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NEWFORMS OF HALF-INTEGRAL WEIGHT

THOMAS R. SHEMANSKE

1. Background

Two very different definitions of a newform of half-integral weight are pre-

sent and continued to be developed in the literature. The first definition originated

with Serre and Stark for forms of weight 1/2 [5], and is analogous to the defini-

tion of newform for integral weight forms, which uses forms of lower level and

shifts of such forms {fix) *-+f\Bd = f{dτ)) to characterize the notion of old-

forms. The second definition originated with Kohnen for half-integral weight

forms of squarefree level [1], who used forms of lower level and their image under

the Um2 operator (/ = Σ ane
 πmτ *-+ f | Um2 = Σ cιnm^ πιnτ) to define the notion of

oldforms. The choice of the Umi operator over the shift operator Bd seems a propi-

tious one, since the U operator commutes with the action of the Shimura lift, while

the shift operator B does not. More to the point, Kohnen was able to develop a

newform theory on a distinguished subspace of the full space of cusp forms (now

referred to as the Kohnen subspace), and obtained a multiplicity-one result (with

respect to Hecke eigenvalues) for half-integral weight newforms in this subspace.

Even nicer, the multiplicity-one result was established by showing that there is a

one-to-one correspondence between newforms of level AN in the subspace and the

newforms of integral weight of level N.

Several others provided further generalizations of the newform theory using

both definitions of half-integral weight newforms ([1], [3], [4], [6], [7], [12]). By far

the most dramatic development of this theory was obtained recently by Ueda [12].

In this paper, he obtains for arbitrary level a multiplicity-one theorem on a cer-

tain subspace of the Kohnen subspace. The generalization from squarefree level to

arbitrary level is not at all obvious, and requires very different accommodations

for primes dividing the level with multiplicity greater than one. One curious phe-

nomenon which Ueda mentions is that while he was successful in obtaining a

multiplicity-one result, newforms of level 4iV sometimes correspond (under the

Shimura correspondence) to newforms of level a proper divisor of 27V. Ueda
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continues to refine his subspace in an attempt to remedy this issue.

In joint work with Walling [7], in which we take the alternate definition of

newform and work in the full space of cusp forms and not the Kohnen subspace,

we determine in two special cases how it is possible for newforms of half-integral

weight and squarefree level to correspond to integral weight newforms of any

level dividing the expected level given by the Shimura lift. We conjectured that

those special cases should generalize.

This paper has two main thrusts. The first is to continue the investigation in-

itiated in [7]. While the desire to obtain multiplicity-one results has directed a

great deal of research towards a careful development of the notion of newforms

within the Kohnen subspace, a very natural question is to explore whether the

multiplicities with which newforms occur on the full space can be determined. In

this paper we answer this question for squarefree level. The rather pleasing

answer (see Theorem 2.3) is that newforms of half-integral weight correspond to

integral weight newforms with multiplicity one or two, and those that occur with

multiplicity two can be identified with Kohnen subspaces in such a way that if the

full space of newforms (of level 4iV) is decomposed into its Kohnen component and

a non-Kohnen component, the newforms in each (corresponding to integral weight

newforms of level N or 2N) occur with multiplicity one.

In the second part of the paper we consider nonsquarefree levels and demon-

strate a relation between Ueda's space of newforms and our own (see Theorem 3.1

and Corollary 3.7), by decomposing Ueda's space of newforms into subspaces de-

fined using the alternate characterization of newform. In particular, these results

make clear why in certain circumstances, Ueda's newforms often correspond to in-

tegral weight newforms whose level is lower than expected. It also brings closer

together what were apparently two very different notions of a half-integral weight

newform. These results are obtained for both the full space of cusp forms and the

Kohnen subspace.

2. Decomposition theorems—Squarefree level

Let N be an odd positive integer and φ an even Dirichlet character defined

modulo AN. For an odd integer k ^ 3, we denote by Sk/2(4N, ψ) the space of

cusp forms of weight k/2 and character φ for 7^o(4Λ0. When k = 3, we take as

usual S3/2(4:N, φ) to be the orthogonal complement in the full space of cusp forms

of the space generated by theta series attached to quadratic forms in one variable

with spherical harmonic (see [12]). For a positive integer M, an integer / > 2, and

a Dirichlet character ψ defined modulo M, let ©,(M, φ) denote the space of cusp
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forms of weight / and character φ for ΓQ(M). The rest of the notation and the de-

finition of standard operators like the Hecke operators can be found in [12] or [8].

2.1. An internal decomposition.

We recall (see [6]) that the space generated by the oldforms, denoted Sk/2(4N, φ),

is defined as

(2.1) S;/2W, ψ)= Σ Sk/2(4N/q, 0) + Σ sJiN/q, φ(-%)) I Bq
q\N q\N X \ ^ / /

C o n d ( 0 ) | 4 i V / < ? cond(0

where Bq is the shift operator taking/(r) to (f\Bq)(τ) = f(qτ). The subspace

generated by the newforms, denoted Sk/2(4:N, φ) is the orthogonal complement of

Sk/2(4:N, φ) in the full space Sk/2(AN, φ). Our first theorem provides an internal

decomposition of the space Sk/2(4N, φ) into sums of spaces of newforms when the

level N is odd and squarefree.

It turns out to be easier to handle first the case where the character φ is triv-

ial, and to generalize to nontrivial characters through another means.

THEOREM 2.1. Let N be an odd squarefree integer, and φ the trivial character

modulo 4iV. Then

Sk/2(4N, 1) - Sk/2UN, ψ) = Θ Sk/2(4d).
d\N

Remark 2.2. It is completely straightforward from the definitions of the

spaces of oldforms and newforms to show that Sk/2(4:N, 1) = Σ^jv S^Wd).

