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Additive Maps on Units of Rings

Tamer Koşan, Serap Sahinkaya, and Yiqiang Zhou

Abstract. Let R be a ring. A map f ∶R → R is additive if f (a + b) = f (a) + f (b) for all elements
a and b of R. Here, a map f ∶R → R is called unit-additive if f (u + v) = f (u) + f (v) for all units
u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any ûeld F, every
unit-additivemap ofMn(F) is additive for all n ≥ 2, this paper is about the question of when every
unit-additivemap of a ring is additive. It is proved that every unit-additivemap of a semilocal ring R
is additive if and only if either R has no homomorphic image isomorphic toZ2 or R/J(R) ≅ Z2 with
2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map ofMn(R) is additive
for all n ≥ 2. _ese results are further extended to rings R such that R/J(R) is a direct product
of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unit-
homomorphic if f (uv) = f (u) f (v) for all units u, v of R. As an application, the question of when
every unit-homomorphicmap of a ring is an endomorphism is addressed.

1 Introduction

Let R be a ring. A map f ∶R → R is called additive if f (a + b) = f (a) + f (b) for all
elements a and b of R. In 2012, Franca [1] observed that an additivemap of thematrix
ring Mn(F) over a ûeld F is completely determined by its action on certain subsets
(e.g., the subset consisting of invertiblematrices) of the ring Mn(F). In [11], Xu, Pei,
and Yi proved that, for any ûeld F and any n > 1, every unit-additivemap ofMn(F)
is additive. Here, a map f ∶R → R is called unit-additive if f (u + v) = f (u) + f (v)
for all units u and v of R. _is motivates us to consider the question of when every
unit-additive map of a ring is additive. In this paper, we ûrst determine the semilo-
cal rings R such that every unit-additive map of R is additive by proving that every
unit-additive map of a semilocal ring R is additive if and only if either R has no ho-
momorphic image isomorphic to Z2 or R/J(R) ≅ Z2 with 2 = 0 in R. Consequently,
for any semilocal ring R, every unit-additive map ofMn(R) is additive for all n ≥ 2.
_is largely extends themain result in [11]. _ese results are further extended to rings
R such that R/J(R) is a direct product of exchange rings with primitive factors Ar-
tinian. We also consider a related notion: amap f ∶R → R is called unit-homomorphic
if f (u + v) = f (u) + f (v) and f (uv) = f (u) f (v) for all units u and v of R. As an
application, we address the question of when every unit-homomorphicmap of a ring
is an endomorphism.

_roughout, rings are associativewith identity. _e Jacobson radical and the set of
units of a ring R are denoted by J(R) and U(R), respectively. _e n × n matrix ring
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over R is denoted byMn(R). As usual, Zn denotes the ring of integers modulo n. A
ring R is called semilocal if R/J(R) is a semisimple Artinian ring.

2 Semilocal Rings

Deûnition 2.1 Amap f ∶R → R is called a unit-additivemap if f is additive on units
of R, i.e., f (u + v) = f (u) + f (v) for all u, v ∈ U(R).

Notation 2.2 For a, b ∈ R, we write a↭ b (or a
u↭ b, to emphasize the element u)

if a − u, b − u ∈ U(R) for some u ∈ U(R).

Lemma 2.3 Let f be a unit-additivemap of R. If a ∈ R and u ∈ U(R) with −a↭ u,
then f (a + u) = f (a) + f (u).

Proof As −a↭ u, there exists v ∈ U(R) such that a + v , u − v ∈ U(R). So

f (a + u) = f ((a + v) + (u − v)) = f (a + v) + f (u − v)
= f (a + v) + f (u) + f (−v) = [ f (a + v) + f (−v)] + f (u)
= f ((a + v) − v) + f (u) = f (a) + f (u).

_e following observation is the key step in the proof of [11,_eorem 4.1].

Lemma 2.4 If 1↭ x for all x ∈ R, then every unit-additivemap of R is additive.

Proof First,we show that f (a+v) = f (a)+ f (v) for any a ∈ R and v ∈ U(R). In fact,
by our assumption, 1

w↭−v−1a for somew ∈ U(R), so−avw↭v. So f (a+v) = f (a)+ f (v)
by Lemma 2.3.

