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Abstract

In this paper we present a method to recover a time-homogeneous piecewise constant
volatility from a finite set of perpetual put option prices. The whole calculation process
of the volatility is decomposed into easy computations in many fixed disjoint intervals.
In each interval, the volatility is obtained by solving a system of nonlinear equations.
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1. Introduction

One of the most studied problems in mathematical finance is to calculate the price of an
option if the diffusion coefficient of the underlying asset is given. In practice, it is often natural
to consider the inverse problem: how to compute the volatility of the underlying stock price
if a set of option prices is provided. For example, in the classical Black–Scholes model there
is a unique correspondence between the constant volatility and the price of a European option.
Thus, the implied volatility can be obtained by the Black–Scholes formula if one option price
is known. In general, however, if more than one option price is given, a richer model is needed
for the underlying process. One such model is the local volatility model, in which the volatility
depends on the current stock price and the current time. Also, this model can be calibrated to
fit given option data perfectly. Indeed, Dupire [3] showed that the level- and time-dependent
volatility can be written in terms of derivatives of European option prices with respect to strike
price and maturity.

In the present paper we are interested in the calibration of models from the prices of
perpetual American put options. The volatility of the underlying asset is considered to be time
homogeneous. Similar to the European case mentioned above, if the Black–Scholes model
is offered as the process of the underlying stock price, then it is straightforward to compute
the constant volatility if one option price is given. In parallel to Dupire’s equation, a level-
dependent model for the stock price is given in Ekström and Hobson [4]; see also [1]. Ekström
and Hobson assumed that the prices of the perpetual put options are given for all different
strike prices and they expressed the diffusion coefficient in terms of the option prices and their
derivatives. This volatility is uniquely determined at the price level below the current stock
price.

As noted above, both Dupire’s formula for the volatility and the level-dependent volatility
recovered from prices of perpetual put options are calculated under an assumption of a (possibly
double) continuum of given option prices. In reality, however, option prices are only given for
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a discrete set of strike prices, so one then needs to interpolate between them. Moreover,
since the volatility is calculated using derivatives of the option prices, it is very sensitive to the
interpolation procedure. On the other hand, the constant volatility defined in the Black–Scholes
model is easy to calculate, but generically it is impossible to fit one constant volatility if several
option prices are given.

Motivated by the discussion above, we consider a situation in which prices of perpetual
American put options are given for a finite set of strike prices. To rule out arbitrage possibilities,
the option price has to be increasing and convex in the strike. Moreover, we assume that the
option price is strictly convex in strikes. Since there does not exist a continuum of option
prices, we can create plenty of time-homogeneous models to reproduce the option data (one
for each choice of interpolation procedure). A natural candidate for the time-homogeneous
volatility model is the piecewise constant function of the stock price. In the present paper
we prove the existence of a piecewise constant volatility that reproduces the given option
prices. Given n option prices, the whole calculation process is decomposed into an elementary
computation in n fixed disjoint intervals. To obtain the volatility in each interval, we just need
to solve two nonlinear equations with two unknown variables. Moreover, since it does not
involve differentiation of the option price, we believe that it is more stable with respect to small
changes in the input than the model by Ekström and Hobson.

The paper is organized as follows. In Section 2 we study the forward problem. Provided that
the volatility is a piecewise constant function of the underlying stock price, we can calculate
the price of the perpetual put option for different strike prices. Section 3 treats the inverse
problem and contains our main results. Given a finite set of prices of the perpetual put options,
we present a method to construct a piecewise constant volatility which reproduces the option
prices. In Section 4, the results are illustrated using a numerical example.

2. The forward problem

We consider a model where the process of the stock priceX solves the stochastic differential
equation

dXt = rXtdt + σ(Xt )XtdWt.