Moreover, if these were spaces of integral weight newforms, such a sum would

obviously be direct (in fact orthogonal) since newforms of distinct levels have in-

finitely many distinct eigenvalues under the Hecke operators. Unfortunately for

half-integral weight forms, this is very far from true. In fact to describe this phe-

nomenon more clearly is a major focus of this paper. The special cases where Λf is

a prime or the product of two distinct primes were established in [7].

Proof. For notational ease within this proof, we suppress the notation for the

weight and character, and write S(4d) for Sk/2(4d, 1) and S±(4d) for Sk/2(4:d, 1).

Write N — pφ2 ' ' ' pr, the product of distinct odd primes. We always have

S(4Λ0 = S+(4Λ0 ΘS"(4Λ0,

and since 0 = 1,
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5"(4Λ0 = Σ 5(4/>! ••• p,

Thus we need to show that

S"(4Λ0 = Θ St..

As we remarked

We rewrite this

(2.2)

above,

sum as

a trivial

S"

r - l

Jfc=0 0<

d\N
d<N

induction shows

(4Λ0 = Σ S,+

/20
rfiiV
d<N

ί+(4^

that

•P7).

We first show that for fixed k, the inner sum is direct. There are two cases.

Case 1. For k = 0, there is only one summand, so the result is clear. When

k — 1, r ^ 2 and the sum becomes Σ f = 1 S (4^ ). Suppose that Σ ft — 0 with

ft^S (4rpt). Then we may assume there exists an index i so that f{ is not zero.

Then

f,, = - Σ / ; e 5+(4/),) ΓΊ 5(4/>t £„//>,) c 5(4) c 5"(4/),),

which implies /f = 0, a contradiction.

2. In the remaining case we have 2 ^ /c < r. This time we employ the

trace operator (adjoint to the inclusion) to achieve our goal. For properties of the

trace operator, see [6] or [5].

Suppose that Σ Σ y . = A ; S ( 4 ^ pr

r) is not direct. Then there exists a nontri-

vial dependence relation of the form Σ / ; ... ; — 0 with /)...,- £ S (4^?; pj).

Fix an index ix ik for which f{ ...t Φ 0, and put Tr = Tr4/> ...p . We shall

show that Σ fj ...j I Tr = /,..., — 0, providing our contradiction.

Certainly

rfix...ik I T r = fiι...ik I Tr4Pi^m.Pik = fiι...ik

since fίl...tk has level 4^)^* ph. Now consider fj1...jk ^ /^...^ Let Z) =

At> A, * * A Λ a n d w r i t e Ph ' ' ' Pik

 = D I a n d Ph ' ' ' Pjk

 = DJ- N o t e
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that / and / are both greater than 1, since {ilf . . . , ik} Φ {jv . . . , jk}. Finally,

write N = pλ - - - pr = DIJK for some integer K.

Then

f I Tr4iV = f I Tr 4 Z ) / / x

Jjι-"lk\
 iτ4Ph"'Pik Ji1 — Jk\

 1 Γ 4 Z ) /

1 J since gcd(/,/JO = 1

and letting p be any prime dividing / (recall / > 1)

_ , I τ ADJK I τ ADJ I τ ADJ/p

Jj1»'jk\
 llADJ I lIADJ/p\ lIAD

r I rτ> ADJ ΛTΛ ADJ/p . r . . Λ A r\ T

= fh...h I T r w / ί Tr4Z) since / ; i... ; fc has level ADJ

= 0 I Tr^ 7 / / ) = 0 by Theorem 5.2 of [6].

So we now have that

(2.3) 5"(4Λ0 = Σ? θ S+(4pvy2

2 p?).
k = 0 0<y, < l

ΣVj=k

We now show that the outer sum is direct. Suppose not. Then there exists a

nontrivial dependence relation

/o + Λ + + Λ-i = 0 where fk e 0 S+ (4tf'/£ # 0 .
0<y, <l

Σv{=k

Let v be the largest index so that fv* Φ 0, and write

fa = Σ gtl...t^ where gh...t^ G 5 + ( 4 ^ 1 piv*) •

Choose any index k1 * * /cv* for which gkl...kv* Φ 0, and consider the trace

operator Tr = Tr4/)^ ...Pk ^. Exactly as in the first part of the proof, we see that

fa I Tr = Σ gh...tu, I T r l ^ . . . ^ = gkι...k^.

Now we claim that for v < v , fv \ Tr G S (4/)A * />A *). This will imply

that

fa I Tr = Λ ι . . . M = - ( / , + ... + / v * _ 2 ) I Tr G S-(4ΛX ' ' ' Λ p * ) ,

forcing gk ...k * — 0, a contradiction.

To establish the claim, we first note that essentially by definition of the trace

operator, fv \ Tr G S(4pkι />Λy#). For v < v , write

Λ = Σglχ...lv where gh...lv(Ξ S+(4pli '-p^.

Let Z) = gcά(ph p l y , p k l - PkJ, and w r i t e p k i / ? M = /JϋΓ a n d ί / χ A v
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= DL for integers K and L. Note that K > 1 since v < v*, but L could equal 1.

Finally write N = p1 pr — DKLM for some integer M, and note that gcd(K,

LM) = 1.

There are two cases. If L = 1, then D — pt ' m plv is a proper divisor of

Pkλ ' ' ' Pk»* This implies that gιλ...ϊv I Tr = g^...^ since gtι...ιv has level dividing

Pkx' ' ' Pkv* Moreover, since ΰ is a proper divisor of pk A ^ , gι ...ι e

If L > 1, then let /> be any prime dividing L. Then

,.4DIU:M

since gcd(i£, LM) = 1
^ 4Z>L//>

I rr . 4DL I Φ 4DL//> . J , , - r . . n r

- gh>"iv \ *-r4DL/p I lr4D s l n c e the level of gh...lv is 4DL

= 0 I Ύr4

4

D

D

L/P by Theorem 5.2 of [6].

