii) R has no homomorphic images isomorphic to Z,.

Proof (i)=(ii)=(iii) These are clear.

(iii)=(i) For convenience, for a € R and b € U(R) we say that a, b satisfy () if
there exist units u,v such that a + b —u,a + v,b — u — v € U(R); otherwise, we say
that a, b do not satisfy (*).

Assume on the contrary that R does not satisfy (+). Then there exist x € R and
y € U(R) such that x, y do not satisfy (*). Thus,

F={I< R:%,yeR/I donotsatisfy (*)}

is not empty. For a chain {I,} of elements of F, let I = U, I,. Then [ is an ideal of R.
Assume that x, y € R/I satisfy (*). Then there exist units u, v in R/I such that

a+b-u,a+v,b-u-veU(R/I).

Thus, by Lemma wvanda+b-1ua+v,b—-u-vall are units in R/I, for
some A. So x,y € R/I, satisfy (*). This contradiction shows that I € F. So F is an
inductive set. By Zorn’s Lemma, J has a maximal element, say I. Because every unit
of (R/I)/J(R/I) is lifted to a unit of R/I, the maximality of I implies that J(R/I) = 0.

We next show that R/I is an indecomposable ring. In fact, if R/I is a decomposable
ring, then there exist ideals I1, I, of Rsuch that I £ I; & R (i = 1,2) and

R/IzR/L®R/I, via r+1+— (r+L,r+1;).

By the maximality of I, X, ¥ € R/I; satisfy (*) for i =1, 2. So, there exist u + I, v+ 1 €
U(R/L) and u’ + I,v' + I € U(R/I;) such that

(x+L)+(y+1L)-(u+1),
(x+ L)+ (v+1),
()/+Il)—(1/l+11)—(1/+11)

are units of R/I;, and

(x+L)+(y+L)-(u +1),
(x+L)+ (' +1),
(y+L)-(W +L)-('+1)
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are units of R/I,. Thus,
u+1I, M/ + Iz),
v+ IV + 1),

x+Inx+L)+(y+1IL,y+ L) - (u+I,u' +1,),

~ o~ o~ o~

x+I,x+ L)+ (v+I,v + 1),

(y+11,y+12)—(u+11,u'+12)—(v+Il,v'+Iz)

all are units of R/I; ® R/I,. This shows that (x+ I}, x+1,), (y+1I;, y+15) € R/L®R/L,
satisfy (*). Hence, because of the ring isomorphism above, X, y € R/I satisfy (). This
contradiction shows that R/I is indecomposable.

Thus, R/I is a semiprimitive indecomposable ring that is an exchange ring with
primitive factors Artinian. Now by Menal [7, Lemma 1], R/I is a simple Artinian
ring. Because R has no homomorphic images isomorphic to Z,, R/I ¢ Z,. Hence, by
Zelinsky [12, Theorem], R/I satisfies the 2-sum property. Hence, R/I satisfies (*) by
Lemmal[2.12} contradicting that I € F. [

A ring is a clean ring if each of its elements is a sum of an idempotent and a unit.
It is well known that every clean ring is an exchange ring.

Corollary 3.3 If R is a clean ring with primitive factors Artinian, and if 2 € U(R),
then every unit-additive map of R is additive.

Proof IfacRandi(1+a)=e+u,e’=e,anduc U(R),thena = (2e-1)+2uisa
sum of two units (in fact 2e—11is an involution). So, by Lemma every unit-additive
map of R is additive. ]

Theorem 3.4  Let R be a ring such that R/J(R) is a direct product of exchange rings
with primitive factors Artinian. The following are equivalent:

(i) every unit-additive map of R is additive;

(ii) R has no image isomorphic to Z,, or R/J(R) = Z, with2 = 0 in R.

