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In a number of recent papers, we have developed an abstract approach to dual
orthogonal series (see [1], [2], [3], and [4]). Such series arise in crack theory, heat transfer,
etc. In this paper, we generalize these results to triple orthogonal series. We also show,
via a counterexample, that, surprisingly, the results in the dual case are not generalizable
as completely as expected.

NOTATION. In this paper we shall always have:
(1) H is a real separable Hilbert space.
(2) P and Q are orthogonal subspaces of H (i.e., H = P©Q).
(3) VUV2, and P3 are mutually orthogonal subspaces of H (i.e. H = P1©P2©P3).
(4) P and Q are projection operators from H onto P and Q respectively, so that

P+Q = I, the identity operator.
(5) Pu P2, and P3 are projection operators from H onto Px, P2, and P3 respectively,

so that P1 + P2 + P3 = I.
(6) {<pn}™-i is a complete orthonormal sequence in H.
The main results of [1] and [3] can be written as:

THEOREM A. Let {a,,}™.! be a sequence of positive numbers and let ij/n = P<pn + anQ<pn.
Then {ifjn}™-i is complete in H.

THEOREM B. Let {an}"=1 be a sequence of positive numbers such that 0 < m ^ an ^ M.
/ / tpn = P<pn + anQ<pn, then {</>„}"=! is an €2 basis in H, i.e. given FeH there is a unique

sequence {KB}"=1 such that X Knij/n = F (in the norm of H) and, moreover, {Kn}Z=i is
square summable .

It is these two theorems for which we shall try to find analogues in the case when H,
instead of being split into two subspaces, is split into three subspaces. As we said earlier, a
surprising factor arises in the analogues of both theorems.

THEOREM 1. Let {an}"=1 and {bn}™=1 be sequences such that

l - - ^ < a n < l + ̂  and l - - ^ < b n < l + ^ .

If ^ = Pi<Pn + anP2<Pn + KP&n, then {»M™=i « complete in H.

Proof. Let an = l - e n and bn = l-Sn. Then | e j s - ^ , | 8 n | ^ and «fc =

<Pn ~ enP2<pn - SnP3<pn. Assume F e H and (F, ^ , ) = 0, (n = 1, 2, 3 , . . . ) . Then

(F, <pn) = €n(F, P2<pn) + Sn(F, P3<pn) = €n(P2F, <Pn) + 8n(P3F, <pn),
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Therefore, using (a + b)2<2(a2 + b2), we have

(F, <pn)
2 = (en(P2F, <pn) + 8n(P3F, <pj)2

< 2(e2
n(P2F, <pn)

2 + 82
n(P3F, «pn)

2) (1)

<(P2F,<pn)2 + (P3F,<pn)
2 (2)

Thus

n = l

= ||P2Fj|2

||P1P1|2 + ||P2F1|2 +

n —

+ \\P3Ff
1

s inequalities must be equalities.
s

en(P2F,<pn) = 8w(F3F, <pn)

• (D C «̂ \ *

for

*>•

for

+ | |P3f1|2

Since (a +

alln.

alln.

b)2 = 2(a2+b2) if and

(3)

(4)

(5)

or

Thus P t F = 0 and al
only if a = b, (1) gives us

(2) gives us

and

Finally (F, 9 n ) = en(P2F, <pn) + 8n(P3F, <pn) and P ^ O give us

(l-en)(P2F,<pn) = (Sn-l)(P3F,<pn) for all n, (6)

and we note that neither ( l - e n ) nor (8 n - l ) can be zero. Thus, for each n, either
(P2F, <pn) and (P3F, <pn) are both zero or neither is zero.

If, for some n, neither {P2F, <pn) nor {P3F, <pn) are zero (4) and (5) give us |en| = \8n\ =
1/V2, (3) gives us |(P2F, cpn)| = |(P3F, <pn)| and (6) gives us |1 - en| = \8n -1|. Thus €„ and 8n

must have the same sign. Then (3) tells us (P2F, <pn) and (P3F, <pn) have the same sign
while (6) tells us they must have opposite signs. We thus conclude that, for each n,
(P2F, <pn) and (P3F, <pn) are zero and the theorem is proven.

COROLLARY. Let {an}"=1 and {&„}"= i be sequences such that 0 < m 1 ^ a n < M 1 and
0 < m 2 < b n < M 2 where 1^^^2 + 1)1(^2-1)^ (i = l,2). If il>n=P1<
then {ipn}Z=i is complete in H.

Proof. Assume F is orthogonal to {iMn=i- Then
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is orthogonal to

However, by Theorem 1,

is complete in H and hence

V2 1 + V2

is zero which says that F is zero.
We now turn to a generalization of Theorem B. As before an unexpected factor of

/ - 1 ) arises.