Now let a, b ∈ R. We can write b = u + v with u, v ∈ U(R). _en

f (a + b) = f ((a + u) + v) = f (a + u) + f (v)
= f (a) + f (u) + f (v)
= f (a) + f (u + v) = f (a) + f (b).

Next, we determine the semilocal rings R such that 1↭ x for all x ∈ R. A ring R is
said to satisfy theGoodearl–Menal condition if for any a, b ∈ R, there exists u ∈ U(R)
such that a−u, b−u−1 ∈ U(R). _e equivalence (iii)⇔ (iv) in the next lemma belongs
to [6].

Lemma 2.5 Let R be a semilocal ring. _e following are equivalent:
(i) 1↭ a for all a ∈ R;
(ii) u↭ a for all a ∈ R and all u ∈ U(R);
(iii) R satisûes the Goodearl–Menal condition;
(iv) R has no factor ring isomorphic to Z2 or Z3 or M2(Z2).

Proof (i)⇒(iv). In Z2, 1 /↭ 1. In Z3, 1 /↭ 2. In M2(Z2), I2 /↭ A, where A = ( 0 1
0 0 ) .

To see this, assume on the contrary that I2
U↭A, where U is a unit ofM2(Z2). Write
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U = ( a b
c d ) . It follows that U , I2 −U ,A−U all have determinant 1. _at is,

ad + bc = 1, (1 + a)(1 + d) + bc = 1, ad + (1 + b)c = 1.

It follows that c = 0, ad = 1, and a + d = 1. _is is certainly impossible. Hence, none
of Z2, Z3 and M2(Z2) satisûes (i). As condition (i) is inherited by factor rings, (i)
implies (iv).

(iii)⇔(iv). _is is [6,_eorem 2.2].
(iii)⇒(i). Let a ∈ R. By (iii), there exists u ∈ U(R) such that a − u, 1− u−1 ∈ U(R).

It follows that 1
u↭a.

(ii)⇒(i). _is is obvious.
(i)⇒(ii). Let u ∈ U(R) and a ∈ R. By (i), 1

v↭ u−1a for some v ∈ U(R), so
u

uv↭ a.

A ring R is said to satisfy the 2-sum property if every element of R is a sum of
two units. One can quickly show that a direct product of rings satisûes the 2-sum
property if and only if every direct summand satisûes the 2-sum property, and that
a ring R satisûes the 2-sum property if and only if so does R/J(R) (see [2]). On the
other hand, Wolfson [10] and Zelinsky [12], independently, showed that the ring of
linear transformations of a vector space V over a division ring D satisûes the 2-sum
property, except for dim(V) = 1 and D = Z2. _us, we have the following lemma.

Lemma 2.6 A semilocal ring satisûes the 2-sum property if and only if no image of R
is isomorphic to Z2.

Lemma 2.7 Suppose that R satisûes the 2-sum property. If f is a unit-additive map
of R, then f (0) = 0 and f (−a) = − f (a) for all a ∈ R.

Proof Write 1 = u + v where u, v are units of R. _en

f (1) = f (u + v) = f (u) + f (v) = f (1 − v) + f (1 − u)
= f (1) + f (−v) + f (1) + f (−u),

and so

0 = f (−v) + f (−u) + f (1) = f (−v − u) + f (1) = f (−1) + f (1) = f (0).

For w ∈ U(R), we have 0 = f (w −w) = f (w) + f (−w), so f (−w) = − f (w). Now let
a ∈ R, and write a = u + v where u, v ∈ U(R). _en

f (−a) = f (−u−v) = f (−u)+ f (−v) = − f (u)− f (v) = −( f (u)+ f (v)) = − f (a).

_eorem 2.8 Suppose thatZ2 is a homomorphic image of R. _en every unit-additive
map of R is additive if and only if R/J(R) ≅ Z2 with 2 = 0 in R.