Thus fv Tr ^ 5 (4/^ pk J) which completes the proof the claim, and of the

theorem. •

2.2. An external decomposition

Next we give a correspondence between newforms of half-integral weight and

newforms of integral weight. For squarefree level, we shall see that half-integral

weight newforms occur with multiplicity 1 or 2, and those occurring with multi-

plicity 2 are precisely those with at least one member in the Kohnen subspace of

newforms.

Let N be an odd positive squarefree integer, and k > 3 an odd integer. Ueda

[10, §3] defines an abstract Hecke algebra H(N) and two representations of it, one

in the space of integral weight cusp forms, the other in the space of half-integral

weight cusp forms. Isomorphisms (as H(N) -modules) between spaces of cusp

forms of integral and half-integral weight have the property that an eigenform for

a half-integral weight Hecke operator T k/2(n ) (with (w, 2Λ0 — 1)

corresponds to an eigenform for the integral weight Hecke operator Tk_γ(n) which

has the same eigenvalue as its half-integral weight counterpart. Since the Hecke

eigenvalues for Tk_ι(p) for almost all primes p characterize integral weight new-

forms precisely, we obtain our multiplicity results as a consequence.

In particular, we have the

THEOREM 2.3. Let N be an odd positive squarefree integer, and k > 3 an odd

integer. Then
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S+

k/2(AN, 1) = Θ [@;_1(2d) θ 2®*_1(d)]
d\N

where the isomorphism is as modules for the Hecke algebra H(N) •

Remark 2.4. Note that this theorem says that newforms of half-integral

weight, "squarefree level" 4iV and trivial character correspond to integral weight

newforms of all possible levels dividing 2N, 2N being the level to which they cor-

respond under any Shimura lift. It is also remarkable to note that viewed in the

opposite direction, the theorem says that given any newform F of squarefree level

d and trivial character, there exist half-integral weight newforms of level 2Md or

AMd having the same eigenvalues as F for any squarefree integer M prime to 2d.

Note that while there obviously exist cusp forms of arbitrarily high levels with

the same eigenvalues as F, it is surprising that newforms should exist with this

behavior. In particular, such newforms cannot arise as character twists of

half-integral weight newforms of level 4d. Moreover, we note that all newforms in

Sfc/2(4JV, 1) which correspond to integral weight newforms of level 2d for any

d I N, do in fact occur with multiplicity one.

Before proving the theorem, we state a corollary which connects the notion of

newform developed by Kohnen with the one used in this paper which parallels the

one for integral weight forms. With the notation as above, denote the Kohnen sub-

space by Sk/2(4:N, l)κ and the corresponding subspace of newforms (see [1] for

definitions) by S™2 (AN, 1)^. By Theorem 2.4 of [7], we know that S*™(4N, l)κ

c Sk/2(4:N, 1). Let S*/2™(4:N, 1)NK (NK meaning nonKohnen) be the orthogonal

complement of S^2

W(4:N, l)κ in S^/2(4iV, 1). Then both S"/2

w(4iV, l)κ and

S"7

e

2

w(4iV, 1 ) ^ are Hecke (i.e., H(N)) submodules of 5fc

+

/2(4iV, 1). From Kohnen's

work [1], we know that as H(N)-modules S"/e

2

w(4d, 1)^ = © ^ W , 1) for any di-

visor d of N. In particular, we obtain the

COROLLARY 2.5. With the notation as above,

In particular,

Θ ©A_iW) $ 0©ΐ"-l(^)
d|2iV eliV

Θ ©A_i(d) ® θ 5,n/e

2

w(4^, 1)^.
d|2ΛΓ e\N

d\N
d<N
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Proof (of Theorem 2.3). Once again for convenience we shall abbreviate
±(4Λ0 d h l l l b b i t © t ^ M 1) t @±f, 1) to 5±(4Λ0, and we shall also abbreviate © t ^ M , 1) to @±(M). The

basic idea of the proof is quite straightforward. First, by the corollary in §3 of

[10], we obtain

Sk/2(4N, 1) - 5,+

/2(4iV, 1) Θ S~2(4Λ0 = ®k^(2N9 1).

Then we use the integral weight newform theory to decompose @λ._1(27V, 1) and

induction with Theorem 2.1 above to identify the oldform parts. Finally, using

semisimplicity of the Hecke algebra, we cancel factors yielding the result.

Write N = p! ' ' ' pr where the p{ are distinct odd primes. Let σo(n) denote

the number of positive divisors of n. Then as modules for the Hecke algebra

H(N), integral weight newform theory yields

d\2px "pr

(2 4)

 S'V.
d\PX'"Pr

= Θ Θ 2""" [©+(2^i1 ^ 0 e 2©+(X1 ρv/)l.

