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Abstract Let G = K o 〈t〉 be a finitely generated group where K is abelian and 〈t〉 is the infinite cyclic
group. Let R be a finite symmetric subset of K such that S = {(r, 1), (0, t±1) | r ∈ R} is a generating set
of G. We prove that the spherical conjugacy ratio, and hence the conjugacy ratio, of G with respect to S
is 0 unless G is virtually abelian, confirming a conjecture of Ciobanu, Cox and Martino in this case. We
also show that the Baumslag–Solitar group BS(1, k), k ≥ 2, has a one-sided Følner sequence F such that
the conjugacy ratio with respect to F is non-zero, even though BS(1, k) is not virtually abelian. This is
in contrast to two-sided Følner sequences, where Tointon showed that the conjugacy ratio with respect
to a two-sided Følner sequence is positive if and only if the group is virtually abelian.
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1. Introduction

Let F be a finite group. The degree of commutativity of F, denoted dc(F ), is the
probability that two randomly chosen elements commute, i.e.

dc(F ) :=

∣∣{(a, b) ∈ F 2 : ab = ba
}∣∣

|F |2
.

Intuitively, the closer dc(F ) is to 1 the “more abelian” F will be. Indeed, Neumann [1.1,
Theorem 1] showed that the degree of commutativity of the finite group tells us about
the structure of the group in the following sense:

Theorem 1.1. Let F be a finite group such that dc(F ) ≥ α > 0. Then F has a normal
subgroup Γ of index at most α−1 + 1 and a normal subgroup H of cardinality at most
exp

(
O
(
α−O(1)

))
such that H ⊂ Γ and Γ/H is abelian.

© The Author(s), 2025. Published by Cambridge University Press on behalf of The
Edinburgh Mathematical Society. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (http://creativecommons.
org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduc-
tion, provided the original article is properly cited. 1

https://doi.org/10.1017/S0013091525100977 Published online by Cambridge University Press

mailto:dguo97@gmail.com
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091525100977&domain=pdf
https://doi.org/10.1017/S0013091525100977


2 D. Guo

Given a subset A of a group, we will write c(A) to be the number of distinct conjugacy
classes meeting A. It is well-known and easy to check that the degree of commutativity
is equal to the proportion of the number of conjugacy classes to the number of elements
in a finite group F, i.e.

dc(F ) =
c(F )

|F |
. (1)

In particular, if the conjugacy ratio c(F )/|F | is at least α, then F satisfies the conclusion
of Neumann’s theorem.
Recently, there have been efforts made to generalise both the quantities in (1) to infinite

groups. Throughout the rest of this paper, we will assume that G is a group generated
by a finite symmetric subset S containing the identity. Antoĺın, Martino and Ventura
[1] defined the degree of commutativity of G with respect to a sequence (µn) of finitely
supported measures on G by

dc(G) = lim sup
n→∞

(µn × µn)({(a, b) ∈ G×G : ab = ba}).

In the special case where µr is the uniform probability measure on Sr = {s1 · · · sr : si ∈
S}, this becomes the degree of commutativity with respect to S,

dcS(G) = lim sup
r→∞

|{(a, b) ∈ Sr × Sr : ab = ba}|
|Sr|2

. (2)

They showed that if G is residually finite and the generating set S satisfies∣∣Sr+1
∣∣

|Sr|
→ 1 (3)

as r →∞, then dcS(G) > 0 if and only if G is virtually abelian. Groups with polynomial
growth satisfy (3) by [21]; it could be that it is only the groups of polynomial growth
that satisfy (3).
Tointon [22, Theorem 1.9 (3)] later gave a general condition on a sequence (µn) of

measures sufficient to imply such a result. In particular, this applies if µn is uniform on
a Følner sequence, or the distribution of the n-th step of a simple random walk. As a
special case, he removed the hypothesis that G is residually finite from Antoĺın, Martino
and Ventura’s result. He also obtained a more quantitative conclusion as in Theorem 1.1.
In a similar manner to (2), Cox [8] introduces the conjugacy ratio crS(G) of G with

respect to S via

crS(G) = lim sup
r→∞

c(Sr)

|Sr|
. (4)

Cox asked whether the analogue of (1) would hold for finitely generated group [8,
Question 2], i.e. whether dcS(G) = crS(G); he also asked whether crS(G) > 0 if and only
if G is virtually abelian [8, Question 1]. As remarked above, both of these statements
hold for finite groups. In his later paper with Ciobanu and Martino, they conjectured
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The Conjugacy Ratio of abelian-by-cyclic groups 3

the second question explicitly [5, Conjecture 1.1] and confirmed this conjecture for some
classes of groups. They first verified their conjecture for any residually finite group G
and any finite symmetric generating set S containing the identity and satisfying (3).
This result was also strengthened by Tointon, who considered the conjugacy ratio with
respect to Følner sequences [22]. In general, a sequence (Fn)

∞
n=1 of finite subsets of G is

said to be a left-Følner sequence, or simply a Følner sequence, if for every x ∈ G,

|xFn4Fn|
|Fn|

→ 0;

similarly, (Fn)
∞
n=1 is said to be a right-Følner sequence if for every x ∈ G,

|Fnx4Fn|
|Fn|

→ 0. (5)

We call (Fn)
∞
n=1 a two-sided Følner sequence if it is both a left- and right-Følner

sequence. It is well known that if S satisfies (3), then (Sr)
∞
r=1 is a two-sided Følner

sequence. Tointon defined the conjugacy ratio of G with respect to a Følner sequence
F = (Fn)

∞
n=1 of finite subsets of G via

crF (G) = lim sup
n→∞

c(Fn)

|Fn|
.

He proved that the conjugacy ratio with respect to any two-sided Følner sequence is
equal to the degree of commutativity with respect to the same Følner sequence, and in
particular positive if and only if the group is virtually abelian [22, Corollary 8.2 and
Proposition 8.5]. Again, as a special case of his result, Tointon removed from Ciobanu,
Cox and Martino’s result the hypothesis that G needs to be residually finite.
In [5, § 4], Ciobanu, Cox and Martino’s also verify this conjecture for several important

classes of groups of exponential growth, including: hyperbolic groups with respect to any
generating set; the lamplighter group with respect to the standard generating set; and
right-angled Artin groups with respect to the generating set associated with its defining
graph.
The aim of this paper is to study the conjugacy ratio of the abelian-by-cyclic groups.

Let G = Koφ 〈t〉 be a finitely generated group where K is abelian, 〈t〉 is the infinite cyclic
group and the semidirect product is defined by φ ∈ Aut(K). To simplify the notation, we
often identify (id, tn) ∈ G as tn, and (k, id) ∈ G as k ∈ K. We will prove Cox’s conjecture
for finitely generated abelian-by-cyclic groups with respect to certain generating sets.
This includes the lamplighter groups (for a more general class of generating sets than
is given by Ciobanu, Cox and Martino), and more generally the wreath product of an
abelian group with Z, as well as the Baumslag-Solitar group BS(1, k) for k ≥ 2.
We will make use of the big-O-notation throughout this paper: let f and g be two real-

valued functions defined on some unbounded subset of real numbers. We write f(x) =
O(g(x)) if there exists a positive real number M and a real number x 0 such that

|f(x)| ≤M |g(x)| for all x ≥ x0.
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4 D. Guo

For conciseness of notation, we will sometimes write f(x) � g(x) for f(x) = O(g(x)),
and f(x) � g(x) to indicate that both f(x) = O(g(x)) and g(x) = O(f(x)).

