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TANGENTIAL BOUNDARY PROPERTIES OF ARBITRARY
FUNCTIONS IN THE UNIT DISC

HIDENOBU YOSHIDA

1. By the method of Dolzhenko’s paper, we studied relations between
non-tangetial (angular) boundary behaviors and horocyclic boundary be-
haviors of arbitrary functions defined in the open unit disc of the complex
plane in [8]. Vessey [5], [6] investigated the behavior of arbitrary functions
on paths which are “more tangential” than horocycles. The purpose of
the present paper is to prove the fact that is sharper than the results in
Vessey [5], [6], and generalize the results in [8] to obtain the connection be-
tween behaviors on two “more tangential” angles.

Notations and definitions. Unless otherwise stated, f: D— W shall de-
note an arbitrary function (generally not one-valued) defined in the open
unit disc D: {z; |2] <1} and assuming values in the extended complex
plane W. The unit circle {z; |z] =1} is denoted by I.

Suppose a set AcI" and a point { = e €' are given. For an ¢ >0,
we denote an arc {e?; 6 —e <6 <8+¢} by I'(, £). Let 7(¢, &, A) be the
largest length of arcs contained in I'(e, {) and not intersecting with A. The
set A is of porosity of the order g, 0 < # =1 (or simply of porosity (z)) at
g if

Ii?;%{r(:. e, A} > 0.

A is of porosity (z) on I' if it is so at each { € A. A set which is a
countable sum of sets of porosity (z) is said to be of s-porosity (g).

A set of g-porosity (z) is of the first Baire category.

It is easily seen that a measurable set which is of porosity (1) on I" has
no points of density. Therefore every measurable set of ¢-porosity (1) on I’
is of measure 0. But there exists the set, which is of measure 0 and not of
o-porosity (1) (see [7], p. 75).
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For0=2g<,0<a<w and {=¢e"e ", we denote by #*(a, q)(&) the
curve {z; alarg(z)—0|7" =1— [z], arg(z) >0} terminating at ¢ and by
t~(a, ¢)(£) the reflection of #*(a, ¢)({) with respect to the radius at .

For 02¢g<o, 0<a<f<o, 0<6<1 and {eTI', we define a right
g-angle V*(a, B, 6, q)() as the open region lying between the curves ¢*(a, q)
(&) and #*(8, ¢)(¢) and lying outside the circle {z; |z] = 8} of radius 4, suf-
ficiently near to 1. The left g-angle at & with parameters (a, 8, ), denoted
by V' (a, B, 6, 9)(£), is the reflection of F*(a, B, 3, q)(§) with respect to the
radius at £&. When convenient, we use the shorter notation V+*(g)(&), V(q)(&)
or V(g)(¢) without specifying whether it be right or left.

For 0=2¢g< o, 0<a<o,0<d<1and { I, we define a g-cycle Q(a,
3, q)(&) as the open region lying between the curves ¢*(a, ¢)(&) and ¢~ (a, ¢)(§)
and lying outside the circle {z;|z] = 6} of radius 4, sufficiently near to 1.
When convenient, we use the shorter notation 2(¢)(¢) without specifying a.

If f:D>W and £ eI, we can define, in the usual manner, the cluster
sets at ¢ on the sets F*(a, 8, 8, ¢)(©), V(a, 8, 3, q)(€) and 2(«, 8, 9)(©).

We denote by E;qrp(f) the set of points & € I' such that Crpo(f, &)+
Cripo(f, ¢) for some pair of two g-angles F(g)(¢) and F’(g)(). The comple-
ment of Epprp(f) with respect to I' is denoted by Ky(f).

We denote by Equqpeqy(f) the set of points & I' such that Copo(f, &)
# Cogpo(f, §) for some pair of g;-cycle 2(¢,)(§) and g.-cycle 2(g.)(2).

We denote by Egrp(f) the set of points & e I" such that Coo(f, &)
Crpo(f, §) for some pair of g-cycle Q2(¢)(¢) and g-angle V(g)(0).

A point &I is said to be a g-angular Plessner point (or a g¢-cyclic
Plessner point) of f(z) provided that

Crio(f, §) =W and Cr-po(f, §) = W (or Cop(f, &) = W)

for each right and left g-angle (or g-cycle) at &.

