Canad. Math. Bull. Vol. 58 (4), 2015 pp. 858-868
http://dx.doi.org/10.4153/CMB-2015-044-3
© Canadian Mathematical Society 2015

Ternary Quadratic Forms and Eta Quotients
Kenneth S. Williams

Abstract. Let 7(z) (z € C,Im(z) > 0) denote the Dedekind eta function. We use a recent product-
to-sum formula in conjunction with conditions for the non-representability of integers by certain
ternary quadratic forms to give explicitly ten eta quotients

f(z) = r]“("’l)(mlz) ---n“(m’)(m,z) = Z c(n)ez’””z, zeC, Im(z) >0,

n=1
such that the Fourier coefficients ¢(#n) vanish for all positive integers 7 in each of infinitely many
non-overlapping arithmetic progressions. For example, we show thatif f(z) = *(2)n° (4z)n7%(82)
we have c(n) = 0 for all n in each of the arithmetic progressions {16k + 14} 50, {64k + 56 } k>0,
{256k + 224} 50, {1024k + 896} 450, - - - -

1 Introduction

Let N denote the set of positive integers and Ny = Nu {0}. Let H denote the Poincaré
upper half-plane {z € C | Im(z) > 0}. The Dedekind eta function is defined by

’7(2) - eﬂiz/lz 1°—°[ (1 _ eZninZ)) z e M.
n=1

An eta quotient f(z) is a holomorphic function of the form
f(z) = ﬂa(m‘)(mlz)~--11“(m’)(m,z), zeH,

wherer € N, my, ..., m, € Nsatisfym; < --- < m,,and a(my), ..., a(m,) are nonzero
integers. We suppose that

ma(my) + -+ mea(m,) =24

so that the eta quotient f(z) has a Fourier expansion of the form
f(2)= T e(n)e?™, (1) =1,
n=1

where the Fourier coefficients c(#n) are integers. We adopt the notation

[f(2)]n:=c(n), neN.
Many questions concerning the vanishing or non-vanishing of the Fourier coeflicients
of eta quotients have been addressed; see, for example, [2], [3, p. 133], [4], [5], and [6].
In this note we are interested in determining explicit eta quotients f(z) such that
[f(2)]x = 0 for all n in infinitely many non-overlapping arithmetic progressions. We
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do this by using the author’s recent product-to-sum formula [7, Theorem 1.1, p. 80] to
express the Fourier coefficients [ f(z)], of certain eta quotients f(z) in the form

(L1) [f(2)]n = > P(x1,%3,x3), neN,

(xl,xz,x3)€Z3
Q(x1,%2,x3)=n

where P € Q[xy, x2,x3] and Q = x + ax3 + bx3 forsome a,b e Nwith1<a<b<4.
Classical results on the representability of n € N by the ternary quadratic form Q
[1, pp. 111-113] give infinitely many arithmetic progressions such that if n belongs to
any one of them, then 7 is not represented by Q, and so by (1.1), [ f(2)], = 0 for these
n. The 10 eta quotients constructed in this manner are given in Theorem 1.1(i)-(x).
Theorem 1.1 is proved in Section 2.

Theorem 1.1 For all e € Ny we have

©)  [1*(2)n(22)n*(32)n(42)n° (62)n* (82) > (122)]n = 0
forn=5-22¢*1 (mod 2%¢**),

() [#72(2)n8(22)n7%(42)n*(62) ], = 0 for n = 2-3%*! (mod 32°*2),

(i) [7?(22)n72(32)n8(62)n7%(122)], = 0 for n = 2-3%¢ (mod 32°*1),

(iv) [7?(22)n72(42) 1 (62)1°(82)n72(162)], = 0 for n = 5-3%°*1 (mod 2-3%¢*2),
) [n7232)n(42)n°(62)n72(122) ], = 0 for n = 8- 32¢*! (mod 4 -3%¢*2),

(i) [n72(32)n°(42) > (62)n~2(122) ], = 0 for n = 11-32°*! (mod 4 - 3%¢*?),

(vii) [#2(2)1 (22)1*(42)], = 0 for n = 7-2%¢ (mod 22°*3),

(viii) [1*(2)n°(42)n2(82)]s = 0 for n = 722" (mod 22¢**),
(ix) [n*(2)n*(22)n 2(32)n* (42)n°(62)n 2(122)], = 0
fOT’ n=2- 32e+1 (mod 32e+2),
) [n*(2)n* 22)n* (42)n°(82)n 2(162) ], = 0 for n = 7-2%¢ (mod 22¢*2).