Theorem 1.2. Let G = K oφ 〈t〉 be a finitely generated abelian-by-cyclic group
with exponential growth. Let R be a finite symmetric subset of K such that S =
{(r, 1), (0, t±1) | r ∈ R} is a generating set of G. Then

c(Sr)

|Sr|
= O

(
log r

r

)
.

According to the Milnor-Wolf Theorem on the growth of solvable groups, an abelian-by-
cyclic group has either polynomial or exponential growth. Ciobanu, Cox and Martino have
verified their conjugacy ratio conjecture for all finitely generated groups with polynomial
growth with respect to any generating set. Therefore, it remains to check Theorem 1.2 for
the case when the group has exponential growth. It follows from [3] that every abelian-
by-cyclic group with exponential growth has exponential conjugacy growth. In fact, the
exponential growth rates are equal in some groups, for example, the lamplighter group
with respect to the standard generating set (see [17] and [13]). Therefore, if we want to
compute a sequence that converges to zero and is a uniform upper bound sequence for
the sequences defined in (4) for all abelian-by-cyclic groups with exponential growth, we
should expect the convergence to be slow in some sense. Theorem 1.2 is more quantitative
than saying that such groups have zero conjugacy ratio; it also gives a bound on how
quickly the conjugacy ratio decays to its limit.

Remark. De las Heras, Klopsch and Zozaya [10, Theorem A] have shown that if G
is a wreath product of a finitely generated group H with Z then dcS(G) = 0 for any
finite generating set S. In particular, if H is abelian and S is of the form described in
Theorem 1.2 then dcS(G) = crS(G), giving a positive answer to Cox’s Question 2.

By combining Theorem 1.2 with previous research on conjugacy ratios, we can deduce
the following:

Corollary 1.3. Let G = Koφ 〈t〉 be a finitely generated abelian-by-cyclic group. Let R
be a finite symmetric subset of K such that S = {(r, 1), (0, t±1) | r ∈ R} is a generating

set of G. Then limr→∞
c(Sr)
|Sr | = 0 if and only if G is not virtually abelian.

As mentioned before, Theorem 1.2 can be applied to several important classes of soluble
groups.

Corollary 1.4. Let G be a wreath product of a finitely generated abelian group H with
Z. Then crS(G) = 0 for the standard generating set S.

Corollary 1.5. Let G be the soluble Baumslag-Solitar group BS(1, k) with k ≥ 2.
Then crS(G) = 0 for the standard generating set S.

The generating sets of the form in Theorem 1.2 give a nice description of the geodesics
of the group, as it helps us examine the number of distinct elements obtained via the
cyclic permutation of a geodesic. In general, it appears to be quite tricky to study the
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geodesics and conjugacy growth with respect to other generating sets, see, for example,
[2], [7] and [19].
We will also show that the assumption in Tointon’s result on conjugacy ratios [22,

Corollary 8.2] is optimal in the sense that we cannot remove the requirement that the
Følner sequence needs to be two-sided. We thank Romain Tessera for suggesting that
such a result should hold.

Theorem 1.6. There exists a right Følner sequence of the soluble Baumslag-Solitar
group BS(1, k), k ≥ 2, such that the conjugacy ratio of BS(1, k) with respect to this right
Følner sequence is 1.

The structure of this paper is as follows: In § 2, we recall the geodesics and the pre-
sentation of abelian-by-Z groups of the form G = K oφ 〈t〉. In § 2.2, we prove that the
subgroup of periodic points of φ in K is polynomially distorted in G, the key ingredient
of the proof for Theorem 1.2, which we will present in § 2.3. Lastly, in § 3, we will present
the proof of Theorem 1.6.

2. Abelian-by-Z groups

Given a finite symmetric set S, we will denote W (S ) the set of all words in the alphabet
S. Given w ∈W (S), we denote |w| as the length of the reduced form of w (i.e. |w| is the
length of the freely reduced word obtained by iteratively deleting the subwords of the
form ss−1 in w). With a slight abuse of language, we will say two elements in W (S)∪G
are equal (resp. conjugate) if they are equal (resp. conjugate) as group elements. Also, we
will write Cycpc (w) to be the set of words that can be obtained via cyclic permutation
on w.
Now, let G be a group generated by a finite symmetric set S. With a slight abuse of

notation, the length of an element g ∈ G, denoted by |g|, is the length of a shortest word
w in S that represents g, i.e. |g| = min{|w| | w ∈ W (S), w = g}. In this case, we say w
is a geodesic. We denote Sr (or BS(r) when the group is abelian) the ball of radius r in
the Cayley graph of G relative to S, i.e. Sr contains the set of elements with length at
most r. Similarly, we let S (r) denote the sphere of radius r, i.e. S (r) contains the set of
elements with length exactly r. We will write g ∼ h to denote that g and h are conjugate,
and write [g]G for the conjugacy class of g. We say that a word w is a conjugacy geodesic
for [g]G if it is a geodesic and represents an element of the shortest length in [g]G.

2.1. Geodesics and conjugacy geodesics in abelian-by-Z groups

Let G = K oφ 〈t〉 be a finitely generated abelian-by-cyclic group. Note that if
{(k1, tp1), . . . , (kn, tpn) | ki ∈ K, pi ∈ Z} is a finite generating set for G, then it
is easy to see that {(k1, 1), . . . , (kn, 1), (0, t)} is also finite generating set for G ; with
R = {(±k1, 1), . . . , (±kn, 1), (0, 1)}, we have that S = R ∪ {t±1} is a finite symmetric
generating set for G. We will fix S for the remainder of this section. We will generalise
results of Parry [18, Section 3] and Choi, Ho, and Pengitore [4, Section 2], providing a
description of geodesics in G with respect to the generating set S. Let g = (x, tm) ∈ G.
We will call m the t-exponent sum of g. It is clear that we can express g as a word in
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6 D. Guo

W (S ) in the following form:

g = tm0u1t
m1u2t

m2 . . . uh−1t
mh−1uht

mh (6)

where h is a non-negative integer, m0,mh ∈ {−1, 0, 1},m1, . . . ,mh ∈ {−1, 1} and
u1, . . . , uh ∈W (R). We obtain |g| by minimizing

h∑
i=0

|mi|+
h∑
i=1

|ui| . (7)

Suppose that m > 0. We can rewrite line (6) as

g =
(
tm0u1t

−m0
) (
tm0+m1u2t

−m0−m1
)
. . .
(
tm0+···+mk−1uht

−m0−···−mh
)
tm0+···+mh .