Here r is the constant interest rate,W is the standard Brownian motion, and σ(Xt ) is a positive
function. Given the current stock price x0, the price of a perpetual American put option with
strike K is

P(K) = sup
τ

Ex0 [e−rτ (K −Xτ )
+], (1)

where τ is any stopping time with respect to the filtration generated by W . The solution to the
optimal stopping problem (1) is closely related to the ordinary differential equation (ODE)

1
2σ

2(x)x2uxx + rxux − ru = 0. (2)

There are two linearly independent solutions to this ODE. If one of them is positive and
increasing and the other one positive and decreasing, then they are unique up to positive
multiplicative constants; cf. [2, pp. 18–19]. We denote these solutions byψ and ϕ, respectively.
Without loss of generality, we choose the decreasing solution to satisfy ϕ(x0) = 1. Define the
hitting times Hz = inf{t ≥ 0 : Xt = z}. Since e−rtϕ(Xt ) is a local martingale and ϕ(x) is
decreasing in x, we have

Ex[e−rHz ] = ϕ(x)

ϕ(z)
if x > z.
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Figure 1: The picture shows how to determine the optimal exercise level z for a given strike K .

Owing to the time homogeneity of problem (1), it suffices to take the supremum over stopping
times that are exit times from an interval. Moreover, since put options are considered, we only
need to take the supremum over hitting timesHz for some level z; cf. [4, Proof of Lemma 2.2].
We thus find that

P(K) = sup
τ

Ex0 [e−rτ (K −Xτ )
+]

= sup
{z : z≤x0∧K}

Ex0 [e−rHz(K −XHz)
+]

= sup
{z : z≤x0∧K}

(K − z)Ex0 [e−rHz ]

= sup
{z : z≤x0}

K − z

ϕ(z)
.

It is easy to check that the function ϕ(z) is strictly convex and decreasing in z. In Figure 1,
θ denotes the acute angle between the x-axis and the line passing through (K, 0) and (z, ϕ(z)).
Here z can be any price level below x0 and K . It is easy to see that (K − z)/ϕ(z) = cot(θ).
Thus, we just need to find the smallest θ for z ≤ x0. Define

K̂ = x0 − ϕ(x0)

ϕ′(x0)
= x0 − 1

ϕ′(x0)
, (3)

so that the line passing through (K̂, 0) and (x0, ϕ(x0)) is tangent to the curve ϕ.
When K ≤ K̂ , it is not optimal to exercise the option immediately. Instead, the investors

should wait until the stock price hits the optimal stopping level to exercise the option. Thus,
we have

P(K) = sup
z

K − z

ϕ(z)
,

where the optimal z, which is the optimal exercise level for strike K , is chosen so that

(K − z)ϕ′(z)+ ϕ(z) = 0. (4)
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Equation (4) indicates that the straight line passing through (K, 0) and (z, ϕ(z)) is tangent to
the function ϕ. We also obtain P(K) = K − x0 for K > K̂ , which implies that it is optimal
for investors to exercise the option immediately.

We now specialize to the case of piecewise constant volatility. More precisely, it is assumed
that the interval [0, x0] is divided by a mesh consisting of n points a1, a2, a3, . . . , an, which
satisfy 0 < a1 < a2 < · · · < an−1 < an ≤ x0. The volatility function σ(Xt ) is defined as

σ(x) =

⎧⎪⎨
⎪⎩
σ0, 0 < x < a1,

σi, ai ≤ x < ai+1, 1 ≤ i ≤ n− 1,

σn, an ≤ x,

(5)

where σ0, . . . , σn are positive constants. On an interval (ai, ai+1), the volatility is constant and
therefore the fundamental solution ϕ is C∞. However, at a jump point ai of σ , the function
ϕ is merely C1 and the second derivative has a jump. Given the piecewise constant volatility
function σ(x) defined above, the two independent positive solutions of the ODE (2) are

ψ(x) = x

and

ϕ(x) =

⎧⎪⎨
⎪⎩
A0x

−β0 + B0x, 0 < x < a1,

Aix
−βi + Bix, ai ≤ x < ai+1, 1 ≤ i ≤ n− 1,

Anx
−βn + Bnx, an ≤ x,

(6)

where βi = 2r/σ 2
i for i ∈ {0, . . . , n}. Here Ai and Bi for i ∈ {0, . . . , n} are chosen so that

ϕ(x) is C1 everywhere. Without loss of generality, we let ϕ(x0) = 1; thus,

An = x
βn
0 , Bn = 0, (7)

since ϕ(x) is decreasing and nonnegative for x ≥ an. Owing to the C1-regularity, we have

Aia
−βi
i+1 + Biai+1 = Ai+1a

−βi+1
i+1 + Bi+1ai+1,

−Aiβia−βi−1
i+1 + Bi = −Ai+1βi+1a

−βi+1−1
i+1 + Bi+1.