Proof (⇐) Let f be a unit-additivemap of R. For x ∈ J(R), 1+ x ∈ U(R), so f (x) =
f (1+x)+ f (1), i.e., f (1+x) = f (1)+ f (x). Now let a, b ∈ R. As R = J(R)∪(1+ J(R)),
we verify that f is additive in three cases.
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Case 1: a, b ∈ J(R). _en

f (a + b) = f ((1 + a) + (1 + b)) = f (1 + a) + f (1 + b)
= f (1) + f (a) + f (1) + f (b) = f (a) + f (b).

Case 2: a ∈ J(R) and b ∈ 1 + J(R). Write b = 1 + y with y ∈ J(R). So f (a + y) =
f (a) + f (y) by case 1. _us,

f (a + b) = f ( 1 + (a + y)) = f (1) + f (a + y)
= f (1) + f (a) + f (y) = f (a) + [ f (1) + f (y)]
= f (a) + f (1 + y) = f (a) + f (b).

Case 3: a, b ∈ 1 + J(R). _en f (a + b) = f (a) + f (b) as f is unit-additive.
(⇒) By the hypothesis, R/I ≅ Z2 for an ideal I of R. If I = 0, then R = Z2. Hence,

we can assume that I /= 0.
We next show that I = J(R). Assume on the contrary that I /= J(R). _en 1 + I /=

U(R). Note that R = I ∪ (1 + I). Deûne f ∶R → R by f (x) = 2 for x ∈ I, f (1 + x) = 1
for x ∈ I with 1 + x ∈ U(R), and f (1 + x) = 2 for x ∈ I with 1 + x ∉ U(R). _en, for
u, v ∈ U(R), u = 1 + x, and v = 1 + y, where x , y ∈ I, so

f (u + v) = f (2 + x + y) = 2 = 1 + 1 = f (1 + x) + f (1 + y) = f (u) + f (v).
_at is, f is a unit-additive map of R. As 1 + I /= U(R), there exists z ∈ I such that
1 + z ∉ U(R). _us, f (1 + z) = 2 /= 1 + 2 = f (1) + f (z), so f is not additive. _is
contradiction shows that I = J(R). It remains to show that 2 = 0 in R. Note that
R = J(R) ∪ (1 + J(R)). Deûne f ∶R → R by f (x) = 2 and f (1 + x) = 1 for x ∈ J(R).
_en for u, v ∈ J(R), u = 1 + x, and v = 1 + y, where x , y ∈ J(R), so f (u + v) =
f (2 + x + y) = 2 = 1 + 1 = f (u) + f (v). Hence, f is a unit-additive map of R, so is
additive. _us, 1 = f (1) = f (1 + 0) = f (1) + f (0) = 1 + 2, so 2 = 0 follows.

_e following deûnition is a key ingredient needed.

Deûnition 2.9 A ring R is said to satisfy condition (∗) if, for any a ∈ R and any
b ∈ U(R), there exist units u, v such that a + b − u, a + v , b − u − v ∈ U(R).

Obviously, a ring with (∗) satisûes the 2-sum property.

Lemma 2.10 If a ring R satisûes (∗), then every unit-additivemap f of R is additive.

Proof We ûrst show that f (a + b) = f (a) + f (b) for any a ∈ R and any b ∈ U(R).
By the hypothesis, there exist units u, v such that a + b − u, a + v , b − u − v ∈ U(R).
_en by Lemma 2.7,

f (a + b) − f (a) − f (b) = f (a + b) + f (−a) + f (−b)
= f ((a + b − u) + u) + f ((−a − v) + v) + f (−b)
= f (a + b − u) + f (u) + f (−a − v) + f (v) + f (−b)
= [ f (a + b − u) + f (−a − v)] + f (u) + f (v) + f (−b)
= f (b − u − v) + f (u) + f (v) + f (−b)
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= [ f (b − u − v) + f (−b)] + f (u) + f (v)
= f (−u − v) + f (u) + f (v)
= f (−u) + f (−v) + f (u) + f (v)
= [ f (−u) + f (u)] + [ f (−v) + f (v)]
= f (0) + f (0) = 0 + 0 = 0.