On the other hand, by Theorem 2.1, we have

? • • ρυ;) = θ s+(4d) = θ θ s+teρ? • • Pu

r")
ά\pvΛ*>-pV / = = 0 0<Aί<<l

(2.5) ^ Σ - '

= S + ( # ! - ί , ) Φ φ θ 5+(4/»ί' • P7)•

Now we proceed by induction on r. The base case r = 0 being trivial, we

assume that r > 1 and

for any set of primes with 0 ^ μ{ ^ 1 and Σ μ, — / < r We rewrite the above as

s + ( # f />?o = e e [<s+(2/>Γ1 P7) Φ 2©+(/>Γ' /CO].
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Combining the above with equations (2.4) and (2.5), we obtain

(2.6)

5 + ( # x •••pr) ΦΘ Θ Θ Θ [6+(2Am i P?) © 2<B+(p^ • • • /CO]
/=0 o<μf <l ;=0 o^m^Ui

= Θ Θ 2r"*[®+(2/>ϊ1 /vθ Φ 2©+(#' /£')].
k = 0 0 < V f < l

Fix a sequence i^,. . ., i^ with 0 < vt < 1 and Σ ẑ  = A: < r. Note that the

summand [@+(2^ 1 pv

r

r) θ 2<5+(p^1 /£')] occurs with multiplicity 2'""* on

the RHS of equation (2.6). We shall show that it occurs with multiplicity 2r — 1

on the LHS. Then using semisimplicity of the Hecke algebra, we cancel like terms

on both sides of (2.6) to obtain

S+(4A --pr) = ® θ [©+(2^ p7) θ 2@+(ίϊ1 #0]
Σvt=k

= θ [@+

d\N

as required. We need only establish the claim concerning the multiplicity.

To make an accurate count, we need only count the number of times the

r-tuple (mlf. . ., rnr) = (vlt . . . , vr) occurs on the LHS. In the notation of (2.6),

we make two simple observations: For 1 < i < r, we have vi — mt < μt and j =

k = Σ f = 1 v{ — Σ [ = 1 mt < Σ ί = 1 Vj = /. Also recall that all entries in the r-tuples

are zeros or ones. We need to count the number of r-tuples μ = (μlf . . . , μr)

which can give rise to the r-tuple m = (mlf . . . , Mr) subject to the above con-

straints. We count as a function of /.

From the inequality above, we see that I > k. lί I = k, k = Σi=1 m^ — Σ ί = 1

v{ ~ I which says there is only one possible r-tuple μ which admits m. For I — k

+ 1, we know that any admissible μ has ones everywhere that m does, plus ex-

actly one more. Since k = Σ^ = 1 mv there are n — k possible indices for the extra

one, and hence n — k possible r-tuples μ which admit m. In general, when I = k

+ s(0<s<n — k — 1), any admissible μ has s additional ones where m has

zeros, and there are n — k indices from which to choose where to place them. Of

J r-tuples μ which admit m. Thus in all

there are

— k —

https://doi.org/10.1017/S0027763000005961 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005961


1 5 6 THOMAS R. SHEMANSKE

admissible β. Since it is well known that

Σ (") = (1 + 1)M = 2m,

the number of admissible μ is clearly 2 — 1, as claimed. Π

2.3. An extension to quadratic character

The purpose of this section is to deduce an analog of Theorem 2.3 which

holds when the character on the space of half-integral weight forms is an arbi-

trary quadratic character.

To describe the situation further, we set some notation. As above, let N be an

odd positive squarefree integer, and k > 3 an odd integer. Let ψ be an even

quadratic Dirichlet character defined modulo AN. Rather than attempt to derive

another internal decomposition for Sk/2(AN, φ) as in Theorem 2.1, we shall show

that Sk/2(AN, φ) and Sk/2(AN, 1) are isomorphic as modules for the Hecke alge-

bra H(N), from which we shall derive the

THEOREM 2.6. Let N be an odd positive squarefree integer, and k > 3 an odd

integer. Let ψ be an even quadratic Dirichlet character defined modulo AN. Then

d\N

where the isomorphism is as modules for the Hecke algebra H(N).

The idea behind the desired isomorphism is simple. Since N is squarefree, the

character φ is equal to \~ΣΓ) for some divisor Q of N with (necessarily, since N is

squarefree) gcd(Q> AN/Q) = 1. A generalized Atkin-Lehner involution WQ will

act as a "hermitian involution" which commutes with the action of the Hecke oper-

ators, and hence provides an isomorphism (as modules for the Hecke algebra)

between Sk/2(AN, 1) and S

While WQ operators have been defined in [1], [7], and [12], none of these oper-

ators is sufficiently general to give a commutation relation with the shift operators

(Bd) which are fundamental to our definition of the space of oldforms (and hence

of newforms). So we introduce a slightly more general operator with the desired

properties. The desired properties (commutation relations with various other oper-

ators, hermitian properties, etc.) are completely analogous to properties for the in-
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tegral weight analog. The proofs are more tedious because of the fussiness of auto-

morphy factors, although there are no significant surprises. Therefore we state the

properties and give only the barest of outlines of the proofs.

In defining the WQ operator, there is no reason to assume that N is square-

free or that the character is quadratic. In fact it is quite revealing not to do so,

since we shall see why the situation of quadratic character is special.

Let N be a positive integer, and Q an odd divisor of N with gcd(Q, AN/Q)

= 1. Let φ be an even Dirichlet character defined modulo AN, and let

F o r / e Sk/2(ΛN, φ) define WQ by

f\ WQ=f\ WQ(φ) = φQ(y)φψ(x)f\ γ*δQ

where γQ — {γQi j(jQy z)} and δq — {<5ρ, Q } are elements in the metaplectic

+ 4iV
cover % of GL2 (Q) (see Shimura [8]), and ψQ and ψ±κ are the Qth and -77- th

parts of φ. Here for γ ^ -Γ0(4), j(γ, z) is the standard automorphy factor

γ v θ(γ(z)) ^ 2

It is trivial to check that WQ is well-defined and that Ueda's WQ is a special

case of this operator.