It follows that

Ai = Ai+1a
βi−βi+1
i+1

1 + βi+1

1 + βi
, Bi = Ai+1a

−βi+1−1
i+1

βi − βi+1

1 + βi
+ Bi+1, (8)

for i ∈ {0, . . . , n− 1}.
The function ϕ(x) defined in (6), (7), and (8) is the decreasing fundamental solution to the

ODE (2). Hence, for K ≤ K̂ = x0(1 + 1/βn), the option price is

P(K) = sup
z

K − z

ϕ(z)
, (9)

where the optimal z is determined by

(K − z)ϕ′(z)+ ϕ(z) = 0. (10)

For K > K̂, we have P(K) = K − x0. Since ϕ(x) is C1 and strictly convex in x, (10)
defines a one-to-one correspondence between strike prices K ∈ (0, K̂] and optimal exercise
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levels z ∈ (0, x0]. Now letK∗
i be the strike price for which ai is the optimal exercise level. By

(10) we have

K∗
i = − ϕ(ai)

ϕ′(ai)
+ ai = (1 + βi)Ai

βiAia
−1
i − Bia

βi
i

for 1 ≤ i ≤ n. It is straightforward to find that

K∗
n = an(1 + βn)

βn
.

Since K is strictly increasing as a function of z, K∗
i is increasing in i. Moreover, for K ∈

[K∗
i , K

∗
i+1), the optimal exercise level z belongs to [ai, ai+1). By summarizing all our findings

in this section we obtain the following theorem.

Theorem 1. Given the piecewise constant volatility defined in (5), the price of the perpetual
American put option defined by (1) is given by

P(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K − x0, K ≥ K̂,

Kβn+1β
βn
n

x
βn
0 (1 + βn)1+βn

, K∗
n ≤ K < K̂,

K − z

Aiz−βi + Biz
, K∗

i ≤ K < K∗
i+1, 1 ≤ i ≤ n− 1,

K − z

A0z−β0 + B0z
, 0 < K < K∗

1 .

(11)

Here Ai and Bi for i ∈ {0, . . . , n− 1} are defined by (8). The optimal exercise level z in (11)
is determined implicitly by

(K − z)(−Aiβiz−βi−1 + Bi)+ Aiz
−βi + Biz = 0 (12)

if K ∈ [K∗
i , K

∗
i+1) for i ∈ {1, . . . , n− 1} or if K < K∗

1 for i = 0.

By Theorem 1, the option price P(K) can be computed explicitly if a piecewise constant
volatility σ(x) is given as in (5).

3. The inverse problem

In this section we take the point of view that option prices for a discrete set of strikes written
on a certain underlying asset can be recorded from the market. We construct a piecewise
constant volatility function of the underlying stock price, which is calibrated to perfectly fit the
finite set of option prices.

Assume thatn strike prices and the correspondingn perpetual put option prices are given from
the market data. Arbitrage considerations show that the put option price has to be nondecreasing
and convex in K . Below we make the slightly stronger assumptions that it is increasing and
strictly convex. Thus, the option price P(Ki) has to satisfy

P(K1) < P (K2) < · · · < P(Kn) (13)

for the strike prices 0 < K1 < K2 < · · · < Kn. For the index level n, we assume that Kn
satisfies P(Kn) = Kn − x0, where x0 is the current stock price. Below Kn will correspond
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to K̂ in the forward problem, so any option with strike price that is bigger than or equal to Kn
should be exercised immediately. Later in this section we will discuss the case whenKn cannot
be observed from the market. We also assume that the natural bounds

(Ki − x0)
+ < P(Ki) < Ki (14)

for i ∈ {1, . . . , n− 1} are fulfilled, where the first strict inequality implies that it is not optimal
to exercise the option immediately. We also assume that the value function P(K) is strictly
convex in the strikes, so that

P(K2)− P(K1)

K2 −K1
>
P(K1)

K1
(15)

and
P(Ki)− P(Ki−1)

Ki −Ki−1
<
P(Ki+1)− P(Ki)

Ki+1 −Ki
(16)

for i ∈ {2, . . . , n− 1}. It follows that

P(Ki)− P(Ki−1)

Ki −Ki−1
< 1 (17)

for i ∈ {2, . . . , n}.
Next we will draw a graph containing all the information given by (13), (14), (15), (16),

and (17). In the x-ϕ(x) coordinate system, draw the lines passing through (Ki, 0) with slope
−1/P (Ki) for every i ∈ {1, . . . , n}. We refer to these lines as ‘option lines’ and denote the
option line with index level i by li . According to (16), we have

Ki −Ki−1

P(Ki)− P(Ki−1)
>

Ki+1 −Ki

P (Ki+1)− P(Ki)
,

where the expression on the left-hand side is the second coordinate of the intersection between
li and li−1, and the expression on the right-hand side is the second coordinate of the intersection
between li+1 and li .