So f (a + b) = f (a) + f (b).
Now let x , y ∈ R, and write y = u + v where u, v are units of R. _en

f (x + y) = f (x + u + v) = f (x + u) + f (v) = f (x) + f (u) + f (v) = f (x) + f (y).

So f is additive.

Lemma 2.11 (i) A ring R satisûes (∗) if and only if R/J(R) satisûes (∗).
(ii) A ring direct product∏R i satisûes (∗) if and only if each R i satisûes (∗).

Proof (i) (⇒) Let x ∈ R/J(R) and y ∈ U(R/J(R)). Write x = ā and y = b̄. _en
a ∈ R and b ∈ U(R). By the hypothesis, there exist u, v ∈ U(R) such that a+b−u, a+
v , b − u − v ∈ U(R). _us, ū, v̄ , x + y − ū, x + v̄ , y − ū − v̄ ∈ U(R/J(R)).

(⇐) Let a ∈ R and b ∈ U(R). _en ā ∈ R/J(R) and b̄ ∈ U(R/J(R)). By the hy-
pothesis, there exist ū, b̄ ∈ U(R/J(R)) such that ā+b̄−ū, ā+v̄ , b̄−ū−v̄ ∈ U(R/J(R)).
_us, u, v , a + b − u, a + v , b − u − v ∈ U(R).

(ii) _is is easily seen.

We point out a needed fact about the ring R ∶= M2(Z2): for any non-unit a in R
and any unit u in R, either a ↭ u or a + u ∈ U(R). For example, let a = ( 1 1

0 0 ) . We
have

U(R) = {(1 0
0 1) , (

0 1
1 0) , (

0 1
1 1) , (

1 0
1 1) , (

1 1
1 0) , (

1 1
0 1)} , and

(1 1
0 0)

u↭ (1 0
0 1) with u = (0 1

1 1) , (1 1
0 0)

u↭ (0 1
1 0) with u = (1 0

1 1) ,

(1 1
0 0)

u↭ (1 1
1 0) with u = (0 1

1 1) , (1 1
0 0)

u↭ (1 1
0 1) with u = (1 0

1 1) ,

(1 1
0 0) + (0 1

1 1) = (1 0
1 1) ∈ U(R), (1 1

0 0) + (1 0
1 1) = (0 1

1 1) ∈ U(R).

_e following observation is crucial to proving our main result.

Lemma 2.12 Let R be a semilocal ring. _en R satisûes (∗) if and only if R satisûes
the 2-sum property.

Proof We just need to show the suõciency. Because of Lemmas 2.6 and 2.11, we can
assume that R is a simple Artinian ring not isomorphic to Z2. We verify that, for any
a ∈ R and any b ∈ U(R), there exist u, v ∈ U(R) such that a + b − u, a + v , b − u − v ∈
U(R). We proceed with three cases.
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Case 1: R = Z3. If a = 0, take u = 2b and v = b. If a /= 0, take u = b and v = a.
Case 2: R = M2(Z2). First assume that a is not a unit. _en either a + b ∈ U(R) or
a ↭ b. If a + b ∈ U(R), write a + b = x + y with units x and y, and take u = x and
v = b. If a ↭ b, write a = c + d and b = c + d′ with units c, d , d′ and take u = d and
v = d.

If a is a unit, write a = x + y with units x and y, and take u = b and v = x.

Case 3: R is not isomorphic to Z3 andM2(Z2). _en by Lemma 2.5, −a ↭ b. Write
−a = c − d and b = c + d′ with units c, d , d′ and take u = d and v = −d.

Now we are ready to present themain result in this section.

_eorem 2.13 Let R be a semilocal ring. _e following are equivalent:
(i) every unit-additivemap of R is additive;
(ii) R has no image isomorphic to Z2, or R/J(R) ≅ Z2 with 2 = 0 in R.

Proof (i)⇒(ii) _is follows from _eorem 2.8.
(ii)⇒(i) In view of _eorem 2.8, we can assume that R has no image isomorphic

to Z2. So, by Lemma 2.6, R satisûes the 2-sum property. Hence, R satisûes (∗) by
Lemma 2.12, and so (i) holds by Lemma 2.10.