PROPOSITION 2.7. The operator WQ maps Sk/2(AN', φ) to Sk/2\ΛN, φQφήK \-τr

This follows easily from the observation that for γ ^ ΓQ(4N),

* ~ -1 -1 *ί ( Q\\
I \ (X IJ

Next we have the

PROPOSITION 2.8. Let f e Sk/2(AN, φ) then

/ 4JV\ / 4JV\
2. //Qr I 4iV wiίΛ gcd(Q, -Q-) = gcd[Q', -ψ) = gcd(Q, 00 = 1,
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f\ WQ{φ)

. The proof proceeds along a standard line, but to check the automor-

/ Q\
phy factors, one must exercise a little care. First note that if χ = [~^rj, then the

0 and 4iV/Q-parts

if Q = 1 (mod 4) f 1 iί Q = 1 (mod 4)

Q x XAN/Q 1 /" 1 \ r n — n ί J λ\

\ t ΓΛ - o / A A\ \\Hr) if 0 = 3 (mod 4).
if 0 = 3 (mod 4) ι V * /

XQ

("*

Then, as one considers the cases Q = + 1 (mod 4), one must recall that

- i \ 1 / 2 / - i \ 1 / 2 / - i \ 1 / 2

) h) ( )i\1/2 / - i\1/2 / - i\1

where

1 if Q = w = 3 (mod 4)
1 1 otherwise.

Finally one uses the quadratic reciprocity law for Jacobi symbols. D

Next we have the

PROPOSITION 2.9. Let f ^ Sk/2(4N, φ), with Q as above, and let p be a prime,

p X N. Then

f\ τk/2AN,φ(p2) I wQ(φ) = φQ(p2)f\ wQ(φ) I fk/MQφψg)(p2).

Proof. We sketch the basic idea. Let r = {τ, p } ^ $, where r =
v 0 p'

The Hecke operator Tk/2{p) is described by the action of the double coset

y* / 4 ) ~X(4Λ0τ4(4Λ0. If we write

Zlo(4A0rΛo(4Λ0 = U ΔQ(4N)τυ,

u

then we need to show that

/I fk/2ANrφ(p2) I WQ{φ) = Έψ(aυ)f\τv\ WQ(φ)

2 /•
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= φQ(p2) Σ φQ{aJφ^aJ (§-)f \ WQ(φ) I τ

where if f = {τv, φj ^ $, av is the (l,l)-entry of τv.

In fact, we show that for each v there is a unique 1/ so that

φ(av)f\ fv\ WQ = φQ(p2)ψQ(avr)04jv(fl1/)( —)f\ WQ I v

Using Shimura's notation [8] for the expression of the double coset as a union

of right cosets,

4(4Λ0rΛo(4Λ0 = PU Δ0(4N)aϊ U *U Δ0(4N)βt U 4>(4Λ0σ*,
6=0 Λ=0

we show that in the correspondence τv *-* τ^, we can relate α 6 <-* α6,, βh *-• βh,

and σ with itself. Finally, since p X 4N, we may assume that in the definition of

TQ(WQ), we have z = 0 (mod/) ). •

Next we describe the commutation relations of the shift operator and the

^-operator .

PROPOSITION 2.10. Let M be a positive integer, and let Q be an odd divisor of

MN with gcd(Q, 4MN/Q) = 1 . Then for f e Sk/2(4N, φ) we have

M_

φQ(M)f\ WQ(φ) I BM t/gcd(Q, M) = 1

-jf) φiNM/Q{M)M-knf\Wi

Q

N

/M(φ) ifM\Q

where the superscripts on the W-operators indicate the levels of the forms on which they

operate.

Proof This proof is analogous to the others, however it does require a case

analysis based upon the congruence class of M modulo 4. •

With these preliminary results in hand, we now address the interaction of the

FFρ-operator with oldforms and newforms.
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PROPOSITION 2.11. Let N be a positive integer, Q an odd divisor of N with

gcd(Q, AN/Q) = 1, and φ an even Dirichlet character defined modulo AN. Then

WQ(φ) takes Sk/2(AN, φ) to Sk/2yAN, ΨQΦW/Q\^Γ)), and in particular takes

old forms to oldforms.

Proof. It is clear from Proposition 2.9, that WQ takes Hecke eigenforms to

Hecke eigenforms. Let / ^ Sk/2(AN, φ). By linearity, it is enough to suppose that

for some prime q \ N either f ^ Sk/2(AN/q, φ) (provided φ is defined modulo

AN/q), or f=g Bq for some g e Sk/2[AN/q, φ provided φ i s

defined modulo AN/qj.

For the first case, write

x

^ Qw
δa.

We have two subcases depending upon whether q | Q or not. Note that if q X Q,

then Q 4,N/q. We now write

4N

ΪQ = •
\ Q
( x

( AN/q

y
ύqXQ

Notice that if q X Q, then γQ is a valid representative for γQ

 Q (needed to

define W*Q/M), while if q \ Q, then γ™ is a valid representative for ΪQN

/q

/q. Thus we

have

( / G
AN, ΦQΦ\~^~

In the case that/ = g \ Bq, we have by Proposition 2.10 that

/ I $%(</>)= g\Bt\ W^iφ)
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which again shows that /1 W^(0) e Sk/2\AN, 0ρ04iV/Q(~^Γ/)) as required. D

Our final proposition provides the last tools needed to complete the proof of

Theorem 2.6.

PROPOSITION 2.12. Let N be a positive integer, Q an odd divisor of N with

(Q, AN/Q) — 1, and φ an even Diήchlet character defined modulo AN.

1. Forf, g e Sk/2(AN, φ), </, £> - </| ϊ ^ , * | ^ >

2. 77ιe operator ^ Q ( 0 ) tato S*+

/2(4iV, 0) to S^/2{AN, Φ QΦ,N/Q(^))f and in

particular takes newforms to newforms.

3. If φ is quadratic and N odd and squarefree, then Sk/2(AN, 1) and Sk/2(AN, φ)

are isomorphic as modules for the Hecke algebra.

