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DERIVATIONS, LOCAL DERIVATIONS AND
ATOMIC BOOLEAN SUBSPACE LATTICES

PENGTONG LI AND JIPU MA

Let £ be an atomic Boolean subspace lattice on a Banach space X. In this paper,
we prove that if M is an ideal of Alg L then every derivation 8 from Alg C into M is
necessarily quasi-spatial, that is, there exists a densely defined closed linear operator
T : V(T) C X -» X with its domain V{T) invariant under every element of Alg£,
such that 8(A)x = (TA - AT)x for every A € Alg£ and every x € V(T). Also,
if M C B(X) is an Alg £-module then it is shown that every local derivation from
Alg£ into M is necessary a derivation. In particular, every local derivation from
Alg£ into B(X) is a derivation and every local derivation from Alg C into itself is a
quasi-spatial derivation.

1. INTRODUCTION

Let A be an (associative) algebra, M be an ,4-module, and 5 : A —> M be a linear
map. Recall that 6 is a derivation if 5(ab) = S(a)b + a6(b) holds for all a and b in A, and
that 5 is an inner derivation if there exists an element m in M. such that 5(a) = ma —am
holds for all a in A. Also, 6 is a local derivation (respectively, local inner derivation) if
for each a in A there is a derivation (respectively, inner derivation) 6a from A into M
depending on a, such that S(a) = Sa(a).

The concept of local derivations was first introduced by Kadison (see [6]) who proved
that if A is a von Neumann algebra and M is a dual ^-module, then all norm-continuous
local derivations from A into M are in fact derivations. In recent years, there has been a
growing interest in the study of local derivations of operator algebras (see [2, 3, 4, 5,11]).
If X is a Banach space, as usual, we use B(X) to denote the algebra of all bounded linear
operators on X. In [11], Larson and Sourour proved that all derivations and all local
inner derivations from B{X) into itself are inner derivations (hence, every local derivation
from B(X) into itself is a derivation). Jing in [3] generalised Larson—Sourour's results.
He proved that if A is a reflexive operator algebra on a Banach space X such that both
0+ ^ 0 and X_ ^ X in Lat.4, then every derivation 5 : A —t A is spatial, that is, there
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exists a T € B(X) such that 6(A) = TA — AT for all A € A, and all norm-continuous local
inner derivations from A into A are inner derivations when X is additionally reflexive.
Moreover, in a recent paper (see [4]), he has shown that every local derivation from A
into itself is a derivation.

Let £ i and £2 be finite distributive subspace lattices on the Banach spaces Xx

and.X2, respectively. It was shown by Oreste Panaia in [13] that every rank-preserving
algebraic isomorphism <j> of Alg L\ onto Alg C2 is quasi-spatial, which means that there
exists a closed, densely defined, injective linear transformation T : V(T) C X\ —> X2 with
dense range, and with its domain V(T) invariant under every element of Alg£i, such that
(j>(A)Tx = TAx, for every x S V{T) and every A s Alg£i. Recently, Katavolos, Lambrou
and Longstaff proved that every algebraic isomorphism between Alg V\ and Alg V2 is also
quasi-spatial, where V\ and V2 are two pentagon subspace lattices on Banach spaces (see
[7]). In addition, we know from [7, 13] that the notion of quasi-spatiality of algebraic
isomorphisms of operator algebras was introduced by Lambrou in [9], where it is proved
that the algebraic isomorphisms from Alg£j onto Alg £2 are quasi-spatial for any pair
C\, £2 of atomic Boolean subspace lattices on Banach spaces, but we can not find this
reference

Here, motivated by the results mentioned above, we consider the derivations and
the local derivations of the reflexive operator algebras on Banach spaces with atomic
Boolean invariant subspace lattices. For the statements of our results we give the following
definition concerning quasi-spatiality of derivations of operator algebras, which seems to
be known.