Corollary 2.14 If R is a semilocal ring, then every unit-additive map of Mn(R) is
additive for all n ≥ 2.

Proof If R is semilocal and n ≥ 2, then Mn(R) is a semilocal ring with no image
isomorphic to Z2. So the Corollary follows from _eorem 2.13.

3 Exchange Rings with Primitive Factors Artinian

In this section,we extend_eorem 2.13 andCorollary 2.14 to a larger class of rings. For
an ideal K◁ R and a ∈ R, let a = a +K ∈ R/K, and so the notation (a i j) ∈Mn(R/K)
means that (a i j) = (a i j + K).

Lemma 3.1 Let {Kλ} be a chain of ideals of a ring R, and K = ∪λKλ . If (a i j) ∈
Mn(R/K) is a unit, then (a i j) ∈Mn(R/Kλ) is a unit for some λ.

Proof Assume that ( a i j) ∈Mn(R/K) is a unit. _en there exists (b i j) ∈Mn(R/K)
such that

(a i j)(b i j) = (b i j)(a i j) = diag{1̄, 1̄, . . . , 1̄}.
_us, (a i j)(b i j)−In and (b i j)(a i j)−In are inMn(K). Because {Kλ} is a chain, there
exists some Kλ such that (a i j)(b i j) − In and (b i j)(a i j) − In are in Mn(Kλ). Hence,

(a i j)(b i j) = (b i j)(a i j) = diag{1̄, 1̄, . . . , 1̄}
in Mn(R/Kλ). So, ( a i j) ∈Mn(R/Kλ) is a unit.

_e notion of an exchange ring was introduced by Warûeld [9] via the exchange
property of modules. By Goodearl–Warûeld [4] or Nicholson [8], a ring R is an ex-
change ring if and only if for each a ∈ R there exists e2 = e ∈ R such that e ∈ aR and
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1 − e ∈ (1 − a)R. Every semiprimitive exchange ring is an I-ring (i.e., every nonzero
right ideal contains a nonzero idempotent), and the class of exchange rings is closed
under homomorphic images.

Lemma 3.2 Let R be an exchange ring with primitive factors Artinian. _e following
are equivalent:
(i) R satisûes (∗);
(ii) R satisûes the 2-sum property;
(iii) R has no homomorphic images isomorphic to Z2.

Proof (i)⇒(ii)⇒(iii) _ese are clear.
(iii)⇒(i) For convenience, for a ∈ R and b ∈ U(R) we say that a, b satisfy (∗) if

there exist units u, v such that a + b − u, a + v , b − u − v ∈ U(R); otherwise, we say
that a, b do not satisfy (∗).
Assume on the contrary that R does not satisfy (∗). _en there exist x ∈ R and

y ∈ U(R) such that x , y do not satisfy (∗). _us,

F = { I◁ R ∶ x , y ∈ R/I do not satisfy (∗)}

is not empty. For a chain {Iλ} of elements of F, let I = ∪λIλ . _en I is an ideal of R.
Assume that x , y ∈ R/I satisfy (∗). _en there exist units u, v in R/I such that

a + b − u, a + v , b − u − v ∈ U(R/I).

_us, by Lemma 3.1, u, v and a + b − u, a + v , b − u − v all are units in R/Iλ for
some λ. So x , y ∈ R/Iα satisfy (∗). _is contradiction shows that I ∈ F. So F is an
inductive set. By Zorn’s Lemma, F has amaximal element, say I. Because every unit
of (R/I)/J(R/I) is li�ed to a unit of R/I, themaximality of I implies that J(R/I) = 0.

We next show that R/I is an indecomposable ring. In fact, if R/I is a decomposable
ring, then there exist ideals I1 , I2 of R such that I ⫋ I i ⫋ R (i = 1, 2) and

R/I ≅ R/I1 ⊕ R/I2 via r + I z→ (r + I1 , r + I2).