According to (15), we obtain

K2 −K1

P(K2)− P(K1)
<

K1

P(K1)
,

which implies that the second coordinate of the intersection between l2 and l1 is smaller than the
second coordinate of the intersection between l1 and and ϕ(x)-axis. Therefore, as i decreases
from n to 2, the first and second coordinates of the intersection between li and li−1 are all
positive, and decrease and increase, respectively. Equation (14) gives

Ki − x0

P(Ki)
< 1

for any i ∈ {1, . . . , n− 1}, which implies that (x0, 1) is on the right side of all the option lines
except ln. Note that the point (x0, 1) is on ln. According to (17), we have

Kn −Kn−1

P(Kn)− P(Kn−1)
> 1.

This shows that the second coordinate of the intersection between ln and ln−1 is larger than 1.
Summing up all the information mentioned above, Figure 2 gives a simple version of option
lines.
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Figure 2: The option line li has slope −1/P (Ki) and intersects the x-axis at the point (Ki, 0).

Theorem 2. Assume that n strike pricesK1, . . . , Kn and the corresponding prices of perpetual
put options P(K1), . . . , P (Kn) satisfying conditions (13), (14), (15), (16), (17) and P(Kn) =
Kn − x0 are given, where x0 is the current stock price. Then there exists a time-homogeneous
process with a piecewise constant volatility that recovers the option prices.

3.1. Proof of Theorem 2

We are looking for a piecewise constant volatility of the form

σ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ0, 0 < x < b1,

σi1, bi ≤ x < ci, 1 ≤ i ≤ n− 1,

σi2, ci ≤ x < bi+1, 1 ≤ i ≤ n− 1,

σ ∗, x ≥ bn = x0,

(18)

where 0 < b1 < c1 < · · · < bi < ci < bi+1 < · · · < bn = x0. With this volatility, the
decreasing fundamental solution to the ODE (2) is of the form

ϕ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A0x

−β0 + B0x, 0 < x < b1,

Ai1x
−βi1 + Bi1x, bi ≤ x < ci, 1 ≤ i ≤ n− 1,

Ai2x
−βi2 + Bi2x, ci ≤ x < bi+1, 1 ≤ i ≤ n− 1,

A∗x−β∗ + B∗x, x0 ≤ x,

(19)

where β0 = 2r/σ 2
0 (and similarly for βi1, βi2, and β∗). The constants A0, Ai1, Ai2, A∗, B0,

Bi1,Bi2, andB∗ should be chosen so that ϕ(x) isC1 everywhere. If we can find a function ϕ(x)
of the form (19) with suitable parameters which is tangent to all the option lines and touching
the point (x0, 1), and the first coordinates of these tangent points are not bigger than x0, then
it satisfies

P(Ki) = sup
z

Ki − z

ϕ(z)
,

and the optimal z for eachKi is smaller than or equal to x0. Hence, the corresponding piecewise
constant volatility σ(x) is calibrated to fit the set of option prices perfectly and is the volatility
that we are looking for.

https://doi.org/10.1239/jap/1285335403 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335403


Recovering a piecewise constant volatility from perpetual put options 687

Next we determine bi for i ∈ {1, . . . , n} and ci for i ∈ {1, . . . , n− 1}.
Let di be the first coordinate of the intersection of li and li+1. Thus, we have

di = KiP (Ki+1)−Ki+1P(Ki)

P (Ki+1)− P(Ki)
(20)

for i ∈ {1, . . . , n− 1}. Choose bi to be

bi = di−1 + di

2
(21)

for i ∈ {2, . . . , n − 1}, and b1 = d1/2 and bn = x0. We will construct ϕ so that bi is the
first coordinate of the tangent point where ϕ touches the li . (In fact, this tangent point could
be chosen anywhere on the segment that connects the nearest two intersections, but we believe
that the mid-point is a natural choice. For b1, one may argue that b1 = 2d1 − b2 is another
natural choice in some cases.) The second coordinate of the tangent point corresponding to bi
is