(8)

Note that every term in parentheses lies in K. Therefore, they commute and their
product lies in K. Moreover m0 + · · · + mh = m. We do not increase line (7) by com-
bining the term that starts with the same t-exponent in line (8) and ordering them
according to the partial sums m0 + · · · + mi. Let q = max {0,m0,m0 +m1, . . . ,m}
and p = max {0,−m0,−m0 −m1, . . . ,−m}. Without increasing line (7) we may rewrite
line (8) as in the following form:

g =
(
t−py−pt

p) (t−p+1y−p+1t
p−1) (t−p+2y−p+2t

p−2) . . . (tqyqt−q) tm =

(
q∑

i=−p

t−iy−it
i, tm

)

for some elements y−p, . . . , yq ∈W (R). We just proved the following:

Lemma 2.1. The set of words

W ′ = {w = t−pu0tu1t . . . ul−1tudt
−qtm | p, q, d,m ≥ 0, d = p+ q, ui ∈W (R),

wis a geodesic}

contains all the geodesic words in W(S) whose t-exponent sum is non-negative, i.e. given
g = (x, tm) ∈ G with m ≥ 0, there exists w(g) ∈ W ′, such that w( g) is a geodesic and
represents g.

Next, we want to find a subset of W ʹ that contains a complete set of representatives of
conjugacy classes for elements with non-negative t-exponent sum. We will adapt the idea
from [6, Proposition 17] where Ciobanu, Evetts, and Ho studied the conjugacy geodesics
in Baumslag–Solitar group BS(1, k). We will write

C0 = {u0tu1tu2t . . . ud−1tudt
−d ∈W ′ | d ≥ 0, ui ∈W (R)}.

For m > 0, we define

Cm = {u0tu1tu2t . . . um−1t ∈W ′ | ui ∈W (R)}.

Lastly, we denote C+ = ∪m>0Cm.
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Lemma 2.2. Suppose g is a minimal length conjugacy representative.

(i) If the t-exponent sum of g is 0, then there exists w ∈ C0 such that g ∈ Cycpc (w).
(ii) Similarly, if the t-exponent sum of g is m> 0, then there exists w ∈ Cm such that

g ∈ Cycpc (w).

Proof. (i) is straightforward. For (ii), suppose that w contains t−1 as a reduced word.
We will find a word conjugate to w with a shorter length. By Lemma 2.1, after cyclically
permuting w if necessary, we may assume that w = u0tu1tu2t . . . ul−1tult

m−l. Since w
contains t−1 non-trivially, we have m− l < 0. Clearly, ul can not be the empty word. It
follows that

w ∼ tultm−lu0tu1tu2t . . . tul−mt . . . tul−1 (via cyclic permutation)

= tul(t
m−lu0tu1tu2t . . . t)ul−mt . . . tul−1

= tm−l+1u0tu1tu2t . . . t(ulul−m) . . . ul−1 (since tm−lu0tu1tu2t . . . t ∈ K).

The final word has a shorter length compared to w as we removed 2 symbols. Therefore,
if w is a conjugacy geodesic, w cannot contain t−1 non-trivially. �

This paper will involve many counting arguments. For simplicity, we will make use of
these two standard combinatorial notations: given n ∈ N, we denote [n] for {1, . . . , n}
and [n]0 for {0, . . . , n}. Next, let f( r) be a non-negative function that converges to ∞.
We will denote Uf (r) to be the set of elements in Sr that can be expressed as words in
the set W ʹ (defined in Lemma 2.1) where t appears at most f (r) times.

Lemma 2.3 (Most elements on Sr contains many t ’s). Let f( r) be a non-
negative function that converges to ∞. Then |Uf (r)| = rO(f(r)).

Proof. Every w ∈W ′ of length at most r can be written as

w = t−pu0tu1t · · ·ul−1tudt
−qtm

for some integers p, q, d ≥ 0 with d = p+q, m ∈ [r]0, and each ui representing an element
in BR(r). Suppose that there are at most f (r) occurrences of the letter t in w, so in
particular d ∈ [f(r)].
Since |BR(r)| = O

(
r|R|), we can deduce that there are at most

(f(r))2 r |BR(r)|f(r) =
(
O
(
r|R|))f(r) = rO(f(r))

elements represented by some w ∈W ′. �

2.2. Some remarks on the presentation of abelian-by-Z groups

Lemma 2.4. Let K be an abelian group such that there exists an φ ∈ Aut(K) and a
finite subset R ⊆ K with K =

〈
φi(r) | i ∈ Z, r ∈ R

〉
. Then K is a generated by R as a

Z
[
t, t−1

]
-module via the action t(g) = t · g = φ(g) for all g ∈ K.
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Proof. Suppose K =
〈
φi(r) | i ∈ Z, r ∈ R

〉
. Since K is abelian, every k ∈ K can be

expressed as

k =
∑
r∈R

Pr(φ) (r) =
∑
r∈R

Pr(t) (r) ,

where Pr is some Laurent polynomial for each r ∈ R. �

The finitely generated Z
[
t, t−1

]
-modules have been classified in [20]. The classification

makes use of the following notation: Let B,B′ and U be abelian groups and f : U →
B, g : U → B′ be homomorphisms, then we consider the external direct sum B ⊕ B′

modulo the elements (f(u),−g(u)), where u ranges over a set of generators for U. We
denote the resulting group by B ⊕U B′.

Theorem 2.5. Assume that M is a finitely generated Z
[
t, t−1

]
-module. There exists

a pair U,B of finitely generated abelian groups and monomorphisms f, g : U → B such
that M is isomorphic to the infinite free product:

· · · ⊕U B ⊕U B ⊕U · · · (9)

with identical amalgamations B
g← U

f→ B. Furthermore, the symbol t corresponds to
the natural automorphism φ that shifts every coordinate one place to the right.

Given an abelian group H, we will denote rank(H ) to be the cardinality of a maximal
linearly independent subset of H ; equivalently, rank(H ) is the largest r such that H
contains an isomorphic copy of Zr.

We will often use the following notation for the finitely generated Z
[
t, t−1

]
-module

described in the above theorem. Let B ∼= Zn ⊕ TorB be the finitely generated abelian
group with rank n and let τ be the size of TorB. Let L and R be two isomorphic
subgroups of B and ψ : R → L be an isomorphism. Let r = Rank(L) = Rank(R). Then
we may define a generating set for R of the form

{r1, . . . , rr, rr+1, . . . , rr′},

where r1, . . . , rr are the only elements with infinite order in this set. Hence,

L = 〈l1 := ψ (r1) , . . . , lr′ := ψ (rr′)〉 .

Let B =
⊕

i∈ZB. For every i ∈ Z, we will let B(i),L(i), R(i), ψi+1,i be a copy of B, L, R,
ψ respectively. Similarly, given x ∈ Zn, we will let x(i) be the element in B whose i -th
coordinate is x and other coordinates are 0. Finally, define

N =
〈
l
(i)
j − r

(i)
j | i ∈ Z, j ∈ [r′]

〉
. (10)

By identifying L with Im(f) and R with Im(g), the finitely generated Z
[
t, t−1

]
-module

M defined in (9) can be written as B/N . In the case when r =n, i.e. Rank(L) = Rank(B),
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after fixing a basis for Zn, we may associate a matrix Q = Qψ ∈ GL(n,Q) with ψ where
Q(τ rj) = τlj for every j, i.e.