By themaximality of I, x , y ∈ R/I i satisfy (∗) for i = 1, 2. So, there exist u+ I1 , v+ I1 ∈
U(R/I1) and u′ + I2 , v′ + I2 ∈ U(R/I2) such that

(x + I1) + (y + I1) − (u + I1),
(x + I1) + (v + I1),
(y + I1) − (u + I1) − (v + I1)

are units of R/I1, and

(x + I2) + (y + I2) − (u′ + I2),
(x + I2) + (v′ + I2),
(y + I2) − (u′ + I2) − (v′ + I2)
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are units of R/I2. _us,

(u + I1 , u′ + I2),
(v + I1 , v′ + I2),
(x + I1 , x + I2) + (y + I1 , y + I2) − (u + I1 , u′ + I2),
(x + I1 , x + I2) + (v + I1 , v′ + I2),
(y + I1 , y + I2) − (u + I1 , u′ + I2) − (v + I1 , v′ + I2)

all are units of R/I1⊕R/I2. _is shows that (x+ I1 , x+ I2), (y+ I1 , y+ I2) ∈ R/I1⊕R/I2
satisfy (∗). Hence, because of the ring isomorphism above, x , y ∈ R/I satisfy (∗). _is
contradiction shows that R/I is indecomposable.

_us, R/I is a semiprimitive indecomposable ring that is an exchange ring with
primitive factors Artinian. Now by Menal [7, Lemma 1], R/I is a simple Artinian
ring. Because R has no homomorphic images isomorphic to Z2, R/I /≅ Z2. Hence, by
Zelinsky [12,_eorem], R/I satisûes the 2-sum property. Hence, R/I satisûes (∗) by
Lemma 2.12, contradicting that I ∈ F.

A ring is a clean ring if each of its elements is a sum of an idempotent and a unit.
It is well known that every clean ring is an exchange ring.

Corollary 3.3 If R is a clean ring with primitive factors Artinian, and if 2 ∈ U(R),
then every unit-additivemap of R is additive.

Proof If a ∈ R and 1
2 (1+ a) = e +u, e2 = e, and u ∈ U(R), then a = (2e − 1)+2u is a

sumof two units (in fact 2e−1 is an involution). So, by Lemma 3.2, every unit-additive
map of R is additive.

_eorem 3.4 Let R be a ring such that R/J(R) is a direct product of exchange rings
with primitive factors Artinian. _e following are equivalent:
(i) every unit-additivemap of R is additive;
(ii) R has no image isomorphic to Z2, or R/J(R) ≅ Z2 with 2 = 0 in R.

Proof (i)⇒(ii) _is is by _eorem 2.8.
(ii)⇒(i) First, by_eorem 2.8, we can assume that R has no homomorphic images

isomorphic to Z2. Second, by Lemma 2.10, it suõces to show that R satisûes (∗).
So, by Lemma 2.11(i), we can assume that J(R) = 0, and hence R is a direct product
of exchange rings with primitive factors Artinian. _us, by Lemma 2.11(ii), we can
further assume that R is an exchange ring with primitive factors Artinian. As R has
no homomorphic images isomorphic to Z2, R satisûes (∗) by Lemma 3.2.

Corollary 3.5 Let R be an exchange ring with primitive factors Artinian. _e follow-
ing are equivalent:
(i) every unit-additivemap of R is additive;
(ii) R has no image isomorphic to Z2, or R/J(R) ≅ Z2 with 2 = 0 in R.
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Corollary 3.6 Let R be a ring such that R/J(R) is a direct product of simple Artinian
rings. _e following are equivalent:
(i) every unit-additivemap of R is additive;
(ii) R has no image isomorphic to Z2, or R/J(R) ≅ Z2 with 2 = 0 in R.

A ring R is called right self-injective if every R-homomorphism from a right ideal
of R into R can be extended to an R-homomorphism from R to R. A ring R is called
strongly π-regular if, for each a ∈ R, an ∈ Ran+1 ∩ an+1R for some positive integer
n. Every one-sided perfect ring (in particular, one-sided Artinian ring) is strongly π-
regular. A von Neumann regular ring in which every idempotent is central is called a
strongly regular ring.

Corollary 3.7 Let R be a ring such that R/J(R) is right self-injective strongly π-
regular. _e following are equivalent:
(i) every unit-additivemap of R is additive;
(ii) R has no image isomorphic to Z2, or R/J(R) ≅ Z2 with 2 = 0 in R.