ϕ(bi) = (Ki −Ki−1)(P (Ki+1)− P(Ki))

2(P (Ki)− P(Ki−1))(P (Ki+1)− P(Ki))

+ (Ki+1 −Ki)(P (Ki)− P(Ki−1))

2(P (Ki)− P(Ki−1))(P (Ki+1)− P(Ki))
(22)

for i ∈ {2, . . . , n− 1}, which can be easily computed by plugging in the option data. Addition-
ally, we have

ϕ(b1) = 2K1 − d1

2P(K1)
, ϕ(bn) = 1. (23)

For simplicity, we let ci equal di defined in (20). For a graphic illustration of the choices of bi
and ci , see Figure 3.

ϕ( )x

x

b1

bi

b 1i+

b 1n x= 0,( )

–
ci 1

ci

+
ci 1

–
cn 1

Figure 3: The break point ci is chosen as the first coordinate of the intersection between li and li+1. The
break point bi is chosen as the average of ci−1 and ci .
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In the interval [bi, bi+1) for i ∈ {1, . . . , n − 1} the function ϕ(x) should be C1, which
implies the following equations:

ϕ(bi) = Ai1bi
−βi1 + Bi1bi,

∂ϕ(x)

∂x

∣∣∣∣
x=bi

= −βi1Ai1bi−βi1−1 + Bi1 = − 1

P(Ki)
,

ϕ(bi+1) = Ai2bi+1
−βi2 + Bi2bi+1,

∂ϕ(x)

∂x

∣∣∣∣
x=bi+1

= −βi2Ai2bi+1
−βi2−1 + Bi2 = − 1

P(Ki+1)
,

ϕ(ci) = Ai1ci
−βi1 + Bi1ci = Ai2ci

−βi2 + Bi2ci,

∂ϕ(x)

∂x

∣∣∣∣
x=ci

= −βi1Ai1ci−βi1−1 + Bi1 = −βi2Ai2ci−βi2−1 + Bi2.

Let ϕ̂(x, βi1) = ϕ(x) be a function of the variables x andβi1 for x ∈ [bi, ci], and let ϕ̂(x, βi2) =
ϕ(x) be a function of the variables x and βi2 for x ∈ [ci, bi+1). Note that ϕ(bi) and ϕ(bi+1)

are constants that we can compute, ϕ(x) is a function of the variable x, ϕ(x, βi1) is a function
with variables x and βi1, and ϕ(x, βi2) is a function with variables x and βi2. After some
manipulation the equations become

ϕ̂(x, βi1) = ϕ(bi)P (Ki)+ bi

(1 + βi1)P (Ki)

(
bi

x

)βi1
+ P(Ki)βi1ϕ(bi)− bi

P (Ki)(1 + βi1)

x

bi
, bi ≤ x < ci, (24a)

ϕ̂(x, βi2) = ϕ(bi+1)P (Ki+1)+ bi+1

(1 + βi2)P (Ki+1)

(
bi+1

x

)βi2

+ P(Ki+1)βi2ϕ(bi+1)− bi+1

P(Ki+1)(1 + βi2)

x

bi+1
, ci ≤ x ≤ bi+1, (24b)

ϕ̂(ci, βi1) = ϕ̂(c1, βi2), (24c)

∂ϕ̂(x, βi1)

∂x

∣∣∣∣
x=ci

= ∂ϕ̂(x, βi2)

∂x

∣∣∣∣
x=ci

, (24d)

for i ∈ {1, . . . , n− 1}. The option prices P(Ki) and Ki for i ∈ {1, . . . , n} are given, and it is
straightforward to compute ci , bi, and ϕ(bi) for each i, so in each interval [bi, bi+1) there are
only two unknown parameters βi1 and βi2 to be determined. Next we will prove the existence
of a solution to the system of equations (24a)–(24d).

It is easy to check that

lim
βi1→0

ϕ̂(x, βi1) = ϕ(bi)− x − bi

P (Ki)
,

which implies that ϕ̂(x, βi1) tends to li as βi1 goes to 0. Similarly, we can show that ϕ̂(x, βi2)
tends to li+1 as βi2 goes to 0. We can also check that

lim
βi1→∞ ϕ̂(x, βi1) = ϕ(bi)x

bi
, lim

βi2→∞ ϕ̂(x, βi2) → ∞.