DEFINITION 1.1: Let X be a Banach space, A C B(X) be a subalgebra, and M
C B{X) be an ,4-module. A derivation 8 ; A -* M is called quasi-spatial if there exists
a densely defined closed linear operator T : V(T) C X —> X with its domain V(T)
invariant under every element of A, such that S(A)x = (TA — AT)x holds for every
A e A and every x £ V(T).

Let £ be an atomic Boolean subspace lattices on a Banach space X. We shall show
that if M is an ideal of Alg £ then every derivation 5 from Alg £ into M is necessarily
quasi-spatial. Also, if M C B(X) is an Alg £-module then it is shown that every local
derivation from Alg £ into M is necessary a derivation. In particular, every local deriva-
tion from Alg £ into B(X) is a derivation and every local derivation from Alg £ into itself
is a quasi-spatial derivation.

2. NOTATION AND PRELIMINARIES

Throughout X will denote a fixed real or complex Banach space, with topological
dual X*. The terms operator acting on X and subspace of X will mean bounded linear
map of X into itself and norm-closed linear manifold of X, respectively. For T 6 B{X),
denote by T* the adjoint of T, by G(T) the graph of T, that is G(T) = {(x, Tx) : x € X},
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and by / the identity operator on X. For x £ X and /* € X", the operator x ® /* is
defined by y \-+ f*{y)x for y £ X. This operator has rank one if and only if both x
and /* are nonzero. Note that the adjoint of x ® /* is the operator /* ® x which is
given by g* M- g*(x)f* for g* £ X*, where x is the image of x under the canonical
map of X into X** (the second dual of X). For any non-empty subset L C X, LL

denotes its annihilator, that is, LL = {/* € X* : f*(x) — 0 for all x £ L,}; and dually,
for any non-empty subset F C X*, F± denotes its pre-annihilator, that is, F± = {a;
£ X : f*{x) = 0 for all /* £ F}. For every family { L 7 } 7 e r of subspaces of X, we have

( V i 7 ) = H £7 a n d V £7" Q ( p | L 7 ) ; indeed, it is easy to verify that ( f) L 7 )

is the weak star closure of V L^. Here 'V' and 'n1 denote 'norm-closed linear span' and

'set theoretic intersection'.

If £ is a family of subspaces of X, we say that £ is a subspace lattice on X if it
contains (0) and X, and is closed under the operations V and n, that is, for any family
{L7}7 €r of elements of £ , V L7 £ £ and f| L1 £ £ . For any family T of subspaces

7€r 7 e r
of X, let Alg^" denote the algebra of all operators on X which leave every subspace in
T invariant. Dually, for any family A of operators on X, let Lat.4 denote the set of all
subspaces of X which are invariant under every operator in A. It is clear that Alg T is
a unital weakly closed operator algebra and Lat.4. is a subspace lattice. We say that a
subspace lattice C is reflexive if C = LatAlg£, and an operator algebra A is reflexive if
A = AlgLatA

A subspace lattice £ is called complemented if for every L £ £ there is an element
V £ £, a lattice complement of L, such that L V U = X and L n L' — (0), and
distributive if the identity L f l ( M v J V ) = ( L n M ) v ( t n J V ) and its dual hold for
all L,M,N € £. A nonzero complemented and distributive subspace lattice is called
a Boolean subspace lattice. An nonzero element K in a subspace lattice £ is called an
atom if, whenever L £ £ such that (0) C L C if, then either L = (0) or L — K. A
subspace lattice £ is called atomic if each element of £ is the closed linear span of the
atoms it contains. It is well known that an atomic Boolean subspace lattice is completely
distributive (see [8, 12]). From [12] we know that a subspace lattice is completely
distributive if and only if it is strongly reflexive. For the standard definition concerning
completely distributive subspace lattices and the alternative characterisations see [8, 12].
From these two references we can find the following lemma which is crucial to this paper.