Proof. The first statement is obvious, since for all β^^, (f\fiigϊ = (fig\β ^

For the second statement, let / ^ Sk/2(AN, φ) be a newform. By Proposition 2.9,

/I WQ{ψ) is again a simultaneous Hecke eigenform. We need only to show that it lies

in Sk/2[AN, 0ρ04iv/g(^r)) L e t g G Sk/2^AN, ΦQΦ4N/Q{~^')) Then by Proposition

2.11, g\ WQ(φQφ4N/Q(-^)) e S"2(4iV, 0), and * | ^ ρ ( 0 ρ 0 4 i V / ρ ( - | ) ) I WQ(φ) =

Kg with I Λ: I = 1. Thus

</l ^ o(0), >̂ = κ<f\ WQ(φ),g\

as required. For the third statement, since N is odd and squarefree, we may take

φ = ^ r for some divisor Q of N (necessarily satisfying (Q, AN/Q) — 1).

Then WQ(X) maps Sk/2(AN, 1) to Sk/2(ANf φ). Moreover, by Proposition 2.9, /

and / | WQ(X) have the same Hecke eigenvalues, and since WQ(1) is an "involu-

tion", the proof is complete. Q

https://doi.org/10.1017/S0027763000005961 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005961


1 6 2 THOMAS R. SHEMANSKE

3. Decomposition theorems—Prime power level

In this section, we decompose the distinguished subspace 5 i4qm, φ) defined

by Ueda [12] in terms of the space of newforms as defined in this paper. We give

a decomposition of both the full space of cusp forms Sk/2i4qm, φ) and of the

Kohnen subspace Sk/2i4qm, φ)κ where q is an odd prime, m > 2, and φ an even

quadratic Dirichlet character defined modulo 4# . We begin with Ueda's definition

of S using twisting operators. We remind the reader of Ueda's notation [12].

Write N = Aqm = MYM2 with Mx = 1 and M2 = qm. Let Π = iq). Write

S(kqm, φ) to represent either Sk/2i^qm

1 φ) or Sk/2i4qm, φ)κ. While we have de-

fined the subspace of oldforms Sk/2(Aqm, φ) in equation (2.1), we need to make

sure the same definition makes sense in the Kohnen subspace. That is, we want to

make the definition

(3.1) S~k/2{4N,φ)κ = Σ Sk/2(4N/q,φ)κ
q\N

cond(0) \4N/q

+ Σ Sk/2(4N/q,φ(i))κ\Br

cond(0(-|-))!4iV/?

We need only to check that Sk/2\4N/q, φ (-|-j j | Bq c Sk/2(4N, ψ)κ.

Clearly there is no issue with the level and character. The only condition to check

is that the constraints on the Fourier coefficients which define the Kohnen sub-

space are met.

Let g = Σ a(n)χn e Sk/2[4N/q, φ \-^r)) , and write g \ BQ = Σ b(n)χn e
\ \ * 11 κ

Sk/2i4:N, ψ). Since φ is quadratic, we may write φ = (~x~) for some positive

divisor No of N. Let ε = \-τr). Then g \ Bq e Sk/2i4N, φ)κ provided bin) = 0
\ iV0 /

for ε ( - 1)"2"« Ξ 2,3 (mod 4).

Since £ e 5fc/2(4iV/^, φ (-£-)) , and 0 ί-r-) = (-^r-), we know that

= 0 if I j ε ( - D-^M = 2,3 (mod 4). Now bin) = ain/q) = 0 unless q

1 \ k

) q Ξ l (mod 4), if ε ( — 1)~

Ξ 2,3 (mod 4), then
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ε(- D^n = ε(- D^n^q = ( j ε ( - D ^ W Q = 2,3 (mod 4),

so that a(n0) = b(n) = 0 as required.

We define the subspace of oldforms in the Kohnen subspace by equation (3.1),

and define the subspace of newforms Sk/2(AN, φ)κ as the orthogonal complement

of Sk/2(AN f φ)κ in Sk/2(AN, 0)#. Note that these subspaces are different than the

ones Ueda defines, but it is precisely the point of this section to compare these

subspaces by decomposing one in terms of the other.

So with S(Aqm, φ) representing either the full space of cusp forms or the

Kohnen subspace, we let S {Aq , φ) represent the corresponding subspaces of old

or newforms as defined in and immediately following equations (2.1) and (3.1).

We begin our comparison of the decomposition of S(Aq , φ) using Ueda's

twisting operators and our notion of newforms. It follows from Propositions 1.5,

1.10, and 1.11 of [12] that for m > 2,

(3.2) SiAq , φ) = S (Aq , φ) 1 S[Aq , φ [-^)) I Bq

where _L denotes orthogonal sum. Moreover, by definition, we know that

5(4?*, φ) = S+(4qm, φ) ± S'(4qm, φ),

and from the definitions, s(4qm~\ ψ (-|-)) | Bq c S~{4qm, φ). Thus S+(4qm, φ)

Now by definition,

S~(Aqm, φ) = 5(4^-1, φ) + s(4qm-\ φ (-%)) \ B

We compute that

-\ φ) Π s(4q-\ φ (-f)) | Bq = S^2, φ (-f)) | B

q.

as follows. First it is obvious that the RHS is contained in the LHS. Now let / =

g\Bq<Ξ S(4qm~\ φ) with g e S^qm~\ φ (-%)). Since / has level Anm~\ by

Propositions 1.10 and 1.11 of [12], we have that g <Ξ sUqm~\ φ (-^)) or g = 0,

which is what we required.

It follows that
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m(4q,φ)=S[4q ,φ\-£-))\Bq ® [[S[4q ,ψ\^-))\Bq)

On the other hand, just as in (3.2) for m > 3,

(3.3) S(4<f-\ φ) = S\Aqm-\ φ) 1 S^q""2, ψ (-J-)) | Ba,

-\φ)}.

hence

S (4qm, φ) = S\4qm \ ψ) θ

Thus for Yn ̂  3 we have

S(4<7M, 0) = 1, φ) 1 S

(3.4)

(4? , φ) 1 [S (Aq , φ)
—1 f / 0.