Q =
[
τl1 | . . . | τln

][
τ r1 | . . . | τ rn

]−1
.

Lemma 2.6. Using the notation defined above, we have the following equivalence:

rank(L) = n⇔ rank(M) <∞.

Proof. We will first prove (⇐) via a contrapositive argument. Suppose r <n, let l ∈ Zn
be a vector that is linearly independent to τl1, . . . , τlr. Then it is clear to see that
{l(i)N | i ∈ Z} is an infinite set of linearly independent elements in the abelian group
M ∼= B/N .

For (⇒), suppose r =n, we will show that I = {e(0)j N | j ∈ [n]} is a maximal linearly
independent subset of M. Note that it is sufficient to show that for every w ∈ Zn and
i ∈ Z, a non-zero multiple of w(i)N can be written as a linear combination of elements
in I. To see this, let β1, . . . , βn, D ∈ Z such that

∑
j∈[n] βjej = DQiw, then we have

τ
∑
j∈[n] βje

(0)
j − τDw(i) ∈ N . �

Lemma 2.7. rank(M) <∞ and M is torsion-free Suppose rank(M) <∞ and M
is torsion-free. Then M ∼=

〈
Qi (Zn) | i ∈ Z

〉
.

Proof. Since M = ⊕i∈ZB

/
N is torsion-free, each B must be torsion-free as well. For

simplicity of notation, we choose a basis {y1, . . . , yr} for B ∼= Zn, such that the subgroup
R of B can be generated by d1y1, . . . , dnyn for some di ∈ N. Again, we will denote ri for
diyi. For i ∈ Z, j ∈ [n], define

vi,j = l
(i)
j − r

(i)
j = ψi+1,i

(
djy

(i+1)
j

)
− djy(i+1)

j = dj

n∑
k=1

qk,jy
(i)
k − djy

(i+1)
j ,

then the normal subgroup in (10) can be written as N = 〈vi,j | i ∈ Z, j ∈ [n]〉. Consider
the map

Ψ :
⊕
i∈Z

B(i) →
〈
Qi (Zn) | i ∈ Z

〉
y
(i)
j 7→ Qi (ej) .

Note this is clearly a subjective homomorphism. We will show that kerΨ = N . For (⊇)
direction, it is enough to check that the generators of N are in kerΨ. For i ∈ Z, j ∈ [n],
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we have

Ψ

(
dj

n∑
k=1

qk,jy
(i)
k − djy

(i+1)
j

)
=dj

n∑
k=1

qk,jΨ
(
y
(i)
k

)
− djΨ

(
y
(i+1)
j

)
=dj

n∑
k=1

qk,jQ
i (ek)− djQi+1 (ej)

=djQ
i

(
n∑
k=1

qk,j (ek)−Q (ej)

)
= 0.

Next, we will verify (⊆) direction. Let x =
∑L
i=−L

∑n
j=1 αi,jy

(i)
j ∈

⊕
i∈ZB(i). We will

denote by q
(i)
k,j the (k, j )-th entry of Qi. Suppose we have x ∈ ker(Ψ), then

0 =Ψ

 L∑
i=−L

n∑
j=1

αi,jy
(i)
j

 =
L∑

i=−L

n∑
j=1

αi,jΨ(y
(i)
j ) =

L∑
i=−L

n∑
j=1

αi,jQ
i (ej)

=
L∑

i=−L

n∑
j=1

αi,jQ
L+i (ej) since Q is non-singular

=
2L∑
i=0

n∑
j=1

α−L+i,jQ
i (ej) .

Therefore, for k ∈ [n], we have
∑2L
i=0

∑n
j=1 α−L+i,jq

(i)
k,j = 0. Since M =

⊕
i∈ZB(i)

/
N

is torsion-free, it is enough to show that mx ∈ N for some m. In particular, we can
assume that dk|αi,j for all i, j, k. We claim that

x = −
L−1∑
s=L

n∑
j=1

n∑
k=1

1

dk

L−s−1∑
i=0

αs+1+i,jq
(i)
k,jvs,k.

For s ∈ [−L,L− 1], t ∈ [n], we will show that the coefficient for y
(s)
t on the RHS is αs,t.

Note that for k ∈ [n], each vs,k contributes dkqt,k to the coefficient of y
(s)
t and each vs−1,t

contributes −dt to the coefficient of y
(s)
t .

https://doi.org/10.1017/S0013091525100977 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525100977


The Conjugacy Ratio of abelian-by-cyclic groups 11

For s > −L, the coefficient for y
(s)
t on the RHS is

−
n∑
j=1

n∑
k=1

L−s−1∑
i=0

αs+1+i,jq
(i)
k,jqt,k +

n∑
j=1

L−s∑
i=0

αs+i,jq
(i)
t,j

=−
n∑
j=1

L−s−1∑
i=0

αs+1+i,jq
(i+1)
t,j +

n∑
j=1

L−s∑
i=0

αs+i,jq
(i)
t,j

=−
n∑
j=1

L−s∑
i=1

αs+i,jq
(i)
t,j +

n∑
j=1

L−s∑
i=0

αs+i,jq
(i)
t,j

=
n∑
j=1

αs,jq
(0)
t,j = αs,t.

For s = −L, the coefficient for y(−L) on the RHS is

−
n∑
j=1

n∑
k=1

2L−1∑
i=0

α−L+1+i,jq
(i)
k,jqt,k = −

n∑
i=1

2L−1∑
i=0

α−L+1+i,jq
(i+1)
t,j =

= −
n∑
j=1

2L∑
i=1

α−L+i,jq
(i)
t,j =

n∑
j=1

α−L,jq
(i)
t,j = α−L,j .

This shows that x ∈ N , and hence kerΨ ⊆ N . The result follows from the isomorphism
theorem for groups. �

2.3. Periodic points of φ in K

Given an abelian group K and φ ∈ Aut(K), we will define the set of periodic points
of φ in K to be Pφ = {a ∈ K | ∃n ∈ N, such that φn(a) = a}; note that Pφ is a group
under addition. For a ∈ Pφ, we call the smallest positive integers m such that φm(a) = a
the least period of a. Let G = K oφ 〈t〉 be a finitely generated abelian-by-cyclic group.
Note that K is in particular a Z

[
t, t−1

]
-module. Since Z is Noetherian, by Hilbert’s basis

theorem, Z[t, t−1] is a Noetherian ring. It follows that K is a Noetherian module. Recall
that all of the submodules of a Noetherian module are finitely generated.

Lemma 2.8. Let M be a Noetherian module over a ring R. Let φ be an automorphism
of M. Then the least period of periodic points of φ is bounded.

Proof. It is clear that Pφ is a finitely generated submodule of M. Hence Pφ can be
generated by a finite set a1, . . . , an. Let N be the lowest common multiple of the least
period of a1, . . . , an. It is straightforward to check that every element in Pφ has period
N. �

We can immediately deduce the following from Lemma 2.8:
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Corollary 2.9. The set of periodic points Pφ is a finitely generated subgroup of K
that is invariant under φ.