2 Proof of Theorem 1.1
For k € Nand q € C with |g| < 1, we define

Ev=Ei(q) = T1(1-4"),

so that E = E;(g").

We begin with a lemma that enables us to eliminate some uninteresting cases that
arise in the proof of Theorem 1.1 as well as assisting in the formulation of some con-
jectures in Section 3.

Lemma 2.1 LetneN.

(i) Ifn=0,3 (mod 4), then [qE;E; E$], = 0.

(ii) Ifn=0,6 (mod8), then [qE;E2E; EZE;# ], = 0.
(il) Ifn=0,3 (mod 4), then [qE;*E3E%], = 0.

(iv) Ifn=2,3 (mod 4), then [qE;*ESEZE;], = 0.
(v) Ifn=3 (mod 4), then [qE{EZEZE3E;¢], = 0.
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860
Proof (i) By a classical theorem of Jacobi, we have
E2E;' =1+2 Y (-1)"gq™.
m=1

Thus for n € N, we have

1 ifn=1,
[EE)' . =42(-1)" ifn=m?>+1,meN,
0 ifn+m?+1,meN,.

K. S. Williams

Ifn=0,3 (mod 4), then we have n # m? +1(m € Ny) so that [gE?E5'], = 0. Hence,

[qELE;'ES], = 0ifn=0,3 (mod 4).
(ii) Replacing g by g* in Jacobi’s identity, we obtain

E2E;' =1+2 ¥ (-1)"g*™".
m=1

Multiplying the series for EZE;" and EZE;" together, we deduce

quzEZEZI — q +2 Z (_1)nqn2+l +2 Z (_1)nq2n2+1
n=1 n=1

+4 Z( Z (_1)€+m)qn'
n=1 ¢,m>1
2+2m%+1=n

Asn?+1=1,2,5 (mod 8),2n* +1=1,3 (mod 8) and ¢* +2m* +1=1,2,3,4,5,7

(mod 8), we have [qEE;E;'], =0 for n=0,6 (mod 8). Thus,
[qEfE2E; EZE; 2], = 0if n=0,6 (mod 8).

(iii) By another classical identity of Jacobi, we have
EPESE; =142 % ™.
m=1
Thus for n € N we have
1 ifn=1,
[qE{2E5E;* ), =42 ifn=m?+1,meN,
0

ifn+m?+1,meN,.

Ifn=0,3 (mod 4) then n # m? +1 (m € Ny) so [qE;2E5E;*], = 0. Thus,
[qE;*E>3E4]n = [qE 2E3E;* - ES], = 0if n = 0,3 (mod 4).

(iv) Mapping q to g° in the identity of Jacobi given in the proof of (iii), we have

EPEES =1+2 % @™

m=1
Hence for n € N, we have
1 ifn=1,
[qE;*EiE ]n =12 ifn=3m?>+1L,meN,
0 ifn#3m?+1,meN,.
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Ifn=2,3 (mod 4), then n # 3m? +1 (m € Ny) so [qE;*E2E;; ], = 0. Thus
[qE;*ESEZE; ], =0ifn=2,3 (mod 4).
(v) Ramanujan defined the theta function ¢ by

¢(q) = ij?m g" =1+ 22(1”2
and proved that
¢*(a) +¢*(-9) =2¢°(¢"), $(a)¢(-q) = ¢*(-4").

Hence,
PERCCR)

= ¢(q)¢(-q9)(¢*(q) + ¢*(-q)) - ¢(iq)$(-iq)($*(iq) + $*(—iq))
=20*(-9*)$*(q%) - 2¢*(°)$*(—4*) = 0.
Thus,

[6(0)¢" ()], =0 forn =2 (mod ).
Now ¢(q) = Ef2E5E;? and ¢(—q) = E}E5' so ¢(q)¢°(—q) = E{E5E;*. Hence,

[E{E5E;*], =0forn=2 (mod 4).