, φ \^-

If only the last sum in the above expression were an orthogonal sum, then by

the uniqueness of orthogonal complements, we could easily deduce the decomposi-

tion:

S\Aqm, φ) = S+(4<Λ φ) ± S0(4qm-\ φ).

However, the sum is not necessarily orthogonal. Nonetheless, we will eventually

deduce exactly this identity with _L replaced by Θ. Unfortunately, the proof is a

bit more indirect.

We begin by establishing the above identity as an isomorphism as modules

for the Hecke algebra H(q) generated by all Hecke operators f k/2(p) with

(p, 2q) = 1.

THEOREM 3.1. Let q be an odd prime, m > 2 an integer, and φ an even quadrat-

ic Dirichlet character defined modulo Aq . Then as H(q) -submodules of S(4q , φ),

S"(4qm, φ) =
S+(4qm, φ) θ S\Aqm~\ φ) if m > 3 or m = 2, φ = 1

S+{4q2, φ) θ S + Uq, φ) if m = 2 and φ = (-|r).

Proof. We must separate the cases m >• 3 and m = 2. First consider m ^ 3.

Recall that H(q) is a commutative semisimple algebra. Since φ is quadratic, by

Lemma 5 of [9] Tk/2(p ) — Tk/2Aqm φ(p ) is hermitian, and by easy computations
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(see [12]), we can verify that all of the summands in equation (3.4) are H{q)-

submodules of SiAq , 0). Thus the equalities in equation (3.4) also hold as iso-

morphisms as H(q) -modules:

S(4q , 0) = 5 (Λq , φ) Θ S( 4q , ψ [-^)j I 5 ?

= S+(4qm, 0) θ 50(4^m~\ 0) θ SU^"1"1, 0 ( ^ ) ) I Bq

Using the semisimplicity of H(q) and canceling like terms yields the result in

this case. For m = 2, equation (3.3) is not valid. By the conventions in Ueda [12],

S(4#, 0) = S 0(4#, 0) and 514, 0 \-JΓ)) I #„ is not necessarily zero.

As above, we do have that

(3.5)

S(4q2, φ) = S\4q2, φ) θ S[4q, φ (~)j | Bq

= S+(Aq2, φ) θ s(iq, φ ( ^ ) ) | Bq θ [(5(4, 0 ( ^ ) ) | β t) in S(4ί, 0)].

Moreover, these equalities also hold as H(q) -module isomorphisms.

If 0

H(q) yield

If 0 = 1, then S(4, 0l~z~)) = 0, so equation (3.5) and semisimplicity of

S0ttq2, φ) = S+(4^ 2, 0) θ S(4tf, 0) = S+(4^ 2, 0) θ S 0(4^, 0)

where 5 (4#, 0) = S(4^, 0) by Ueda's conventions.

If 0 =£ 1 (and hence 0 = (-^r)), we need to compute (S(4,l) I

i ) ) X «4.1) IB

[(S(4,l) I By in S(4«, (|-))] = S*(4?,

Thus

V ( i ) ) ^V, ( i ) ) θ 5(4,, 1) I Bt
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which yields S&Uq\ (-%-)) = S+Uq\ (-|-)) θ S+Uq, (-%-)) as required. •

As a corollary we have

COROLLARY 3.2. Let the notation be as above, and put μ — ordβ(cond(0)) ( = 0

or 1), then

m

(4# , 0) = 0 S (4# , 0).

Proof. It is immediate from Theorem 3.1 that

ΘΓ=2 5+(4<?', 0) θ S 0 (4?, 0) if 0 = 1

/ 0 \
If 0 — \~Z~)> w e a r e done. To go further, we recall Ueda's convention [12] that

5 0(4^, 0) = S(4q, 0). If 0 = 1, then S~(4tf, 1) = 5(4,1) = 5 + (4, l ) , so S(4q, 1)

= S+(4^, 1) θ S~(4q, 1) - 5 + (4^, 1) θ 5 + (4, l ) , as required. •

Remark 3.3. Multiplicities of newforms. When S(4qm, φ) = Sk/2(4:qm, φ)κ,

Ueda [12] has established a newform theory and strong multiplicity-one theorem.

First, he decomposes the space S using twisting operators. In our case, this de-

composition is quite simple: S = 5 >+ θ S '", where S ' = {/Ξ 5 :f\Rq= ± / }

/ * \
and Rq is the twisting operator associated to I — ) . He then decomposes each

subspace 5 ' into a direct sum of a space of oldforms © ' and its orthogonal

complement @0>± (newforms). In our case 5 '* = © f±. By Theorem 3.11 of [12],

each summand © '" satisfies a strong multiplicity-one theorem. In particular, since

m

5 0 = 5 0 > + θ 50>~ = ©0>+ θ © 0 )" = 0 S+(4?', 0),

we must have that newforms in the spaces 5 (4# , 0) occur with multiplicity one

or two. This is analogous to our Theorem 2.3 which states a more precise result

for the full space of cusp forms having squarefree level.
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We now show that S& (Aqm~ , φ) c S 0 (4# m , φ) (for m > 3). To do so, we

first need to compute the adjoint of the operator Uq. The proposition below is

stated for the full space of cusp forms. The action on the Kohnen subspace is the

same, as we discuss following the proof.

PROPOSITION 3.4. Let q be an odd prime and N a positive integer. Suppose

that q\ N', and φ is an even Dirichlet character defined modulo AN. Let

Uq : Sk/2yAN, Φ\~^r)) —* Sk/2(AN, φ) be the adjoint of the Uq operator. Then for

•γ j % k/2 T-j I ΓWΛ iNQ/ ,\

g Uq = q g Bq\ Ύr4N (φ)

where Bq is the shift operator and Tr is the trace operator.