Proof. The normality of Pφ follows from the definition. Since Pφ is a finitely generated
Z
[
t, t−1

]
module, there exists k1, . . . kn that generated Pφ as a module. By Lemma 2.8,

there exists a least period N of periodic points of φ. Then, when viewed as a group,

Pφ = 〈φj(ki) | i ∈ [n], j ∈ Z〉 = 〈φj(ki) | i ∈ [n], j ∈ [N ]〉.

�

Corollary 2.10. The group Pφ oφ Z has polynomial growth.

Proof. Since Pφ is finitely generated and abelian, Pφ ∼= Zn⊕T for some n and torsion
group T. Fix a basis for Zn, then the map φ corresponds to a matrix M ∈ GL(n,Z).
The matrix M has finite order by Lemma 2.8. In particular, it follows that Pφ oφ Z has
polynomial growth. �

Our aim is to show that the growth of Pφ in G = K oφ 〈t〉 is polynomial, i.e. the
function r 7→ |Pφ ∩ Sr|, grows polynomially in r. When Pφ is a direct summand of K as
modules, it is clear this is the case by Corollary 2.10. However, in general, Pφ might not
have a normal complement. For example, consider the group Z2 oM Z with M = ( 1 1

0 1 )
or the group 〈xi(i ∈ Z) | [2xi, 2xj ]〉oφ Z where φ maps xi to xi+1 for all i ∈ Z.
We conclude this subsection with the following simple result that we will use later.

Lemma 2.11 (Periodic points “pass” to quotients). Given φ ∈ Aut(K) and
N 6 K such that φ(N) = N (or equivalently, N E K oφ 〈t〉 ), define φ̄ to be the induced
automorphism of φ on K/N . Then PφN/N ⊆ Pφ̄ .

3. Distortion of the subgroups of periodic points in PφG

Let S be a finite generating set of G and X be a finite generating set of H 6 G. The
distortion of H in G is the function

∆H
G (r) = max {distX(1, h) | h ∈ H, distS(1, h) 6 r} .

The subgroup H is called undistorted (in G ) if ∆H
G (r) � r. The following are some

well-known facts about subgroup distortion [11, Proposition 8.98].

Lemma 3.1.

(i) If X̃ and S̃ are finite generating sets of H and G, respectively, and ∆̃H
G is the

distortion function with respect to these generating sets, then ∆̃H
G � ∆H

G .
(ii) If H has finite index in G, then ∆H

G (r) � r.
(iii) Let K/G be a finite normal subgroup and let H 6 G be a finitely generated subgroup

contains K; set Ḡ := G/K, H̄ := H/K. Then ∆H
G � ∆H̄

Ḡ
.

(iv) If K 6 H 6 G, then ∆K
G � ∆K

H ◦∆H
G .
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(v) Subgroups of finitely generated abelian groups are undistorted.

Lemma 3.2 (Subgroup is more distorted after quotienting out a disjoint
normal subgroup). Let G be a group generated by a finite symmetric set S and H be
a subgroup generated by a finite symmetric set X. Let N E G such that N ∩ H = {e}.
Then

∆H
G (r)� ∆

HN/N
G/N (r).

Proof. Let x 7→ x̄ be the quotient map from G → G/N . Let x ∈ H. It is clear
that |x̄|S̄ ≤ |x|S . On the other hand, suppose x̄ = x̄1 . . . x̄l for some x1, . . . , xl ∈ X.
Since H ∩N = {e}, we must have x = x1 . . . xl. Hence |x̄|X̄ = |x|X . It follows from the

definition of distortion that ∆H
G (r)� ∆

HN/N
G/N (r). �

Remark. It is well known that subgroups of finitely generated virtually nilpotent
groups are all at most polynomially distorted [16], but this is not true for finitely
generated groups with exponential growth. A simple example would be the abelian-by-
cyclic group BS(1, 2) =

〈
a, t : tat−1 = a2

〉
where the cyclic subgroup 〈a〉 is exponentially

distorted in the whole group.

3.1. Distortion of periodic points in 〈Qi(Zn) | i ∈ Z〉 oQ Z where

Q ∈ GL(n,Q)

Given v = (v1, . . . , vn) ∈ Cn, we will denote ‖v‖ = max{|vi| | 1 ≤ i ≤ n} to be the
infinity norm of v. Given M ∈ GL(n,C), we will denote ‖M‖ to be the operator norm of
M using the infinity norm. We define the generalized eigenspace of M for λ as

Gλ(M) = kerCn(M − λI)n.

In the case when we have Q ∈ GL(n,Q), we will denote kerQn(Q) to be the kernel of Q
over Qn and ImQn(Q) to be the image of Q over Qn. We will denote Gru(Q) (resp. Gnru)
the direct sum of the generalized eigenspaces of Q relative to eigenvalues that are (resp.
are not) roots of unity over Cn. Let k ∈ N be such that the only eigenvalues of Qk that
are roots of unity are 1. We have

Cn = Gru(Q)⊕ Gnru(Q) = G1(Qk)⊕ Gnru(Qk).

By the rank-nullity theorem, we have

n = dimkerQn(Q
k − I)n + dim ImQn(Q

k − I)n.

Clearly, kerQn(Q
k − I)n ⊆ G1(Qk). On the other hand, as (Qk − I)n preserves Gnru(Qk),

we have ImQn(Q
k − I)n ⊆ Gnru(Qk). Therefore, we can decompose Qn as

Qn = kerQn(Q
k − I)n ⊕ ImQn(Q

k − I)n.
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Let v1, . . . , v
′
n, . . . , vn ∈ Qn, such that

kerQn(Q
k − I)n = span {v1, . . . , vn′} and ImQn(Q

k − I)n = span
{
vn′+1, . . . , vn

}
.

Then there exists L ∈ N, such that 1
L 〈v1, . . . , vn〉 ⊇ Zn. Let

Y =
1

L

〈
Qi (vj) |i ∈ Z, j ∈ {n′ + 1, . . . n}

〉
,

we have

K ⊆ 1

L

〈
Qi (vj) |i ∈ Z, j ∈ [n′]

〉
⊕ Y.

Given v ∈ K, we will define ε(v) to be the projection of v on 1
L

〈
Qi (vj) |i ∈ Z, j ∈ [n′]

〉
,

i.e. ε(v) is a vector such that v − ε(v) ∈ Y .

Lemma 3.3. Let M ∈ GL(n,C) be a matrix whose eigenvalues all have absolute value
1. Then ‖Mr‖ = O(rn).

Proof. Let J = P−1MP be the Jordan normal form of M for some change of basis
matrix P. By looking at the r -th power of J (see [12, Chapter 3.2.5] for a detailed
computation of power of a Jordan block), we can deduce that the absolute value of every
entry of J is bounded by O(rn). Therefore,

‖Mr‖ = ‖PJnP−1‖ = ‖P‖‖Jn‖‖P−1‖ = O(rn).

�

We will denote Q ʹ to be the restriction of Q on kerQn(Q
k − I)n.