LEMMA 2 . 1 . If £ is a subspace lattice on X, then the rank one operator x ®
/* € Alg£ if and only if there exists a L £ £ such that x £ L, and f* £ Lf, where
L_ = \J{M £ C:M 2L) and Li means (L_)x .

In the above lemma, if £ is an atomic Boolean subspace lattice, then the subspace L
can be taken to be an atom of £ since a nonzero if 6 £ is an atom if and only if K. ^ X
(see [12]), in which case L_ is the same as 11 (see [12]), the (unique) lattice complement
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of L. It is worth noting that the equations (0)+ = (0) and X- = X are always true in

an atomic Boolean subspace lattice £, so the associated reflexive algebra Alg£ is not in

the class of reflexive algebras introduced in [3, 4]. Here (0)+ = f\{L £ £ : L ^ (0)}.

Finally, for an atomic Boolean subspace lattice C on X, CA will denote the set

of atoms of £, C\ the set {K± : K G CA) and Hc the set of rank one operators in

Alg£ . Also, let (CA) and (CA) be the (not necessarily closed) linear span of CA and C^,

respectively.

3. QUASI-SPATIALITY OF DERIVATIONS

Throughout this section, £ will be an atomic Boolean subspace lattice on the Banach
space X, M be an ideal of Alg£, and 6 : Alg£ —> M be a derivation. The main result
of this section shows that 5 is quasi-spatial.

LEMMA 3 . 1 . For every K € CA, there exist two linear maps TR- : K —> K and
SK : iff -> K±, such that

(i) S(A)x = (TKA-ATK)x, for A e Alg £ and x e K;

(ii) S(A)*f = (SKA* - A'SK)f*, for AeAlgC and / • e K±;

(iii) 5{x ® /*) = TKx ®f*+x® SK}*, for x e K and f* € K±.

PROOF: Since K D K- = (0), we can choose fixed nonzero elements xK 6 K,
fk G Ki with f'K{xK) = 1.

(i) By Lemma 2.1, x ® j*K € Alg£ for any x 6 K. Then define a map TK by

Clearly, TK is linear. Since M is an ideal of Alg £ and xK £ K, we have TKK C K. For
>4 € Alg£ and x e K, then Ax € K and

6(Ax ® /^) = <5(>l • x ® /^) = S(A) -x®rK + A-6{x® f'K).

By letting the two sides of the above equation act on XK, we obtain 6(A)x = (TRA
- ATK)x.

(ii) The proof is a dual version of (i). For all /* 6 K± we have xK <g> / ' e Alg £.
Define a linear map SK by

That 5 K ^ f C K± follows from the fact that A*K± C iTf holds for all /I € Alg£. For
A e Alg £ and /* 6 A"f, we have 6(xK ® ^4'/*) = <*(a* ® /* • A) = S(xK ® / • ) / ! + a;* ®
/* • 8{A). Taking the adjoint for each operator in this equation, then

6(xK <s> A*ry = A*6(XK ® r y
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By applying the above equation to f*K, we obtain 8(A)*f* = {SKA* — A*SK)f*-

(iii) For x € K and /* € K±, we have by the definitions of TK and SK

6(x ® / ') = 5{x ®fK-xK® /*)

= <5(z ® /*) • a* ® /* + * ® / £ • 6(xK <g> /*)

= <S(z ® /£ )a* ® /* + x ® <5(xK ® /* )* /*

= 7 * 1 ® / ' +a; « £ * / • .

This completes the proof. D

For the remainder of this section, for any given K e CA,TK and SK will denote the
linear maps as constructed in Lemma 3.1. Obviously, they depend on the choices made
for XK and f^, so it will be assumed that those choices have been made for each K £ CA.