Proof (i)=>(ii) This is by Theorem2.8]

(ii)=(i) First, by Theorem we can assume that R has no homomorphic images
isomorphic to Z,. Second, by Lemma it suffices to show that R satisfies (*).
So, by Lemma i), we can assume that J(R) = 0, and hence R is a direct product
of exchange rings with primitive factors Artinian. Thus, by Lemma 2.11{ii), we can
further assume that R is an exchange ring with primitive factors Artinian. As R has
no homomorphic images isomorphic to Z,, R satisfies () by Lemma[3.2] [ |

Corollary 3.5 Let R be an exchange ring with primitive factors Artinian. The follow-
ing are equivalent:

(i)  every unit-additive map of R is additive;
(ii) R has no image isomorphic to Z,, or R/J(R) = Z, with2 =0 in R.
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Corollary 3.6  Let R be a ring such that R/J(R) is a direct product of simple Artinian
rings. The following are equivalent:

(i)  every unit-additive map of R is additive;

(ii) R has no image isomorphic to Z,, or R/J(R) = Z, with2 = 0 in R.

A ring R is called right self-injective if every R-homomorphism from a right ideal
of R into R can be extended to an R-homomorphism from R to R. A ring R is called
strongly m-regular if, for each a € R, a” € Ra™"' n a"*'R for some positive integer
n. Every one-sided perfect ring (in particular, one-sided Artinian ring) is strongly n-
regular. A von Neumann regular ring in which every idempotent is central is called a
strongly regular ring.

Corollary 3.7  Let R be a ring such that R/J(R) is right self-injective strongly 7-
regular. The following are equivalent:

(i)  every unit-additive map of R is additive;

(ii) R has no image isomorphic to Z,, or R/J(R) = Z, with2 = 0 in R.

Proof (i)=(ii) This follows from Theorem[2.§]
(ii)=(i) By [5) Theorem], R is a finite direct product of matrix rings over strongly
regular rings. So the equivalences follow from Theorem [3.4] [

We recall some notions from [3, pp. 111-115]. A ring R is called directly finite if
ab = 1in R implies ba = 1for all a,b € R. An idempotent e in a regular ring R is
called an abelian idempotent if the ring eRe is abelian. An idempotent e in a regular
right self-injective ring is called a faithful idempotent if 0 is the only central idempotent
orthogonal to e. A regular right self-injective ring is of Type I if it is directly finite
and it contains a faithful abelian idempotent.

Corollary 3.8 Let R be a ring such that R/J(R) is a regular right self-injective ring of
Type I¢. The following are equivalent:

(i)  every unit-additive map of R is additive;
(ii) R has no image isomorphic to Z,, or R/J(R) = Z, with2 = 0 in R.

Proof By [3, Theorem 10.24], R is a direct product of matrix rings over strongly
regular rings. So the equivalences follow from Theorem 3.4} [ |

Corollary 3.8 motivates the following question, which we have been unable to an-
swer.

Question 3.9  Does Corollary[3.8|still hold for a right self-injective ring R?

4 Applications
Here, we consider a notion related to a unit-additive map.

Definition 41 A map f: R — Ris called unit-homomorphicif f (u+v) = f(u)+f(v)
and f(uv) = f(u)f(v) forall u,v € U(R).
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The question concerned is: for which rings R is every unit-homomorphic map of
R an endomorphism?

Example 4.2 LetR=7,®Z;,e=(1,0)and e’ = (0,1).

Define f:R - Rby f(1) = eand f(a) = 0for1 # a € R. Then f is unit-
homomorphic. Moreover, f preserves multiplication. Because f(1+e) =0 # e =
f(Q) + f(e), f is not additive.

Define g:R — Rby g(0) = 0, g(1) = e, g(e) =1, g(e’) = ¢'. Then g is unit-
homomorphic. Moreover, g preserves addition. Because g(ee’) = g(0) =0 # ¢’ =
g(e)g(e’), g does not preserve multiplication.

Theorem 4.3  Suppose that Z, is a homomorphic image of R. Then every unit-ho-
momorphic map of R is an endomorphism if and only if R/J(R) = Z, with2 = 0 in
R.

Proof (<=) Let f:R — R be a unit-homomorphic map. Then f is additive by Theo-
rem 2.8] It remains to show that f(ab) = f(a)f(b) for a,b € R.