Lemma 3.4. Let w be an element in Sr with zero t-exponent sum (i.e. w ∈ K ∩Sr ),
then ‖ε(w)‖ = O(rn+2).

Proof. By Lemma 2.1, we can write

w = t−bu0tu1t . . . ul−1tudt
−c,

with b, c, d ≥ 0 and d = b+ c. Since each ui ∈ BR(r), ‖ui‖ = O (r). Therefore, according
to Lemma 3.3,

‖ε(t−bu0tu1t . . . ul−1tudt
−c)‖ = ‖t−bε(u0)tε(u1)t . . . tε(ud)t−c‖ = ‖

c∑
i=−b

Q′i(ε(ui))‖

≤
c∑

i=−b

‖Q′i‖‖ε(ui)‖ ≤ dO(dn)O(r) = O(rn+2).

�
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Corollary 3.5. The set of periodic points PQ is polynomially distorted in G =
〈Qi(Zn) | i ∈ Z〉oQ 〈t〉.

Proof. Let X be the standard generating set for the finitely generated abelian group
PQ, and let R be a finite symmetric subset of 〈Qi(Zn) | i ∈ Z〉 such that S = R ∪ {t±1}
is a generating set of G. Using these generating sets, it follows from Lemma 3.4 that

∆
PQ
G (r) = O(nrn+2) = O(rn+2). �

3.2. Generalising to other finitely generated abelian-by-Z group

Our goal is to prove that Pφ is at most polynomially distorted in the finitely generated
abelian-by-cyclic group G = K oφ 〈t〉. The following lemma will help us show that we
can reduce the problem to the case where K has finite rank. We will view K as a finitely
generated Z

[
t, t−1

]
-module, and use the notation introduced after Theorem 2.5 for K,

i.e. we will identify K as B/N .

Lemma 3.6. Let lr+1, . . . , ln, rr+1, . . . , rn be vectors in Zn such that we have

{τl1, . . . τlr, lr+1, . . . , ln}and {τ r1, . . . τ rr, rr+1, . . . , rn}

being two linear independent subsets of Zn. Consider the normal subgroup

N ′ =
〈
l
(i)
j − r

(i)
j | i ∈ Z, r + 1 ≤ j ≤ n

〉
of G, then Pφ ∩N ′N/N = {id}

Proof. Let P be the subgroup of B that contains N such that Pφ = P/N . We will
show that P ∩ N ′ = {id}. Let w ∈ N ′ and n ≥ 1 be such that φn(w) − w ∈ N ,
i.e. wN ∈ Pφ. Suppose that w 6= id. Let i be the smallest integer such that the i -th
component wi of w is non-trivial. Let p := φn(w)−w, then i is also the smallest integer
such that the i -th component pi of p is non-trivial. Furthermore, since n ≥ 1, we have
pi = −wi. Since w ∈ N ′, wi ∈ spanZ {lr+1, . . . , ln}. On the other hand, as p ∈ N ,
pi ∈ spanZ {l1, . . . , lr}. We must have wi = pi = 0, which is a contradiction. Therefore,
we indeed have P ∩N ′ = {id}. �

Corollary 3.7. Let G = K oφ 〈t〉 be a finitely generated abelian-by-cyclic group. We

have that ∆
Pφ
G (r) grows polynomially in r.

Proof. Given a group K and N 6 K such that φ(N) = N , every automorphism φ of
K naturally induces an automorphism φ̄ on K/N . For conciseness, we might not define
φ̄ explicitly when it is clear from the context in this proof.
We will show that we can reduce the general case to the special case where K has finite

rank and is torsion-free, which was proved in Corollary 3.5.
We first claim that we can reduce our problem to the case where Rank(K) < ∞.

Suppose rank(K) = ∞. Let N ʹ be a normal subgroup of B with the form described in
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Lemma 3.6, and let H = NN ′/N . Lemma 3.2 tells us that

∆
Pφ
G (r)� ∆

PφH/H
(K/H)oφ̄Z

(r).

According to Lemma 2.11, PφH/H 6 Pφ̄. Since Pφ̄ is finitely generated and abelian,
Lemma 3.1 (iv) and (v) tells us that

∆
PφH/H
(K/H)oφ̄Z

(r)� ∆
Pφ̄
(K/H)oφ̄Z

(r)

which proves our claim.
We will next show that we can also reduce to the case where K is torsion-free. Since

Pφ is finitely generated abelian, Tor(Pφ) is a finite and characteristic subgroup of Pφ.
By Lemma 3.1 (ii),

∆
Pφ
G (r) � ∆

Pφ/Tor(Pφ)
(K/Tor(Pφ))oφ̄Z

(r).

From this, we can quotient out torsion elements of K, it is clear that

PφTor(K)/Tor(Pφ)
Tor(K)/Tor(Pφ)

∼=
PφTor(K)

Tor(K)
and

K/Tor(Pφ)
Tor(K)/Tor(Pφ)

∼=
K

Tor(K)
.

Using a similar idea as above, we have

∆
Pφ/Tor(Pφ)
(K/Tor(Pφ))oφ̄Z

(r)� ∆
Pφ Tor(K)/Tor(K)

K/Tor(K)o ¯̄φ
Z (r)� ∆

P ¯̄φ
K/Tor(K)o ¯̄φ

Z(r),

where the first bound follows from Lemma 3.2, and the second follows from Lemma 2.11,
Lemma 3.1 (iv) and (v). Finally, the rank of a quotient of K is at most the rank of K,
which completes our reduction process and proves our result. �

Let S be a finite generating set of G and X be a finite generating set of H 6 G. The
relative growth of H in G is the function r 7→ |H ∩Sr|. The relative growth of subgroups
was studied by Osin in [15]. The following simple lemma links the distortion and the
relative growth of a subgroup with polynomial growth.

Lemma 3.8 (Polynomial distortion implies polynomial relative growth for
subgroups with polynomial growth). Let G be a group generated by a finite sym-
metric set S. Let H be a subgroup generated by a finite symmetric set X. Suppose that
|Xr| = O(rL) for some L ∈ N and ∆H

G (r) = O(rd). Then |H ∩ Sr| = O(rd|X|).

Proof. It follows from the definition of distortion that H ∩ Sr ⊆ X∆HG (r). Therefore,

|H ∩ Sr| ≤
∣∣∣X∆HG (r)

∣∣∣ = O (∆H
G (r)L

)
= O(rdL).

�
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For more results about how distortion is linked to relative growth, we refer the readers
to [9].

Corollary 3.9. The relative growth of Pφ in G is polynomial.

4. Conjugacy ratios

In Ciobanu, Cox and Martino’s paper [5], they also investigated the spherical conju-
gacy ratio, where the counting is done in the sphere rather than the ball. We will call a
group element g a minimal length conjugacy representative if |g| = min{|h| | h ∼ g}.
Denote S′(r) ⊆ S(r) to be the set of minimal length conjugacy representatives on
S (r), in particular, c(S′(r)) = c(Sr)− c(Sr−1). The spherical conjugacy ratio is defined

to be lim sup
r→∞

c(S′(r))
|S(r)| . By the Stolz-Cesàro theorem, it is straightforward to see that if

lim
r→∞

c(S′(r))
|S(r)| = 0, then lim

r→∞
c(Sr)
|Sr | = 0. We will in fact give a quantitative bound for the

spherical conjugacy ratio function and show that the same bound also applies to the
standard conjugacy ratio. We will introduce one more asymptotic notation: let f and
g be two real-valued functions defined on some unbounded subset of real numbers. We
write f(x) = o(g(x)) if for every positive constant ɛ there exists a constant x 0 such that

|f(x)| ≤ εg(x) for all x ≥ x0.