Proof (i)⇒(ii) _is follows from _eorem 2.8.
(ii)⇒(i) By [5,_eorem], R is a ûnite direct product ofmatrix rings over strongly

regular rings. So the equivalences follow from _eorem 3.4.

We recall some notions from [3, pp. 111–115]. A ring R is called directly ûnite if
ab = 1 in R implies ba = 1 for all a, b ∈ R. An idempotent e in a regular ring R is
called an abelian idempotent if the ring eRe is abelian. An idempotent e in a regular
right self-injective ring is called a faithful idempotent if 0 is the only central idempotent
orthogonal to e. A regular right self-injective ring is of Type I f if it is directly ûnite
and it contains a faithful abelian idempotent.

Corollary 3.8 Let R be a ring such that R/J(R) is a regular right self-injective ring of
Type I f . _e following are equivalent:
(i) every unit-additivemap of R is additive;
(ii) R has no image isomorphic to Z2, or R/J(R) ≅ Z2 with 2 = 0 in R.

Proof By [3, _eorem 10.24], R is a direct product of matrix rings over strongly
regular rings. So the equivalences follow from _eorem 3.4.

Corollary 3.8motivates the following question, which we have been unable to an-
swer.

Question 3.9 Does Corollary 3.8 still hold for a right self-injective ring R?

4 Applications

Here, we consider a notion related to a unit-additivemap.

Deûnition 4.1 Amap f ∶R → R is calledunit-homomorphic if f (u+v) = f (u)+ f (v)
and f (uv) = f (u) f (v) for all u, v ∈ U(R).
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_e question concerned is: for which rings R is every unit-homomorphicmap of
R an endomorphism?

Example 4.2 Let R = Z2 ⊕Z2, e = (1, 0) and e′ = (0, 1).
Deûne f ∶R → R by f (1) = e and f (a) = 0 for 1 /= a ∈ R. _en f is unit-

homomorphic. Moreover, f preserves multiplication. Because f (1 + e) = 0 /= e =
f (1) + f (e), f is not additive.
Deûne g∶R → R by g(0) = 0, g(1) = e, g(e) = 1, g(e′) = e′. _en g is unit-

homomorphic. Moreover, g preserves addition. Because g(ee′) = g(0) = 0 /= e′ =
g(e)g(e′), g does not preservemultiplication.

_eorem 4.3 Suppose that Z2 is a homomorphic image of R. _en every unit-ho-
momorphic map of R is an endomorphism if and only if R/J(R) ≅ Z2 with 2 = 0 in
R.

Proof (⇐) Let f ∶R → R be a unit-homomorphicmap. _en f is additive by _eo-
rem 2.8. It remains to show that f (ab) = f (a) f (b) for a, b ∈ R.
As R/J(R) ≅ Z2, R = J(R)∪ (1+ J(R)). If a, b ∈ 1+ J(R), then f (ab) = f (a) f (b)

as f is unit-homomorphic. If a, b ∈ J(R), then

f (ab) = f ((1 + (1 + a))(1 + (1 + b))) = f ( 1 + (1 + a) + (1 + b) + (1 + a)(1 + b))
= f (1) + f (1 + a) + f (1 + b) + f ((1 + a)(1 + b))
= f (1) f (1) + f (1 + a) f (1) + f (1) f (1 + b) + f (1 + a) f (1 + b)
= [ f (1) + f (1 + a)][ f (1) + f (1 + b)] = f (a) f (b).

If one of a, b is in J(R) and the other is in 1 + J(R), say a ∈ J(R) and b ∈ 1 + J(R),
then

f (ab) = f ((1 + (1 + a))b) = f (b + (1 + a)b)
= f (b) + f ((1 + a)b) = f (1) f (b) + f (1 + a) f (b)
= [ f (1) + f (1 + a)] f (b) = f (a) f (b).