Claim 1. The functions ϕ̂(x, βi1) and ϕ̂(x, βi2) are increasing in βi1 and βi2, respectively.
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Proof. For x ∈ [bi, ci), define z = bi/x. Then

ϕ̂(x, βi1) = ϕ(bi)P (Ki)+ bi

(1 + βi1)P (Ki)
zβi1 + P(Ki)βi1ϕ(bi)− bi

zP (Ki)(1 + βi1)
.

Taking the derivative of ϕ̂(x, βi1) with respect to βi1 yields

1 + βi1

ϕ(bi)+ bi/P (Ki)

∂ϕ̂(x, βi1)

∂βi1
= zβi1 ln z+ 1

1 + βi1

(
1

z
− zβi1

)
= f (z).

Note that 0 < z ≤ 1 and f (1) = 0. Thus, in order to show that ϕ̂(x, βi1) is increasing in βi1,
it suffices to show that f (z) is positive for 0 < z < 1. Next, differentiating zf (z) with respect
to z gives

∂(zf (z))

∂z
= (1 + βi1)z

βi1 ln z < 0

for 0 < z < 1. Note that 1 × f (1) = 0; thus, zf (z) > 0 for 0 < z < 1. It follows that
f (z) > 0 for 0 < z < 1, which implies that ∂ϕ(x, βi1)/∂βi1 > 0. We can also show that
∂ϕ(x, βi2)/∂βi2 > 0 by a similar argument as above. This completes the proof of the claim.

Therefore, as βi1 increases from 0 to ∞, ϕ̂(x, βi1) increases from ϕ(bi)− (x − bi)/P (Ki)

to ϕ(bi)x/bi . Again, as βi2 increases from 0 to ∞, ϕ(x, βi2) also increases from ϕ(bi+1) −
(x − bi+1)/P (Ki+1) to ∞. Let A be the point (ci, (Ki − ci)/P (Ki)), and let B be the point(

ci,
ϕ(bi)(bi+1 − ci)+ ϕ(bi+1)(ci − bi)

bi+1 − bi

)
;

cf. Figure 4. If we choose a point on the segment AB, except the point A, then there
exist βi1 and βi2 such that ϕ̂(x, βi1) and ϕ̂(x, βi2) pass through that point. For βi1 and βi2
sufficiently small, ϕ̂(x, βi1) and ϕ̂(x, βi2) will meet at some point at the segment AB which
is very close to the point A. Clearly, the angle between ϕ̂(x, βi1) and ϕ̂(x, βi2) is smaller
than 180; cf. Figure 4. If ϕ̂(x, βi1) and ϕ̂(x, βi2) meet at point B, the angle between the
two ϕ̂ functions is larger than 180◦ due to the convexity of ϕ̂(x, ·) in x. As the intersection
of the two ϕ̂ functions moves from A to B along the segment AB, the angle between the

ϕ( )x

x

bi

b 1i+

ci

A

B

Figure 4: The existence of βi1 and βi2.
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two ϕ̂ functions increases from less than 180◦ to more than 180◦. Hence, by a continuity
argument, there exists a point on the segment AB such that the angle between the two ϕ̂
functions is exactly 180◦. For this particular choice of βi1 and βi2, define ϕ by ϕ(x) =
ϕ̂(x, βi1) for x ∈ [bi, ci] and ϕ(x) = ϕ̂(x, βi2) for x ∈ [ci, bi+1). In this way, ϕ is C1 at ci .

This completes the proof of the existence of βi1 and βi2 for i ∈ {1, . . . , n− 1}.
Note that β0 only influences the prices of options with K < K1 which are not given. Thus,

β0 can be defined arbitrarily. For simplicity, we let β0 = β11. It follows that A0 = A11 and
B0 = B11. Since ϕ(x) is C1 and decreasing in x and ϕ(x0) = 1, it is easy to calculate that
β∗ = x0/P (Kn), B∗ = 0, and A∗ = x0

β∗
. This completes the proof of Theorem 2.