THEOREM 2. Let il/n = P1<pn + anP2<pn + bnP3<pn where l - l / V 2 < m 1 ^ o n < M 1 <
1 + 1/V2 and l - l / V 2 < m 2 < f c n < M 2 < l + l/V2. Then {<M"-i « an ^2 ^ « '" w-

Proo/. Let an = l + en and bn = l + 8n. Then |en |<e<l/V2 and |8n |<5<l/V2 where
e = max( |m1-l | , |M1-l | ) and 8 = max(|m2-l|, |M2-1|). Also î n = <pn + enP2<pn + SnP3<pn.
We consider the linear map T taking H into H defined by T<pn = ipn (n = 1,2,...). For

00

any FeH we have F= Z Fn<pn. Therefore

» oo 00 00

I Fn<Pn + I CnFnPzVn + I SnFnP3<p

Thus ||T]|<1 + V2.
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We also have, for each FeH,
II oo oo oo | |

||TFj|= I Fn<Pn+ I cnFnP2<Pn+ £ «nFnP3<pJ

| |n=l II || n « l n = l

(and we note that l -V(e2 + 52)>0). By standard theory of linear operators (see [5]) T~l

exists and is bounded on T(H). However, since, by Theorem 1, T(H) is dense in H, we
can extend T"1 to be a bounded operator on H. Consequently, given FeH we can write

oo

F = Tg for a unique geH. Since g is uniquely of the form £ gn<Pn (with {gn}e €2) we have
/ oo \ oo n=»l

F= Tg= T( I gn<pn)= Z grA and the theorem is proved.
\n=l / n=l

COROLLARY. Let \\in = Pt<pn + anP2(pn + KPiVn where 0 < m 1 < a n < M 1 , 0<m2<fcn
M2 and M1<(72+l)AV2-l)mi (i = 1,2). Then {»U~=i is an €2 basis in H.

Proof. For i = 1,2, choose Q such that

V 2 - 1
<

Then by Theorem 2, {P^,, + CjanPz^n + C2bnP3<pn} is an ^2 basis in H. Thus given any
F e H there is a unique sequence {Fn}"=1e^2 such that

or equivalently, F= X f ^ which was to be proved.
n = l

COUNTEREXAMPLE. Upon comparing Theorems 1 and 2 (and their corollaries) with
Theorems A and B, we notice that Theorems A and B are not generalized as completely
as would be expected. For example, in Theorem B we have 0 < m S a n < M which, in the
case of triple series, we would expect to become

0<m1^an^Mi and 0<m 2 ^fc n ^M 2 . (*)

Instead, as in the corollary to Theorem 2, we have an additional factor of Mf <
(V2+l)/(\/2-l)mi (i = 1,2). As a means of proving that some additional condition is
needed, we have the following counterexample. For n = l , 2 , . . . let <pn(x) = sin nx. Let
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H = L2[0, TT], P , = L2[0,57r/16], P 2 = L2[5TT/16, ir/2], and P 3 = L2[7r/2, TT]. For n =
4 , 5 , 6 , . . . let an = bn = 1; i.e. i/fn(x) = <pn(x) = sin nx. Let f be a real number, al = bx = b2 =
a3=t and let a2 = b3 = 2-t. Thus for all fe(0,1) we have 0 < r < a B < 2 - f and 0 < r <
bn ^ 2 - 1 . Thus for all f E (0,1) {an} and {£>„} would satisfy condition (*). However, we shall
show that for some t e (0,1) not only is {(/>„} not an P basis but it is not even complete in
H.

In searching for a function F(x)e L2[0, IT] orthogonal to {iMn=i w e w " t e ^00 =
oo

£ Fn sin nx. Then since, for n = 4 , 5 , . . . F is orthogonal to sin nx we have Fn = 0
n-i 3

(n = 4,5, . . . ) . Thus we merely need find non-zero Fu F2, and F3 such that £ Fn sin nx is
n - l

orthogonal to {</>„};!=t. We can find such {Fj}?=1 if and only if the determinant
|(«fc(x), sin/x)| is zero. Keeping in mind that the coefficients of {t/'i}f=i depend on
te (0,1) we set D(0 = |(i^i(x), sin yx)| (i, j = 1,2,3). D(0 is a continuous function of f and
8D(0-07) = -0-071942 while 8D(0-08) = 0-318591. Thus for some t e (0-07,0-08), D{t) is
zero and hence {iMx)}"^ is incomplete (and certainly not a basis) in L2[0, TT] even
though it satisfies (*). We note that for t > (V2- 1)/V2 = 0.29289 we have all the hypotheses
of the corollary to Theorem 2 satisfied and hence {<AB(x)}"=1 would be an €2 basis in
L2[0, TT]. Thus while there is some gap between the t of our counterexample and
t > ( V 2 - l ) / V 2 we have established that something more than (*) is necessary and that
Theorem B is not generalized in the obvious manner.

The author would like to express his thanks and appreciation to Professor Daniel
Prener for his assistance in setting up the computer program that yielded the counterex-
ample.
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