Roughly speaking, f(x) = o(g(x)) if f (x ) grows much slower than g(x ).
Intuitively, we want to show that most elements on the sphere are conjugate to a lot

of other elements on the sphere; equivalently, the set of elements on the sphere that
are conjugate to very few elements on the sphere is small. Let f (r) be a function that
converges to ∞. Given r ∈ N, denote

F (r) = Ff,S(r) =

{
g ∈ S′(r)

∣∣∣∣|[g]G ∩ S(r)| ≤ f(r)} .
We formulate our idea in the following lemma, and then show that it applies to our setup
in the subsequent theorem.

Lemma 4.1. Suppose we have c(F (r)) = o(|S(r)|) and f(r) = O(|S(r)|). Then
c(S′(r))
|S(r)| = O

(
1

f(r)

)
.

Proof. Note that c(S′(r)) 6 |S′(r)| 6 |S(r)|. Also, it follows that F (r) ≤
c(F (r))f(r) = O(|S(r)|) by the definition of F (r). Therefore,

c(S′(r))

|S(r)|
= O

(
c(S′(r))− c(F (r))
|S(r)| − |F (r)|

)
= O

(
c(S′(r))− c(F (r))
|S′(r)| − |F (r)|

)
= O

(
1

f(r)

)
.

�

Our next goal is to give an upper bound for c(F (r)) for the abelian-by-Z group with
respect to a generating set defined in Theorem 1.2. It is clear from Lemma 2.2 that
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C0 ∪ C+ contains all the representatives of the conjugacy classes of G with non-negative
t-exponent sum.

Theorem 4.2. (On S(r), set of elements that can produce at most f (r)
distinct elements has size bounded by O(rf(r))). Let G = K oφ 〈t〉 be a finitely
generated abelian-by-cyclic group. Let f( r) be a function that converges to ∞ in r. Let R
be a finite symmetric subset of K such that S = {(r, 1), (0, t±1) | r ∈ R} is a generating
set of G. Then c(F (r)) = rO(f(r)).

Proof. Given a word w, we will denote cyc (w) as the number of distinct group
elements in Cycpc (w). We will first look at the minimal length conjugacy represen-
tative with zero t-exponent sum. It is clear that, for x ∈ K \ Pφ, and a set of
integers I, the set {t−ixti | i ∈ I} has the same cardinality as I. In particular, given
g ∈ (K ∩ S(r)) \ (Uf (r) ∪ Pφ), and w ∈ C0 a word that conjugates to g, we have
cyc (w) ≥ f(r). It follows from Lemma 2.3 and Corollary 3.9 that

c

({
g ∈ S′(r) ∩K

∣∣∣∣ |[g]G ∩ S(r)| < f(r)

})

has size rO(f(r)).
We will next look at the conjugacy geodesics with non-zero t-exponent sum. Note that

taking inverses preserves word length and conjugacy class, it follows that C−1
+ contains the

conjugacy class representatives with negative t-exponent sum. Therefore, it is sufficient
to only examine the conjugacy geodesics in C+. Our aim is to bound the number of
minimal length conjugacy representatives in S(r) \K that can be expressed as a word w
in C+ with cyc (w) < f(r).
We will begin by taking a look at a way of expressing a word in Cd+1, where d ≥ 0,

with one of its cyclic permutations. Let u = a0ta1ta2t . . . adt ∈ Cd+1. For i ∈ [2d + 1],
define ai = aj whenever i =d+1 j, i.e. addition is defined mod(d + 1) for the indices.
Define

u(i) = (aitai+1t . . . adta0t . . . ai−1t)t
−(d+1),

i.e. u(i) is the K component of cyclic permutation of u that starts with ai. Given δ ∈
{0, . . . , d− 1}, we have

φδ+1u(δ+1) = φδ+1
d∑
j=0

φjaj+δ+1 =
d∑
j=0

φj+δ+1aj+δ+1 =
d+δ+1∑
j=δ+1

φjaj .
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Hence,

u(0) =
d∑
j=0

φjaj = φδ+1u(δ+1) +
δ∑
j=0

φjaj −
d+δ+1∑
j=d+1

φjaj

= φδ+1u(δ+1) +
δ∑
j=0

φjaj −
δ∑
i=0

φj+d+1aj+d+1

= φδ+1u(δ+1) +
δ∑
j=0

φjaj − φd+1
δ∑
j=0

φjaj

= φδ+1u(δ+1) +
(
id− φd+1

) δ∑
j=0

φjaj . (11)

Now, suppose that d ≥ f(r), let w ∈ Cd+1 be a conjugacy geodesic of length r. Suppose
cyc (w) < f(r). Then, there exists u ∈ Cycpc (w) ∩ Cd+1 and δ ∈ [f(r) − 1] such that
u(0) = u(δ+1). Using the above notation for u, we can deduce from (11) that

(
id− φδ+1

)
u(0) =

(
id− φd+1

) δ∑
j=0

φjaj . (12)

Consider the RHS of (12), we have d ∈ [r], δ ∈ [f(r)], and a0, . . . , aδ represents
elements in BR(r) where |BR(r)| ∈ O(r|R|). Next, given such d, δ, and ai, suppose there
exist h, h′ ∈ S2r ∩ K such that both u(0) = h and u(0) = h′ are solutions to (12). We

must have h − h′ ∈ ker(id − φδ+1). In fact, the set of such solutions is contained in{
k ∈ K | k − h ∈ Pφ ∩ S4r

}
. According to Corollary 3.9, there exists P(r), a polynomial

in r, such that ∣∣{k ∈ K | k − h ∈ Pφ ∩ S4r
}∣∣ = O(P (r)).

Therefore,

c

({
g ∈ S′(r) \ (K ∪ Uf (r))

∣∣∣∣ |[g]G ∩ S(r)| < f(r)

})
is bounded by

r · f(r) · O(r|R|)f(r) · O(P (r)) = rO(f(r)).

Again, by Lemma 2.3, we have

c

({
g ∈ S′(r) \K

∣∣∣∣ |[g]G ∩ S(r)| < f(r)

})
= rO(f(r)).

�
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We are now ready to prove Theorem 1.2. We will begin by showing that the same
quantitative bound applies to the spherical conjugacy ratio.

Theorem 4.3. Let G = K oφ 〈t〉 be a finitely generated abelian-by-cyclic group
with exponential growth. Let R be a finite symmetric subset of K such that S =
{(r, 1), (0, t±1) | r ∈ R} is a generating set of G. Then

c(S′(r))

|S(r)|
= O

(
log r

r

)
.