(⇒) Assume that R/I ≅ Z2 for an ideal I of R. _en J(R) ⊆ I, and U(R) ⊆ 1+ I as
R = I∪(1+ I). If I = 0, then R = Z2, sowe are done. Hence, we can assume that I /= 0.
Assume on the contrary that J(R) ⫋ I. _en U(R) ⫋ 1 + I. Deûne f ∶R → R by

f (x) = 2 for x ∈ I, f (1 + x) = 1 for x ∈ I with 1 + x ∈ U(R), and f (1 + x) = 2 for x ∈ I
with 1 + x ∉ U(R). _en for u, v ∈ U(R), u = 1 + x and v = 1 + y where x , y ∈ I, so we
have

f (u + v) = f (2 + x + y) = 2 = 1 + 1 = f (1 + x) + f (1 + y) = f (u) + f (v),
f (uv) = f (1 + x + y + xy) = 1 = f (1 + x) f (1 + y) = f (u) f (v).

_at is, f is a unit-homomorphic map of R. As U(R) ⫋ 1 + I, there exists z ∈ I such
that 1 + z ∉ U(R). _us, f (1 + z) = 2 /= 1 + 2 = f (1) + f (z), so f is not additive.
_is contradiction shows that I = J(R). It remains to show that 2 = 0 in R. Note
R = J(R) ∪ (1 + J(R)). Deûne f ∶R → R by f (x) = 2 and f (1 + x) = 1 for x ∈ J(R).

https://doi.org/10.4153/CMB-2017-019-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-019-3


140 T. Koşan, S. Sahinkaya, and Y. Zhou

_en for u, v ∈ J(R), u = 1 + x and v = 1 + y where x , y ∈ J(R), so
f (u + v) = f (2 + x + y) = 2 = 1 + 1 = f (u) + f (v),
f (uv) = f (1 + x + y + xy) = 1 = f (u) f (v).

Hence, f is a unit-homomorphicmap of R, so is an endomorphism. _us,

1 = f (1) = f (1 + 0) = f (1) + f (0) = 1 + 2,

so 2 = 0 follows.

_eorem 4.4 Let R be a ring such that R/J(R) is a direct product of exchange rings
with primitive factors Artinian. _en every unit-homomorphic map of R is an endo-
morphism if and only if either R has no homomorphic images isomorphic to Z2 or
R/J(R) ≅ Z2 with 2 = 0 in R.

Proof (⇒) _is follows from _eorem 4.3.
(⇐)Let f ∶R → R be a unit-homomorphicmap. _en f is additive by_eorem 3.4.

It remains to show that f (ab) = f (a) f (b) for a, b ∈ R.
By_eorem4.3,we can assume that R has no image isomorphic toZ2. Let R/J(R)

be the direct product of rings {Rα},where each Rα is an exchange ringwith primitive
factors Artinian. _en each Rα has no homomorphic images isomorphic to Z2, and
hence it satisûes the 2-sumproperty by Lemma 3.2. It follows that R/J(R), and hence
R satisûes the 2-sum property. Write a = u + v and b = w + t where u, v ,w , t ∈ U(R).
_en

f (ab) = f (uw + ut + vw + v t) = f (uw) + f (ut) + f (vw) + f (v t)
= f (u) f (w) + f (u) f (t) + f (v) f (w) + f (v) f (t)
= f (u)[ f (w) + f (t)] + f (v)[ f (w) + f (t)]
= [ f (u) + f (v)][ f (w) + f (t)] = f (a) f (b).

Corollary 4.5 If R is a ring such that R/J(R) is a direct product of exchange rings
with primitive factors Artinian, then every unit-homomorphicmap ofMn(R) is an en-
domorphism for all n ≥ 2.

Proof Write R/J(R) = ∏Rα , where each Rα is an exchange ring with primitive
factors Artinian, and let S = Mn(R). _en S/J(S) ≅ Mn(R/J(R)) ≅ ∏Mn(Rα),
where each Mn(Rα) is an exchange ring with primitive factors Artinian. As S has
no homomorphic images isomorphic to Z2, every unit-homomorphicmap of S is an
endomorphism by _eorem 4.4.

Corollary 4.6 If R is an exchange ring with primitive factors Artinian or a semilocal
ring, then every unit-homomorphicmap ofMn(R) is an endomorphism for all n ≥ 2.
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