Then
[E{E3E3ESEiln = [E{ESE;” - E{EQEL( ] = [E{ E3E{*], = 0 for n =2 (mod 4),
and finally
[qE{ESEZESE; 2], = 0 for n =3 (mod 4).
This completes the proof of the lemma. ]

Taking q = e*™'* (z € H) so that |g| < 1, we have
ﬂ(kZ) _ enikz/lZEk _ qk/24Ek-

We now state the product-to-sum formula proved by the author in [7, Theorem 1.1, p.
80], which we will use in the proof of Theorem 1.1.

Product-to-Sum Formula  Let k € Ny and € € N. Let r,s,t,u € Ny be such that
r+s+t+u=k Letv,w,x,y € Ng besuchthatv+w+x+y=~¢ Setm=k+2s0
that m € N and m > 2. Let

r+v+w

P(xl" "’xm) H (x 2xg+s+€+y) [1 (x g+s+t+€+y)
g r+l =r+v+1
r+v+w+x 2 5 r+é
X I1 (xg _4xg+s+t+€+y+u) [ (x _3xgxg+y)
g=r+v+w+l g=r+v+w+x+1
and
2 2 2
Q(xl’ ceeo xm) i Xite+y + 2xr+€+y+1 toent 2xr+s+€+v+y
2 2 2
+ 3xr+s+€+v+y+1 Tt 3xr+s+t+€+v+w+y + 4xr+s+t+€+v+w+y+1 +oe+Ax,.
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Let
ay = —2r+2v+4y, ae¢ =5t + 3w,
a, =5r=2s+v+3w+2y, ag = —2s +5u +2v,
as = —2t, ap = —2t,
ag=-2r+5s-2u+v+6x+4y, ajg = —2U.

Then for n € N with n > €, we have

[q°El'E*ESEf B¢ EQEPERe] = 3 P(xi...rXm)
(X15eeesXm )EZ
Q(X15eeusXm)=n

and
ap+2a; +3az +4ay + 6a¢ + 8ag + 12a;, + 16a;¢ = 24¢.

Proof of Theorem 1.1 We use the special case of the product-to-sum formula when
k = € =1, so that m = 3 and Q is a positive diagonal ternary quadratic form all of
whose coefficients are 1, 2, 3, or 4 with at least one of the coefficients equal to 1. Let
r, s, tu, v, w,x, y € Ny satisfy

2.1 r+s+t+u=1 v+w+x+y=1
Define A e Nand B, C, D € Ny by
(2.2) A=r+y+1, B:i=s+v, C:=t+w, D:i=u+x,
so that
(2.3) A+B+C+D=3.
Then
1 r+v 2 2 r+v+w 2 2
P(x1,x2,%3) = 5 g:I;[H(xg - 2xg+s+y+1) g:rI:[Hl(xg - 3xg+s+t+y+1)
r+v+w+x r+1
2 2 4 2.2
X B [1 (xg - 4xg+s+t+y+u+1) B I1 (xg - 3xgxg+y
g=r+v+w+l g=r+v+w+x+1
and
A 2 A+B 2 A+B+C A+B+C+D 2
(2.4) Q(x1,x2,x3) =Y x;7+2 Y x;+3 Y xi+4 Y  xj.
i=1 i=A+1 i=A+B+1 i=A+B+C+1

Define the integers a;, a,, a3, a4, as, s, 12 and a;¢ as in the product-to-sum formula.
Then, as ¢ = 1, by the product-to-sum formula we have

a; + 2a, +3as +4a4 + 6ag + 8ag + 12a,, + 16a,6 = 24
and
a a a a a a a a
25 [n™(2)n™ (22)n" (32)n" (42)n" (62)n"* (82) 1" (122)n ™ (162) ] |
~[aE? BB BN ERER BB,

= Z P(xl,xz,x3)-

(xl,xz,m)eZ3
Q(x1,x2,x3)=n
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We next examine the 16 possible values of the vector (r,s,t,u,v,w,x,y) € N§
subject to the restrictions in (2.1). The ternary form Q corresponding to each such
vector is determined from (2.2), (2.3), and (2.4) and each eta quotient

" (2)n™ (22)n™ (3z)n™ (42)n" (62)n" (82)n™* (122)n™* (162)

from the formulae for a;, a3, as, as, de, as, a2, dig interms of 7, s, t, u, v, w, x, y given
in the product-to-sum formula. The values are given in Table 1.