A point £ eI is called a g-angular Fatou point (or g-cyclic Fatou
point) of f(z) with a g-angular Fatou value (or g-cyclic Fatou value) w e W
provided that

Crrpo(fs ) = {w} and G- (f, §) = {w} (or Cow(f, &) = {w})
for each right and left g-angle (or g-cycle) at &.

2. Let {a:}, {8} and {4;} be sequences of all rational numbers satisfying
0<a;, Bi<o, 0<3§,<1 and {D,} be a sequence consisting of all closed
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circles of the plane W having rational radii and centers with rational co-
ordinates. For an & >0, we set U.() = {z; |z —¢&| <e¢&}.

Lemma 1. Let (€ AcT and 0= g, = q.. Suppose A is not of porosity

-gil_}l:—‘—} at a point £ = A.  Then for fixed positive integers s, t, k and 1, Q(a,,
2

85 q2)(&) N U(E) is covered by the set M=‘f L{{Q(ak, 31, q1)(€) supposed ¢ is sufficiently
small.

Proof. Without loss of generality, we may assume that £ =1. Now we
suppose that there exists a sequence z,=r,." (y=1,23,--) such that
2, € Qas, 8, ¢)(1), 2,& M and z,— 1. For each z, points R(z,) and S(z,) on
I" are decided as follows.

R(z,) is the point on I'" such that the point z, lies on the curve ¢*(ay,
@)(R(z,)). S(z,) is the point on I" such that the point 2, lies on the curve
t(ae, q1)(S(2,)).

We immediately have

1
R(z,)S(z,) (the arc length connecting R(z,) and S(z,)) = 2(3—5——@) atl
k

R(z,) 1=

’

1
— @+l
0u_ 1 7',,)1
(297

SE) 1= 6, + (ii)_q_}rT .

(447

Since z, € Q(as, d;, ¢:)(1), we have
1
1—7,\e+l
10, < (F52) "

We set ¢, = max {R(z,) 1, S(z,) 1}. Then we have
ST 1
lim - £&JS5E) 5 0 and ¢, = 0(1 — 7,)%*T) as v - oo,
T —r)ar
Since {R(z,)S(z,) (the arc connecting R(z,) and S(z,))} N 4 = ¢, we have 7(1,

e, A) = R(2,)S(z,). Thus we obtain

— 1 a1 +1 . a1+l
Tm-1-(7(L, &, A} ** z Tim I AN

1 q1+1
g E (1 _ Zv) @t / R(ZV)S(Z;) el > 0,
o N pyEn
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and this contradicts the assumption that 1 is not a point of porosity

(Zl ii) for A. Therefore, for ¢ >0 small enough, Q(a;, 8;, ¢:.)(1) N U.(1) is
2

covered by the set M=EUA.Q(ak, 81, q1)(8).
€

THEOREM 1. Let f:D—W and 0= g = q..  Then Egpoig,)(f) is of type G,
. ; @+ 1
and of o-porosity (———-—qz T )
Proof. For positive integers n, k and [, E, ,,, is the set of points { e I
such that

the set {w = f(2); 2 € Q(az, 6, ¢:)(©)}

lies at a distance =7, from D,.

(1)

For positive integers #, s, £ and #, Fn. . is the set of points {eI" such
that

the set [w = F(2); 2 € Qas, 3, @), - < dis(z, I) < %]

has common points with D,.

Then E, ;,, is closed and F, ;.. is open. We put

Fose = ;i :QiF"'s't'“ (3)4
and
Ani,tyst = Enpe,t N Fagie (4)
We will show
Eppatg)(f) =, k,llJ,s, tAn,k,l.s.L- (5)

Take a point § & Eqqaqy)(f). There exist 2(g)() and 2(¢)(), 2(g)(©)
2 2(q:)(&), for which Cop)(f, &) R Cowp(f, §). Choose numbers s, ¢ and j
such that Q(a,, 8, ¢.)(§) D 2(¢=)(¢) and

-Dj n Ca(a,,ﬁt.qz)(c)(f’ g) 7 ¢1 diS (Djy CD(q‘)(C)(ff g:)) > 5rj- (6)