According to (24a)–(24d), in the interval [bi, bi+1) for i ∈ {1, . . . , n − 1}, we just need to
solve the two nonlinear equations

ϕ(bi)P (Ki)+ bi

(1 + βi1)P (Ki)

(
bi

ci

)βi1
+ P(Ki)βi1ϕ(bi)− bi

P (Ki)(1 + βi1)

ci

bi

= ϕ(bi+1)P (Ki+1)+ bi+1

(1 + βi2)P (Ki+1)

(
bi+1

ci

)βi2
+ P(Ki+1)βi2ϕ(bi+1)− bi+1

P(Ki+1)(1 + βi2)

ci

bi+1
(25)

and

− βi1
ϕ(bi)P (Ki)+ bi

(1 + βi1)P (Ki)

(
bi

ci

)βi1 1

ci
+ P(Ki)βi1ϕ(bi)− bi

biP (Ki)(1 + βi1)

= −βi2 ϕ(bi+1)P (Ki+1)+ bi+1

(1 + βi2)P (Ki+1)

(
bi+1

ci

)βi2 1

ci
+ P(Ki+1)βi2ϕ(bi+1)− bi+1

bi+1P(Ki+1)(1 + βi2)
(26)

to obtain the volatility.

Theorem 3. Assume that n strike pricesK1, . . . , Kn and the corresponding prices of perpetual
put options P(K1), . . . , P (Kn) satisfying the conditions specified in Theorem 2 are given. The
piecewise constant volatility that recovers the option prices can be computed by the following
procedure.

1. Calculate ci , bi , and ϕ(bi) for each i by (20), (21), (22), and (23). Additionally, let
b1 = c1/2 and bn = x0.

2. Substitute the numbers computed above into (25) and (26) to obtain βi1 and βi2 for
i ∈ {1, . . . , n− 1}. The tail volatility β∗ = x0/P (Kn), and let β0 = β11.

Then the piecewise constant volatility that recovers the given option prices is given by

σ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2r

β0
, 0 ≤ x < b1,√

2r

βi1
, bi ≤ x < ci for 1 ≤ i ≤ n− 1,√

2r

βi2
, ci ≤ x < bi+1 for 1 ≤ i ≤ n− 1,√

2r

β∗ , x0 ≤ x.
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Remark 1. Note that the volatility model described above is not the unique piecewise constant
volatility model that reproduces the option data. In fact, the choice of the break points bi and
ci is arbitrary to some extent. For example, our assumption that the tangent point where ϕ
touches the option line is located in the middle of two intersections could easily be changed,
thereby giving rise to a different volatility. Also, note that we obtain 2n constant volatilities
from n option prices, so the degree of freedom is n. However, it seems difficult for us to both
decrease the degree of freedom and at the same time ensure the solvability of the problem.

It might happen that Kn satisfying P(Kn) = Kn − x0 cannot be observed from the market.
In such a case, to apply the calibration method described above, we must make up a proper
Kn with P(Kn) = Kn − x0 using the given option data P(K1), . . . , P (Kn−1). Since P(K) is
strictly convex with respect to K , the strike price Kn has to satisfy

Kn − x0 > P(Kn−1)+ (Kn −Kn−1)
P (Kn−1)− P(Kn−2)

Kn−1 −Kn−2
. (27)

There are many ways of choosingKn that satisfies (27). For example, one way would be to use
a second-order Taylor expansion of P at the point Kn−1. However, we omit the details of this
procedure.

4. Numerical illustration

In the numerical test, we assume that option data observed in the market are actually
calculated using a CEV model with σ(x) = x−1/2. Let the current stock price be x0 = 10 and
the interest rate be r = 0.1. Then the ϕ function (cf. [2, pp. 18–19]) is given by

ϕ(x) = 26.6423x
∫ ∞

x

1

y2 e−0.2ydy. (28)

According to (3) and (28), we obtain K̂ = 13.8778. A series of strike prices {Ki} between 3
and 13.8778 are selected as option data, and the corresponding series of option prices {P(Ki)}
can be computed by (9) and (10). The volatility (solid line) produced by Theorem 3 is plotted
and compared to the real volatility (dotted line) in Figure 5. As the number of option prices
given increases, our predicted volatility fits better and better with the given volatility.
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(a) 10 pairs of option data (b) 100 pairs of option data
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Figure 5: The dotted line is the real volatility σ(x) = x−1/2, and the solid line is the computed volatility.
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