It is known from the work of Dickson and Jones (see, for example, [1, pp. 111-112])
that the positive integers n for which Q(x1,x,%3) = n is not solvable in integers
X1, X2, and x5 are as given in Table 2, where k, £ € Ny. Appealing to (2.5), Table 1 and
Table 2, we obtain the following results.

Case 1 gives

(2.6) [116(22)11_1(4z)112(82)] ,=0

for n=7-2%*" (mod 2%¢**) for all e € Ny, but this is not interesting, as clearly (2.6)
holds for all n e Nwith n =0 (mod 2).
Case 2 gives

2.7) [7*(2)n7'(22)1°(42)] , = 0

for n = 7-2% (mod 2%**3) for all e € Ny, which is again not interesting, as by
Lemma 2.1(i) (2.7) holds for all n = 0,3 (mod 4).
Case 3 gives

[7*(2)n(22)n72 (32)n(42)n° (62)1” (82)n 2 (122)] = 0

for n = 5-22¢"! (mod 22¢™*) for all e € Ny, which is Theorem L1(i).
Case 4 gives

(2.8) [7*(2)n(22)n7" (42)n” (82)n*(162)] , = O

for n = 7-2%*1 (mod 22°**) for all e € Ny, but this is not interesting, as (2.8) holds
foralln=0,6 (mod 8) by Lemma 2.1(ii).
Case 5 gives

[172(2)n @2)n > (42)(62)] =0

for n = 2-32¢*! (mod 3%¢*2) for all e € Ny, which is Theorem L1(ii).
Case 6 gives

(2.9) [ n(22)7° (42)° (62)7*(82)] , = 0

for n =5-22*! (mod 22¢**) for all e € Ny, which is not interesting, as (2.9) holds for
alln =0 (mod 2).
Case 7 gives

[7*(22)n72(32)n° (62)7%(122)] = 0
for n = 2-3%¢ (mod 32¢*!) for all e € Ny, which is Theorem 1.1(iii).
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case | (r,s,t,u,v,w,x,y) | (a1,4az,as,aq,ds, ag, an, dig) | Q(x1,x2,%3)
1 | (1,0,0,0,1,0,0,0) (0,6,0,-1,0,2,0,0) xi+ x5 +2x3
2 | (0,1,0,0,1,0,0,0) (2,-1,0,6,0,0,0,0) x?+2x3 +2x3
3 1] (0,0,1,0,1,0,0,0) (2,1,-2,1,5,2,-2,0) X% +2x3 +3x3
4 | (0,0,0,1,1,0,0,0) (2,1,0,-1,0,7,0,-2) X} +2x% + 4x?
5 | (1,0,0,0,0,1,0,0) (-2,8,0,-2,3,0,0,0) X2 +x3 +3x3
6 | (0,1,0,0,0,1,0,0) (0,1,0,5,3,-2,0,0) xf +2x% +3x3
7 | (0,0,1,0,0,1,0,0) (0,3,-2,0,8,0,-2,0) x? +3x% +3x3
8 | (0,0,0,1,0,1,0,0) (0,3,0,-2,3,5,0,-2) xf +3x3 + 4x3
9 | (1,0,0,0,0,0,1,0) (-2,5,0,4,0,0,0,0) X%+ x5 +4x3
10 | (0,1,0,0,0,0,1,0) (0,-2,0,11,0,-2,0,0) xf +2x3 + 4x3
1n | (0,0,1,0,0,0,1,0) (0,0,-2,6,5,0,-2,0) x} +3x3 + 4x2
12 | (0,0,0,1,0,0,1,0) (0,0,0,4,0,5,0,-2) x +4x2 +4x2
13 | (1,0,0,0,0,0,0,1) (2,7,0,2,0,0,0,0) X+ x5+ x2

14 | (0,1,0,0,0,0,0,1) (4,0,0,9,0,-2,0,0) xP+x3 +2x3
15 | (0,0,1,0,0,0,0,1) (4,2,-2,4,5,0,-2,0) xf+ x5 +3x3
16 | (0,0,0,1,0,0,0,1) (4,2,0,2,0,5,0,-2) X%+ x5+ 4x3