Then we can find positive integers ¥ and [ such that 2(g,)(8) D Q(ey, 81, ¢1)(§)
and dis (D;, f(z)) > 4r,ﬂ for z € Q(ay, 6,¢)&). If D, is a disc with radius 7,
=2r; and concentric with D;, dis(D,, f(2))>r, for z € Qa., 6, q)&),
which shows ¢ € E, ... In view of (6) there exists an infinite number of
positive integers # such that
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D, N {w = f(Z); e Q(asy 0t 42)@:), '?lu_ < dis (Z, F) < %} =9

which, shows ¢ € F, ;.. Thus {€ A, x.1.5.c and

Eoqgpoign(f) Cn’k}ij's’tAn.k.l.s.t-

Take a point e Y Ak If e Aneise
n,KL,S,

Cotausinap@(fy §) N Dy = ¢ from (1)
and

Cotapsnap@(f> &) N Dy #= ¢ from (2).
Thus we have

Cola,5,a0( Sy &) F Cataposrgpo(fy §),

and & € Eopoiy(f)- Henceﬂ Y, Aness © Bagpaey(f)-
1, L, S,

Equality (5) shows that Egqeq,(f) is of type Gi,.
It remains to prove that A = A, ., is of porosity <i'—l‘i .
g +1

Suppose A is not of porosity <?———H_) at a point { € A. Then for suf-

2
ficiently small &€ >0, Q(a;, 6. ¢2)(&) N U.(&) is covered by the set EUA (ay, 6,
¢:)(6) by Lemma 1. Thus if z € 2(ay, 6., ¢2)(§) N U,(L), thereis a point & € A4,

z € Qaz, 81, ¢1)(€). Therefore by (4) and (1) w = f(z) lies at a distance =,
from D,, and Cow,s,.¢0(f, &) N D, =¢. This contradicts & € F,,s,,. Thus

. G +1 .
the porosity (q2 T 1) of A is proved.

Remark 1. Dolzhenko’s result [3, Theorem 1], then, is for the case ¢, =
0, g- =0, Yanagihara’s [4, Theorem 1] for ¢, =1, ¢. =1, and Yanagihara’s
[4, Theorem 2] for ¢, =0, ¢, = 1.

LemMA 2. Let te AcT and 0<gq. Suppose A is not of porosity (1) at a point
te A. Then for fixed positive integers s, t, k, | and m, Q(as, 8,, q)(&) N UL) is
covered by the set M =, UAV (et Bis Oms q)(&) supposed € > 0 is sufficiently small.

Proof. Without loss of generality, we may assume that { =1. Now we
suppose that there exists a sequence z,=r.e" (v=1,2 3,--+) such that
z, € Q(as, 8, q)(1), 2, & M and z,— 1. For each z,, points Ry(z,), Si(z,), Rs(z,)
and S,(z,) on I' are decided as follows.
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Ry(z,) (or Si(z,) is the point on I' such that the point 2, lies on the

curve t*(ay, g)(Ri(2,) (or (B, 9)(Si(2.))).
Ry(z,) (or Sy(z,)) is the point on I" such that the point 2, lies on the

curve ¢~(ay, q)(Ry(2,) (or £7(Bi, q)(Sa(2.))).
We immediately have

R\(2,)S\(z,) (the arc length -connecting R,(z,) and Si(z,))

=m=(1;n)_ﬂ{1—_(1—73;&_>%’

k

1
Riz)1=0,+ (—1) 1;—,c“) wT ;21,2

1
Since z, € Q(as, §;, q) (1), we have [6,] < ( 1 ; 7, >q+1.

We set

e, = max {Ri(z,) 1, Ry(z,)1}.
Then we have
S A
limm >0 and ¢, = O((1 — r,,)q+1) as v — oo,

y—o0 —_
(1 - rv) att

Since [{Ry(2,)S:(2,) (the arc connecting Ri(z,) and S,(z,))} U {Rx(2,)S:(2,)}1N A
= ¢, we have 7(1, ¢,, A) = Ry(2,)S:(z,). Thus we obtain

ﬁ%%m, e, A) = Tm—R,(2)S:(z,)

Yoo 8,,

1
> L= REISE) -

y—00 o8
(1—r,)t

and this contradicts the assumption that 1 is not a point of porosity (1) for
A. Therefore, for € >0 small enough, Q(«, 6, @) N U.(f) is covered by
the Set M=e UAV(ak, BL, 51'” Q)(E).