Proof. Since Sr grows exponentially in r, by the isoperimetric inequality, we conclude

that S (r) also grows exponentially in r. According to Theorem 4.2, any f(r) = o
(

r
log r

)
satisfies the assumption of Lemma 4.1, i.e.

c(S′(r))

|S(r)|
= O

(
1

f(r)

)
,

from which our result follows. �

Proof. [Proof of Theorem 1.2] For simplicity of notation, denote cr = c(S′(r)), br =
|S(r)|, Cr = c(Sr) = c1+ c2+ · · ·+ cr and Br = |Sr| = b1+ b2+ · · ·+ br. By Theorem 4.3
and the definition of big-O notation, there exists a positive real number M such that
cr
br
≤ M log r

r for all r. Denote H(r) = M log r
r . Then for any k ∈ N, we have

Cr

Br
≤ c1 + · · ·+ ck +H(k + 1)bk+1 + · · ·+H(r)br

Br
≤ Ck +H(k)(Br −Bk)

Br
≤ H(k) +

Ck

Br
.

Since Br grows exponentially in r and |Cr| ≤ |Br| for all r, there exists L such that
Cr/L
Br

= O(α−r) for some α> 1. Taking k = r
L , it follows that

Cr
Br
≤ H

( r
L

)
+O(α−r) = O

(
log r

r

)
.

�

Proof. Proof of Corollary 1.3 According to the Milnor-Wolf Theorem on the
growth of solvable groups, an abelian-by-cyclic group has either polynomial or exponential
growth. The case where G has polynomial growth was proven by Ciobanu, Cox and
Martino in [5, Theorem 3.7] (as well as by Tointon[22, Corollary 8.2 and Proposition
8.5]). The case where G has exponential growth follows from Theorem 1.2. �

Our result in particular answered a question raised by Cox in [5, Question 1] for the
groups and generating sets defined in Theorem 4.3.
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5. Conjugacy ratio with respect to one-sided Følner sequence

In this section, we prove Theorem 1.6. Let k ≥ 2, we will consider the Baumslag-Solitar
group

G = BS(1, k) =
〈
a, t | tat−1 = ak

〉 ∼= Z
[
1

k

]
oφ 〈t〉

where φ ∈ Aut(Z
[
1
k

]
) is defined by φ(n) = tnt−1 = kn.

Recall that, given a, b ∈ Z and d ∈ Z \ {0} such that d does not divide b, we say that
a
b ≡d k if kb ≡d a.

Lemma 5.1. Given atn and btn in G with a, b being two positive integers and n ∈ N,
we have

atn ∼ btn ⇔ ∃m ∈ Z, such that kma ≡ b (mod kn − 1) . (13)

Proof. Let a and b be two positive integers. An easy computation shows that

[atn] =

{(
(kn − 1) c+ kma, tn

) ∣∣∣∣ c ∈ Z
[
1

k

]
,m ∈ Z

}
.

The (⇐) direction of (13) then follows immediately. For (⇒), suppose atn ∼ btn. Then
b = (kn − 1) c + kma for some c ∈ Z

[
1
k

]
and m ∈ Z. Suppose m ≥ 0, then we have

(kn− 1)c = b− kma ∈ Z. Note that for any r ∈ N, we have gcd(kn− 1, kr) = 1. It follows
that c must be in Z. If m ≤ 0, then we have (kn− 1)k−mc = k−mb− a ∈ Z. By the same
reasoning, we must have k−mc ∈ Z. This concludes the proof. �

Lemma 5.2. Let a and b be two positive integers such that b
a /∈ {k

i | i ∈ Z}, i.e. b
a is

not a power of k. Then there are only finitely many n ∈ N such that

there exists j = jn ∈ Zwith kja ≡ b (mod kn − 1). (14)

Proof. Let a and b be two positive integers. Let n ∈ N. Suppose that there exists
j = jn ∈ Z such that kja ≡ b (mod kn − 1). Note that kn ≡ 1 (mod kn − 1), so we can

take j = jn ∈ {0, 1, . . . , n − 1}. Since kn − 1 | kja − b, we have kn − 1

∣∣∣∣ kn−j (kja− b),
note that

kn−j
(
kja− b

)
= kna− kn−jb = (kn − 1) a− kn−jb+ a.

It follows that kn − 1 | kn−jb − a. Since a and b are two positive integers, we have
kja−b ≥ −b and kn−jb−a ≥ −a. Suppose n is big enough such that kn−1 > max{a, b},
then no elements in {−max{a, b}, . . . ,−2,−1} can be a muliple of kn − 1, so we must
have kja− b ≥ 0 and kn−jb− a ≥ 0.
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Suppose b
a is not a power of k. It follows that both kja − b > 0 and kn−jb − a > 0.

Again, using that kn − 1 | kja− b and kn − 1 | kn−jb− a, we have

kja− b > kn − 1 and kn−jb− a > kn − 1.

By rearranging these two inequalities, we get

kn − 1 + b

a
≤ kj ≤ knb

kn − 1 + a
; (15)

Since the left-hand side grows faster than the right-hand side, (15) can only be satisfied
by finitely many values of n. �

Lemma 5.3. Let n ∈ Z, and let A = {(a1, tn) , . . . , (ar, tn)} ∈ Z[ 1k ]oφ Z be a set of r
elements with t-exponent sum equal to n. Then, for big enough N1, N2 and L we have

c
(
tN1LtN2A

)
= |A|

Proof. For big enough N2 ∈ N we have kN2ai = tN2ait
−N2 ∈ Z for all i. Taking a

positive integer L ≥ 2max{|kN2ai| | i ∈ [r]}, we can see that A′ =
{
L+ kN2ai | i ∈ [r]

}
is a set of positive integers such that it has no pair of elements with the quotient being a
power of k, i.e. for any a, b ∈ A′ and i ∈ Z, ba 6= ki. Finally, for big enough N1 > −n, we
can assume no pair of elements in Aʹ satisfies (14) modulo kN1+N2+n− 1. By Lemma 5.1
and Lemma 5.2, every element in{(

L+ kN2ai, t
N1+N2+n

)
| i ∈ [r]

}
is in a distinct conjugacy class. Furthermore, we have

tN1LtN2(ai, t
n) = tN1

(
L+ kN2ai

)
tn+N2 ∼

(
L+ kN2ai

)
tN1+N2+n.

Therefore, every element from tN1LtN2A is in a distinct conjugacy class. �

Corollary 5.4. Given any finite set A ⊂ G, there exists g ∈ G, such that

c (gA) = |A|.

Proof. This follows from Lemma 5.3 and the fact that two conjugate elements have
equal t-exponent sum. �

Proof. Proof of Theorem 1.6 Let (Fn)
∞
n=1 be a right Følner sequence of BS(1, k).

According to Corollary 5.4, for every n, there exists gn ∈ G such that c (gnFn) = |Fn| =
|gnFn|. It follows from the definition (5) that (gnFn)

∞
n=1 is also a right Følner sequence

of BS(1, k). Furthermore, by the choice of gn, we have c(gnFn)
|gnFn| = 1 for every n, which

proves our result. �
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