Suppose that K\,--- ,Kn are distinct atoms of £, and xt £ Kiy f* G Kj-_ for
n n

i — 1, • • • ,n. Then, from ^Xi = 0 and Yl fi = 0 w e c a n obtain every Xi and every
»=i t=i

n

/ / is zero, respectively. For example, let 5 3 / / = 0. For any ff, we have by complete

distributivity and De Morgans' laws (see [1, p. 5])

n Kj))y = ((o)')± = ̂  = (0),

n

and so /{* = 0, as desired. Thus every x 6 (CA) has a representation as follows: x = J2 xi
with x,; € Kiy 1 ^ i ^ n, where ifi, • • • , if,, are distinct atoms of £. If a; is nonzero and
each Xi is required to be nonzero, this representation is unique up to permutations of the
atoms. Similar statements can apply to the elements of {C\). Therefore, the linear maps
7o and So in the following definition are well-defined.

DEFINITION 3.1: Define To : (CA) -> (CA) by Tox = Y.TK^U where x = Y2xt
t= l i= l

with Xi e K{, 1 ^ i ^ m, and K\,--- ,Km being distinct atoms of £; and define

So : <£i) -»• (£ i ) by 5 0 / ' = E 5^ . / / , where /* = E / / with / / € Lj-_, 1 ^ i < n, and
j=i j=i

Li, • • • , Ln being distinct atoms of £.

LEMMA 3 . 2 . For A € Alg£ and z € (£/i), we iave 6{A)x = (T0A - AT0)x.

PROOF: It is a routine computation by the definition of To and Lemma 3.1 (i). D

LEMMA 3 . 3 . ForxC (CA) and f* e (£i>, we Aave f*(Tox) + (Sof*){x) = 0.
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P R O O F : We first prove that f(Tox) + (Sof*)(x) = 0 holds for x G K and /* £ Ki,

where K G CA is arbitrary. For, assume that x and /* are both nonzero. By Lemma 3.1
(iii) we have

6((x ® /*)2) = f'(x)S(x ® / ' ) - f'(x)Tox <g> r + f'(x)x ® 50/*;

on the other hand,

S({x ® /* )2) = <J(x ® /*) • i ® r + * ® I' • 6(x ® /*)

= f*(x)Tox ® /* + (So/*) (a:)* ® /* + /•(To*)* ® /* + / '(a;)* ® Sof.

Hence /*(Tox) + (So/*) (a) = 0.
For the general case, combine what has just been shown with the fact that if x G K

and /* G Li, where K, L are distinct atoms of £, then f'(TKx) = 0 and (SLf*)(x) = 0
since K C L_. A direct computation gives the required result, and we are done. D

LEMMA 3 . 4 . There exists a linear mapT : V(T) CX^X which is the extension
of To, such that the norm-closure G{To) of the graph of To is the graph G(T) ofT and
V(T) = X.

P R O O F : TO define T we let V = {x € X : (x, y) € G{T0), for some y £ X). Then
V is obviously a linear manifold. Since L is an atomic Boolean subspace lattice, (£,4) is
dense in X. Hence, since (CA) C T>, V is dense in X.

For any x € V, we shall show that there exists a unique y € X, such that (x,y)
E G(T0). For, assume that (x,yi), (x,y2) G G(T0) with yu y2 € X. We then have (0, j/i
— y2) 6 G(T0). Thus, there is a sequence {xn}f of elements of (£,4), such that xn —¥ 0
and Toxn -> yx - y2. For any /* 6 (C\), it follows that /*(Toa;n) -> /*(j/i - t/2). On
the other hand, from Lemma 3.3 we have f*(Toxn) + (Sof*)(xn) — 0 for all n. Thus
f*(Toxn) -»• 0 since (50/*)(a;n) ->• 0, and so f{yl - y2) = 0. Thus yi = y2 once the fact
that (£^) is weak star dense in X* is proved to be true. Indeed, from [8, 12] we know
that

(0) = f]{K_ :Ke£a,ndK^ (0)}

= f>|{A'_ :KeC,K^ (0)andAT_ ^ X)

= f){K- : K G £ an atom}.