TueorEM 2. Let f:D—W and q=0. Then Egpwp(f) is of type Gs, and
of o-porosity (1).

Proof. For positive integers =, k, ! and m, E,i,.,» is the set of points
¢ e such that
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the set {w= f(z); z € V(ax, Bi, 6m, 9)(E)}

. . 1)
lies at a distance = r, from D,.
For positive integers #n, s, ¢ and #, F,,,.,. is the set of points such that
the set [w= f(2); z € Qe 3, ), - <dis(z, I) < —}‘—]
. . (2)
has common points with D,.
Then E, ;.. is closed and F, ... is open. We put
Fn.s.t = ‘Ql !.Fn,s tu (3)
and
Au.k.l.m.s.t = En,k.l.m n Fn.s,t- (4)
We will show
Eor(f) = (n LY tAn.k.z.m,s,L) U Ego(S). (5)

Take a point § € Eor(f) and & & Egpo(f). There exists 2(¢)(¢) and

7)), 2@ 2 r@)g), for which Cope(f, &) R Crpw(Sf, £). Choose positive
integers s, ¢ and j such that Q(as, é., ¢)(&) D 2(¢)(¢) and

Dj n Cﬂ(a,,ﬁl.q)(C)(f’ g) 7 ¢’ diS (Dj9 CV(q)(C)(f) g)) > 5rj- (6)

Then we can find positive integers k, / and m such that F(g)(§) D r(aw, Bi, 6m,
@)(©) and dis(Dy, f(z)) > 4r; for z € play, Bi, 6m, @)(). If D, is a disc with
radius 7, = 2r; and concentric with D;, dis(D,, f(z)) > 7, for z € p(ay, Bi, on,
q@)(&), which shows £ € E, ;,i1,n. Inview of (6) there exists an infinite number
of integers # such that

Dn n [w = f(z); zZ e Q(as, 51’ q)(g)f—;? < dlS (Z, F) < ‘—zlil—} 7> ¢’

which shows § € Fu.s0ue Thus &€ An,i.iim.s,. and

Eogr®) (U tAn.k,l.m.s.t) U Eoo(f).

nkl,m,s,

Take a point {( U tAn.k.l,m.s,L) U Eooe(f). If £ € Eopop(f), we

nk, 1,m,s,

evidently have ¢ € Egprp(f). If e “U‘ tA""‘""""" and £ € A ktimosios
n K i, m,s,

Crtar prrim@(S> §) N Dp = ¢ from (1)

https://doi.org/10.1017/5002776300001480X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001480X

118 HIDENOBU YOSHIDA

and

Cota, 5,00 f> §) 0 Dy # ¢ from (2).
Thus we have

Criag. im0 fs £) F Cota,s,,00(f, )

and { e Eqorip(f).

Setting ¢; = g; = g in Theorem 1, we see that Eypo(f) is of type G,
and of o-porosity (1).

Thus the equality (5) shows that Egr@(f) is of type G, so that it
remains to prove that A = A, ;.1 m,s . is of porosity (1).

Suppose 4 is not of porosity (1) at a point { € A. Then for sufficiently
small &€ >0, Q(as, 8, q)&) N UL is covered by the set EéJAV(a,,, Biy 8m, q)E)
by Lemma 2. Thus if z € Q(a,, 8., ¢)() N U.(f), there is a point £€ 4, z &€
V(ay, Biy 8m, q)(€). Therefore by (4) and (1) w = f(z) lies at a distance =7,
from D,, and Co,s.90(f, £ N D, =¢. This contradicts { & F, ;.. Thus
that A is of porosity (1) is proved.

3. The following theorem is sharper than Vessey [5, Corollary 2] and
Vessey [6, Corollary 11.

THEOREM 3. Let f:D—>W and 0= q. Then Eyqop(f) ts of a-porosity (1).

Proof.  Eppr(f) © Earip(f) and Eggrp(f) is of e-porosity (1) by Theo-
rem 2.