Proof Let Γλ = /\(4iV), Aλ = Δλ(AN), a = { j and ξ = [a, q ] G <§.

Then Uq — A£AV By Lemma 1.9 of [11] (using Proposition 1.1 and equation

(1.14) of [8]), we have U* = A^Ah where f' = W, q1M] (Ξ§,ar = χ Q χ J .

( 1 0 \
If a.. = I . A r . j , then since ^ N, we have

^ V ANμ 1 /

Γ2 - Λ(4Λ0 = Όl=1ΓMNq)au and

Again by Proposition 1.1 and equation (1.14) of Shimura [8]

where α* = [αw, j{au, r)] e j ,

So for ^ e SΛ/2(^4iV, 0V^^"y y - w e h a v e

I r r * I A F r A i A / /\ Λ/4-1 v^ I =., *

^ I ί/g = ^ I 4 ^ ^ ! = det(α ) Σ g\ ξ au

k/2-1 sr D I * k/2-1 sp 7 / i \ / I D \ I *

= q Σ g Bq\au = q Σ φ(du) (g | Bq) \ au
U = l il = l

where du — 1 is the rf-entry of au

= q U!(4iV; : 11 \AJSIq)\g\ Bq\ ϊr4N (φ) = q g\ Bq\ 1 r4iV (0;

as required. Π
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We note that the same expression makes sense as well for the Kohnen sub-

space, provided N is odd so the space is defined. Apriori, the adjoint of the Uq

operator restricted to the Kohnen subspace is the orthogonal projection of the ad-

joint Uq into the Kohnen subspace, but we have already observed that the Bq

operator preserves the Kohnen subspace, and since the trace operator is the ad-

joint of the inclusion map, it does as well.

PROPOSITION 3.5. Let m> 2, and f e S 0 = S*(4qm, φ). Thenf\ Uq = 0.

Proof. Recall that S 0 = S0'+ Θ S0 '~ where S0>± = {/ e S0: f\ Rq = ± /} ,

and Rq is the twisting operator associated to ( — ) . Clearly, it is enough to verify

the result for / e S 0 > ±. For such an / = Σ anχ
n, f\Rg= ± f means that an = 0

whenever q \ n. Thus / | Uq = Σ anqχ
n = 0. D

PROPOSITION 3.6 Form > 3, S\±qm~\ φ) c S0(4qm, φ).

Proof. Let/ e Se(4?m"1, φ) c 5(4^m, 0). Then

/ e 50(4^m, 0) ^ </, £ I ̂ > 4 ^ ) 0 = 0 for all g e

<=></, ^ I β j Tr^-i>4^-1 ) 0 = 0 for all #

<*<f, g\ U*^ = ° f o r a l l £
<^ </1 {79, g) — 0 for all g

which is true by the previous proposition. •

COROLLARY 3.7. Form > 3, 5 0 (4^ w , φ) = S*/2(4qm, φ) Θ S 0 (4? w ~\ 0).

Prco/. We have already verified that both summands are contained in the

RHS. Moreover, S^/2(4qm

f φ) Π S 0(4^"" 1, φ) = 0 since S0(4^m"1, φ) c S(4^w~\ 0)

c Sk/2(Aqm, φ). Thus the RHS is a summand of the LHS. But by Theorem 3.1,

both sides are isomorphic as H(q) -modules, and hence as finite dimensional vec-

tor spaces from which the assertion follows. Π

REFERENCES

1 ] W. Kohnen, Newforms of half-integral weight, J. reine angew. Math., 333 (1982),

https://doi.org/10.1017/S0027763000005961 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005961


NEWFORMS OF HALF-INTEGRAL WEIGHT 169

32-72.
[ 2 ] W. Li, Newforms and functional equations, Math. Annalen, 212 (1975), 285-315.
[ 3 ] M. Manickam, B. Ramakrishnan, T. Vasudevan, On the theory of newforms of

half-integral weight, J. Number Theory, 34 (1990), 210-224.
[ 4 ] S. Niwa, On Shimura's trace formula, Nagoya Math J., 66 (1977),183-202.
[ 5 ] J.-P.Serre and H. Stark, Modular forms of weight 1/2, In Lecture Notes in Math.

627, Springer-Verlag, Berlin and New York (1977), 27-67.
[ 6 ] T. Shemanske, Cuspidal newforms and chracter twists, J. reine angew. Math., 328

(1981), 59-71.
[ 7 ] T. Shemanske and L. Walling, Determining multiplicities of half-integral weight

newforms, Pacific J. Math., 167 (1995), 345-383.
[ 8 ] G. Shimura, On modular forms of half-integral weight, Annals of Math., 97 (1973),

440-481.
[ 9 ] G. Shimura, The critical values of certain zeta functions associated with modular

forms of half-integral weight, J. Math. Soc. Japan, 33 (1981), 649-672.
[10] M. Ueda, The decomposition of the spaces of cusp forms of half-integral weight

and the trace formula of Hecke operators, J. Math. Kyoto U., 28 (1988), 505-555.
[11] M. Ueda, The trace formula of twisting operators on the spaces of cusp forms of

half-integral weight and some trace relations, Japanese J. Math., 17 (1991),
83-135.

[12] M. Ueda, On twisting operators and newforms of half-integral weight, Nagoya
Math J., 131 (1993), 135-205.

Department of Mathematics
6188 Bradley Hall
Dartmouth College, Hanover,
New Hampshire 03755-3551, U.S.A.
E-mail address: Thomas.Shemanske®dartmouth.edu

https://doi.org/10.1017/S0027763000005961 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005961