As remarked in the first paragraph of Section 2, the annihilator of the last expression

above is the weak star closure of (£^), as desired.

Up till this point we can define a map T : V(T) C X —> X in an obvious way, such

that G(T) = G(T0), where V(T) = V. Clearly, T is linear and extends To. The proof is

complete. D

Now we are in a position to prove the main result of this section.
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THEOREM 3 . 1 . Let £ be an atomic Boolean subspace lattice on X, and M be an

ideal of A l g £ . Then every derivation 8 from A l g £ into M is necessarily quasi-spatial.

P R O O F : Let T be as in Lemma 3.4. Obviously, T is closed and densely defined.

It remains to show that V(T) is invariant under every element of A l g £ and 5(A)x

= (TA - AT)x, for every AeAlgC and every x € X>(T).

Let A e A l g £ and x € V(T). Then (x,Tx) € G(T0) by Lemma 3.4. Thus there

exists a sequence {xn}i° of elements of (CA), such tha t xn —> x and T(,xn —¥ Tx. More-

over, we have that Axn —»• Ax, AToxn -» ATx and 8{A)xn —> S(A)x. From Lemma 3.2

it follows that 6(A)xn = (T0A - ATQ)xn for every n, and so TQAxn -> <5(̂ 4)a; + y lTi . We

therefore obtain tha t (Ar n ,T 0 AE n ) -> (Ar, <5(A)a; + 4Ta;). Since (Arn ,T0Az;n) G G(T0),

(,4x, <J(>l)a; + ATx) G G(T) . Hence An G X>(T) which means vlX>(T) C V(T), and

T^4a; = 8{A)x + ATx, tha t is S(A)x = ( T ^ - i4T)a;. This completes the proof. D

R E M A R K 3 . 1 . In this section, the condition tha t M is an ideal of A l g £ is mainly used

to guarantee the validity of Lemma 3.3. In addition, M may be equal to Alg L.

R E M A R K 3.2. Note that T (as in Lemma 3.4) need not be injective and have dense

range. For example, if 5 : Alg £ —¥ M is the zero map, then V(T) = X and T = 0.

4. L O C A L DERIVATIONS A R E DERIVATIONS

In this section, the letter £ still denotes an atomic Boolean subspace lattice on the

Banach space X. But, M C B(X) denotes an Alg£-module, and 8 a local derivation

from A l g £ into Ai. The purpose of this section is to prove that 8 is in fact a derivation.

Our proof follows by a modification of the arguments of Theorem 3.3 in [4]. Since, as

remarked in Section 2, reflexive algebras with atomic Boolean invariant subspace lattices

are strictly different from those reflexive algebras considered in [4], the proof is included

here.

Let us begin with some lemmas. The first can be found in [4] which is the key to

our results.

LEMMA 4 . 1 . Let 8 be a local derivation from a Banach algebra A into an A-

module U. Then 8{PAQ) = 8{PA)Q + P8(AQ) - P8(A)Q holds for every A e A and

every pair P, Q of idempotents in A.

LEMMA 4 . 2 . For all Rx, R2 in Uc and all A in Alg£, we have

{*) 8(R1AR2) = 8(RlA)R2 + R1S{AR2)-RlS{A)R2.

PROOF: By Lemma 2.1, write Rx = x®f* with x € K, f € K±, and R2 —y®g*

with y € L, g* S Lf, where K and L are two atoms of £. It suffices to give the proof for

the following three cases.

(1) Suppose f'(x) # 0 and g'(y) ± 0. Let R[ = RJf*(x) and 1% = R2/g'(y).
Then both R[ and R^ are rank one idempotents, and hence we have
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= 6{R\A)R!2 + R'^iAR^) - R\5(A)R2 by Lemma 4.1. It follows from the linearity of
5 that the equation (*) holds.