AsR/J(R) 2Zy, R=J(R)u(1+J(R)).Ifa,b €1+ J(R), then f(ab) = f(a)f(b)
as f is unit-homomorphic. If a, b € J(R), then

flab)=f(Q+1+a))(1+(1+b))) = f(1+A+a)+(1+b)+(1+a)(1+b))
=f()+fA+a)+f(1+b)+f((A+a)(1+Db))
=fOfW)+fA+a)f)+fO)fA+b)+ f(1+a)f(1+D)
=[f)+ fA+a)][ @)+ fF1+b)] = f(a)f (D).
If one of a, b is in J(R) and the other isin 1+ J(R), say a € J(R) and b € 1+ J(R),
then
f(ab) = f((1+ (@1 +a))b) = f(b+(1+a)b)
= f(0) + f((1+a)b) = FD)f(b) + f(1+a)f(b)
=[F) + A+ @)]f(b) = f(a)f (b).
(=) Assume that R/I = Z, for an ideal I of R. Then J(R) € I,and U(R) €1+ I as
R=Tu(+1I).IfI =0, then R = Z,, so we are done. Hence, we can assume that I # 0.
Assume on the contrary that J(R) & I. Then U(R) & 1+ I. Define f:R — R by
f(x)=2forxel, f(1+x)=1forx e Iwithl+xe U(R),and f(1+x)=2forx el

with1+x ¢ U(R). Thenfor u,v € U(R),u=1+xandv =1+ y where x, y € I, so we
have

flu+v)=fQR+x+y)=2=1+1=f(1+x)+ fQ+y) = f(u)+ f(v),
flw) = fA+x+y+xy)=1=f1+x)f(1+y) = f(u)f(v).
That is, f is a unit-homomorphic map of R. As U(R) & 1+ I, there exists z € I such
that 1+ z ¢ U(R). Thus, f(1+2z) =2 #1+2 = f(1) + f(2), so f is not additive.

This contradiction shows that I = J(R). It remains to show that 2 = 0 in R. Note
R=J(R)u (1+]J(R)). Define f:R - Rby f(x) =2and f(1+x) = 1for x € J(R).
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Then for u,v € J(R),u =1+ x and v =1+ y where x, y € J(R), so

fu+v)=fQR+x+y)=2=1+1= f(u) + f(v),
fw)=fA+x+y+xy)=1=f(u)f(v).

Hence, f is a unit-homomorphic map of R, so is an endomorphism. Thus,

1= f(1) = f(1+0) = f(1) + f(0) =1+2,

so 2 = 0 follows. [ |

Theorem 4.4  Let R be a ring such that R/J(R) is a direct product of exchange rings
with primitive factors Artinian. Then every unit-homomorphic map of R is an endo-
morphism if and only if either R has no homomorphic images isomorphic to Z, or
R/J(R) 2 Z, with2 =0inR.

Proof (=) This follows from Theorem[4.3]

(<) Let f: R - Rbeaunit-homomorphic map. Then f is additive by Theorem
It remains to show that f(ab) = f(a) f(b) for a,b € R.

By Theorem|[4.3} we can assume that R has no image isomorphic to Z,. Let R/J(R)
be the direct product of rings { R, }, where each R, is an exchange ring with primitive
factors Artinian. Then each R, has no homomorphic images isomorphic to Z,, and
hence it satisfies the 2-sum property by Lemma[3.2} It follows that R/J(R), and hence
R satisfies the 2-sum property. Write a = u +v and b = w + t where u, v, w, t € U(R).
Then

f(ab) = f(uw +ut +vw +vt) = f(uw) + f(ut) + f(vw) + f(vi)
= f) fw)+ fu) f() + f(v) f(w) + f(v) f(2)
= f[fw)+ f(O] + FW[f(w) + f(1)]
=[f@) + FW][fw) + f(1)] = f(a) f (D). u

Corollary 4.5 If R is a ring such that R/J(R) is a direct product of exchange rings
with primitive factors Artinian, then every unit-homomorphic map of M, (R) is an en-
domorphism for all n > 2.

Proof Write R/J(R) = [ R4, where each R, is an exchange ring with primitive
factors Artinian, and let S = M[,(R). Then S/J(S) = M, (R/J(R)) = [IM,(R,),
where each M, (R, ) is an exchange ring with primitive factors Artinian. As S has
no homomorphic images isomorphic to Z,, every unit-homomorphic map of S is an
endomorphism by Theorem [

Corollary 4.6  If R is an exchange ring with primitive factors Artinian or a semilocal
ring, then every unit-homomorphic map of ML, (R) is an endomorphism for all n > 2.
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