Table 1: Eta quotients and ternary forms corresponding to (7,s, ¢, u, v, w, x, ¥)

integers not integers not

Q(xlax2>x3) Q(x1>x2>x3)

represented by Q represented by Q
X%+ x3 +x2 4%(8¢+7) x? + 2x2 + 3x2 4%(16¢€ +10)
x2+x2+2x2 | 4k(16€+14) || x? +2x2 + 4x2 4k (162 + 14)
xi+ x5 +3x3 9%(9¢ + 6) xi +3x3 +3x3 9k (3¢ +2)

x?+x2 4+ 4x2 (80 +3, 4K(80+7)|[x2 +3x2 +4x2|  4L+2, 9¥(9¢+6)
x2+2x%+2x2|  4k(86+7) X%+ 4x? +4x2 |40 +2, 4€+3, 4K(86+7)

Table 2: Integers not represented by ternary quadratic forms

Case 8 gives
(2.10) [ (22)n7* (42)* (62)° (82)57* (162)] , = 0

forn =2 (mod 4)and n = 2-3%*! (mod 3%¢*?) forall e € Nj. Clearly (2.10) holds for
all n = 0 (mod 2) so the former is not interesting while the latter is interesting only
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when n =1 (mod 2), that is, when n = 5-32°*1 (mod 2 - 3%¢*2), which is Theorem
L1(iv).
Case 9 gives

(2.11) [11_2(2)115(22)114(42)] ,=0

forn=3 (mod 8) and n = 7-2%¢ (mod 2*¢*?) for all e € Ny. But this is not interest-
ing, as (2.11) holds for all n = 0,3 (mod 4) by Lemma 2.1(iii).

Case 10 gives
(2.12) [ ;7’2(22)11“(4z)17’2(8z)] ,=0

for n = 7-22*1 (mod 22¢**) for all e € Ny. But this is not interesting as (2.12) holds
foralln =0 (mod 2).
Case 11 gives

(2.13) [772(32)n° (42)n°(62)n > (122)] , = 0

for n =2 (mod 4) and n = 2-32**' (mod 3%¢*?) for all e € Ny. By Lemma 2.1(iv)
(2.13) holds for all n = 2,3 (mod 4). Thus (2.13) is only interesting for those n sat-
isfying n = 2 - 3%*! (mod 3***?) and n = 0,1 (mod 4), that is, for n = § - 32¢*!
(mod 4 -3%¢*2) and n = 11 - 3%¢*! (mod 4 - 3%¢*2). These are parts (v) and (vi) of
Theorem 1.1, respectively.

Case 12 gives

(2.14) [7*(42)n°(82)n72(162)] =0
forn =2 (mod 4),n =3 (mod 4) and n = 7-22¢ (mod 2%¢*?) for all e € Ny, but
again this is not interesting as (2.14) clearly holds for all n #1 (mod 4).
Case 13 gives
[ (2)n” (22)n* (42)]u = 0
for n = 7-2%¢ (mod 2%¢*?) for all e € Ny, which is Theorem 1.1(vii).
Case 14 gives
(7" (2)n’(42)n7*(82)] =0
for n =722 (mod 2%¢**) for all e € Ny, which is Theorem 1.1(viii).
Case 15 gives
[7*(2)n*(22)n7 2 (32)n* (42)1° (62)n72(122)] , = 0

for n = 2-32¢*! (mod 32¢*?) for all e € Ny, which is Theorem 1.1(ix).
Finally, Case 16 gives

[7*(2)n” (22)n* (42)° (82) 12 (162)] = 0

forn =3 (mod 8) and n = 7-2% (mod 2***?) for all e € Ny. By Lemma 2.1(v) the
equality holds for all # =3 (mod 4). The latter congruence is Theorem 1.1(x). ]
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3 Final Remarks

We briefly discuss whether or not the criteria in each of the ten parts of Theorem 1.1
form a complete description of the set of vanishing coefficients for the corresponding
eta quotient.

(i) As

[7*(2)n(22)n72 (32)n(42)n° (62)” (82)n 2 (122)], = 0
for n = 6,24,29,39,54,60,78, ..., the congruences n = 5-22°*! (mod 22¢**) do not
form a complete description of when the coefficients of the eta quotient vanish and

it does not seem easy to formulate such a description. We note that the data up to
n = 2000 suggest the following conjecture.

Conjecture 3.1

[7*(2)n(22)n72 (32)n(42)n° (62)” (82)n 2 (122)] , = 0
forn=2-3**" (mod 2-3%*%).

(ii) The data up to n = 1000 suggest the following conjecture.