Remark 2. Dolzhenko’s result [3, Theorem 1], then, is for the case ¢ =0,
and Yanagihara’s [4, Theorem 1] for ¢ = 1.

Remark 3. Is it true that o-porosity (1) of the set Eyprp(f) is one of its
characteristic properties? I would guess that it is positive even for holo-
morphic functions (see Dolzhenko [3, Theorem 2J]).

In the following, the phrase “almost everywhere” means with the ex-
ception of a set of linear Lebesque measure 0, and ‘“nearly everywhere”
means with the exception of a set of the first Baire category.

CoroLLARrY 1. (Vessey [5, Corollary 2; 6, Corollary 11). Let f:D— W and
0 =gq. Then almost every and nearly every point of I' belongs to K,f).

4. Now we can state some generalizations of results in [8].
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THEOREM 4. Let f:D—>W and 0= q, < go. Then a ge-angular Fatou point
of f(z) is a qi-angular Fatou point of f(z) except on a set of o-porosity (1).

Proof. According to Theorem 2, except on a set of g-porosity (1), a g.-
angular Fatou point of f(z) is a g-cyclic Fatou point of f(z), which is a
qi-angular Fatou point.

THEOREM 5. Let f:D—>W and 0= q, < qs. Then a g,-angular Fatou point
of f(2) is a qe-angular Fatou point of f(z) except on a set of a-porosity (—g—‘—i—i .
2

Proof. According to Theorem 2, except on a set of o-porosity (1), a
gi-angular Fatou point of f(z) is a g;-cyclic Fatou point. By Theorem 1,

except on a set of g-porosity (—M), a g-cyclic Fatou point of f(z) is a

q: +1
gx-cyclic Fatou point of f(z), which is a g,-angular Fatou point of f(z).

THEOREM 6. Let f:D—>W and 0=<q, < q.. Then a q-angular Plessner
point of f(z) is a qe-angular Plessner point of f(z) except on a set of a-porosity (1).

Proof. A gi-angular Plessner point of f(z) is a g,-cyclic Plessner point
of f(z), which is a gr-angular Plessner point of f(z) except on a set of
g-porosity (1) according to Theorem 2.

THEOREM 7. Let f:D—>W and 0=q, <q.. Then a qangular Plessner

point of f(2) is a qi-angular Plessner point of f(z) except on a set of a-porosity

(&51)

Proof. A ge-angular Plessner point of f(z) is a g,-cyclic Plessner point
of f(z), which is a g;-cyclic Plessner point of f(z) except on a set of s-poro-
. q +1 .
sity <————q; T 1) according to Theorem 1.

Remark 4. Is it true that o-porosity (%j’_—i— of the exceptional set of
2

Theorem 5 is one of its characteristic properties? I would guess that it is
positive even for holomorphic functions. Whether these conclusions hold
for other Theorems 4, 6 and 7°?

REFERENCES

[ 1] Bagemihl, F., Horocyclic boundary properties of meromorphic functions. 4nn. Acad. Sci.
Fenn., AI, 385, 1-18 (1966).
[ 2] Dragosh, S., Horocyclic cluster sets of functions defined in the unit disc. Nagoya Math. J.

https://doi.org/10.1017/5S002776300001480X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001480X

120 HIDENOBU YOSHIDA

35, 53-82 (1969).

[ 3] Dolzhenko, E.P., Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR, 31,
3-14+(1967). English translation: Math. of the USSR IZVESTIJA, 1, 1-12 (1967).

[ 4] Yanagibara, N., Angular cluster sets and oricyclic cluster sets. Proc. Japan Acad., 45, 423
—428 (1969).

[ 5] Vessey, T.A., Tangential boundary behavior of arbitrary functions. Math. Z., 113, 113
-118 (1970).

[6] Vessey, T.A., On tangential principal cluster sets of normal meromorphic functions.
Nagoya Math. J., 40, 133-137 (1970).

[ 7] Collingwood, E.F. and Lohwater, A.J., The Theory of Cluster Sets. Camb. Univ. Press,
Cambridge (1966).

[81 Yoshida, H., Angular Cluster Sets and Horocyclic Angular Cluster Sets. Proc. Japan
Acad., 47, 120-125 (1971).

Chiba University, Chiba

https://doi.org/10.1017/5002776300001480X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001480X