(2) Suppose that precisely one of f*{x) and g*{y) is zero. Without loss of general-
ity, assume that f*(x) = 0 and g*(y) ^ 0. Since K C\ K_ = (0), x £ K-. So there exists
a ft E K± such that ft(x) ^ 0. Then x ® ft, x ® (/* + ft) € Tic- Thus we have by (1)

6(RlAR2) = 6(x ® (/* + ft) • A • y ® g') -8(x®f[-A-y® g")

= 6(x ® (/* + / ; ) • A) • y ® g* + x ® (/ ' + ft) -5{A-y®g')

-x ® (/* + ft) • 5{A) •y®g*-5(x®ft-A)-y®g*

-x ® ft -5(A-y®g*) + x® ft • 8{A) -y®g*

= 6(x®f*-A)-y®g* + x®f*-6(A-y®g*)-x®f*- 6(A) • y ® g*

= 6{R1A)R2 + RX6{AR2) - R16(A)R2,

as desired.

(3) Suppose that both f*(x) and g*(y) are zero. Since K n K- = L D L_ = (0),
x <£ K- and y £ L_. Then there exist /* € i f f and g\ € Lf such that ft(x) ^ 0 and
g{{y) ± 0. Thus x ® ft, x®(f* + ft), y <8> g[ and y ® (g* + gfi € Kc. Clearly,

By using (1) and (2), a routine computation similar to that which appeared in (2) implies
the validity of the equation (*). This concludes the proof. D

COROLLARY 4 . 1 . For all Ri and R2 in nc, we have S(RiR2) = 5(Rr)R2

+ RiS(R2).

PROOF: Since 6 is a local derivation, 6(1) = 0. Taking A = / in the equation (*),
the desired result immediately follows and the proof is complete. D

LEMMA 4 . 3 : ([10, Lemma 2.3].) Let A € B(X). Then

(i) if RA = 0 for every Relic then A = 0;

(ii) if AR = 0 for every Re1ZL then A = 0.

LEMMA 4 . 4 . For every R G Uc and every A € Alg£, we have 6{AR) = 6(A)R
+ AS(R).

PROOF: Let i?i 6 Hc be arbitrary. By Lemma 4.2 we have

!AR) = 6(RxA)R + RX6(AR) - R16(A)R.

On the other hand, noting that R\A e 1ic if it is nonzero, then by Corollary 4.1

6{RiAR) = SiRxAjR +

Equating these two equations we obtain Ri5(AR) — Ri6(A)R + RiAS(R). It follows from
Lemma 4.3 (i) that S(AR) = 6(A)R + AS(R). This completes the proof. D
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It is the time to prove the main result of this section.

THEOREM 4 . 1 . Let C be an atomic Boolean subspace lattice on X, and M

C B(X) be an Alg C-module. Then every local derivation 5 from Alg£ into M is neces-

sary a derivation.

PROOF: Let A, B e Alg£ be arbitrary. For any R € IZc, we have by Lemma 4.4

5{AB)R + AB6{R) = 5{ABR) = 6{A • BR)

= 8(A)BR + AS(BR)

= S(A)BR + AS(B)R + AB5(R).

Therefore S(AB)R = S(A)BR + A6(B)R. It follows from Lemma 4.3 (ii) that 6{AB)
= 6(A)B + A6(B). This shows that 6 is in fact a derivation, and the proof is complete. D

In Theorem 4.1 letting M = B(X), then

COROLLARY 4 . 2 . Let C be an atomic Boolean subspace lattice on X. Then every

local derivation from Alg£ into B(X) is a derivation.

From Theorem 3.1 and Theorem 4.1 we can obtain

COROLLARY 4 . 3 . Let C be an atomic Boolean subspace lattice on X and M
be an ideal of Alg C. Then every local derivation from AlgC into M is a quasi-spatial
derivation.

In particular, we have

COROLLARY " 4 . 4 . Let C be an atomic Boolean subspace lattice on X. Then every
local derivation from Alg£ into itself is a quasi-spatial derivation.
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