Conjecture 3.2 If
(772 (2)n" 22)n7* (42)* (62)] , = 0

then n = 2-3%¢*! (mod 3%¢*?) for some e € N.

If Conjecture 3.2 is true, then by Theorem 1.1(ii) we have
(172 () (22)n7* (42)°(62)] , = 0
if and only if n = 2-3%¢*! (mod 32°*2) for some e € Nj.
(iii) The data up to n = 1000 suggest the following conjecture.
Conjecture 3.3 If
[’ (22)n7*(32)1° (62)n*(122)] =0,

then n = 2-3% (mod 3%¢*!) for some e € N.

If Conjecture 3.3 is true then by Theorem 1.1(iii) we have

[ 7’ (22)n7*(32)7° (62)n 72 (122)], =0
if and only if
n=2-3* (mod 3***') for some e € Nj.

(iv) The data up to n = 1000 suggest the following conjecture.

Conjecture 3.4 If
[7(22)n72(42)n° (62)1° (82)n 2 (162)] = 0

and n is odd, then n = 5-3**! (mod 2 -3%¢*2) for some e € N,
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If Conjecture 3.4 is true, then by Theorem 1.1(iv) we have
[7*(22)n7* (42)n° (62)1° (82) 72 (162)] , = 0
ifand only if n =0 (mod 2) or n =5-3%*' (mod 2-3%**?2) for some e € Nj.

(v)(vi) The data up to n = 1000 suggest the following conjecture.
Conjecture 3.5 Ifn=0,1 (mod 4) and
(172 (32)1° (42)n” (62)17* (122)] , =0,

then n = 8-3%¢"! (mod 4-3%°*2) or n = 11-3***! (mod 4 -3%¢*2) for some e € N,.

If Conjecture 3.5 is true, then by Theorem 1.1(v)(vi) and Lemma 2.1(iv) we have
[772(32)n° (42)n°(62)n 2 (122)] , = 0

ifand only if n = 2 (mod 4),n = 3 (mod 4),n = 8-3%**! (mod 4-3***) orn =
11-3%*1 (mod 4 - 3%¢*2) for some e € Nj.

(vii) The data up to n = 1000 suggest the following conjecture.

Conjecture 3.6 If
[#*(2)n” (22)n*(42)] , =0,

then n =7-2% (mod 2%°*3) for some e € N,.

If Conjecture 3.6 is true, then by Theorem 1.1(vii) we have
[7*(2)n” (22)n° (42)] =0
ifand only if n = 7- 2% (mod 2%¢*?) for some e € Ny.

(viii) The data up to n = 1000 suggest the following conjecture.

Conjecture 3.7 If
[7*(2)n°(42)n7*(82)], =0,
then n=7-2%*" (mod 2%¢**) for some e € N,.

If Conjecture 3.7 is true, then by Theorem 1.1(viii) we have
[n*(2)n°(42)n2(82)] , = 0
ifand only if n = 7- 22¢*! (mod 2%¢**) for some e € Nj.

(ix) Theorem 1.1(ix) and the data up to n = 1000 suggest the following conjecture.

Conjecture 3.8
[7*(2)* 22)n 2 B2)n* (2)n° (62)n7*(122) ] = 0

ifand only if n = 2-32¢*1 (mod 32¢2) or n = 32¢*! for some e € N,.

(x) The data up to n = 1000 suggest the following conjecture.
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Conjecture 3.9 Ifn#3 (mod 4) and
[7*(2)n* (22)n* (42)n° (82)n 2 (162)] = 0

then n =7-2% (mod 22°*3) for some e € N.

If Conjecture 3.9 is true, then Lemma 2.1(v) and Theorem 1.1(x) give
[n*(2)n*(22)n* (42)1° (82)n 72 (162)] , = 0

ifand onlyif n =3 (mod 4) or n =7-2% (mod 22°*?) for some e € N.

Over the past twenty years or so, many new results concerning the representability
and non-representability of positive integers by ternary quadratic forms have been
proved by a number of authors, for example, Berkovich, Bhargava, Duke, Jagy, Ka-
plansky, and Oh, as well as many others. However, as the product-to-sum formula
used in this paper applies only to the ten ternaries x7 + ax3 + bx3 with1< a < b <4,
we cannot use these new results in conjunction with the product-to-sum formula to
obtain further results like those in Theorem 1.1.
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