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Abstract

We discuss the application of nonstandard methods to local versions of certain lattice notions.
In a particular case, we find that imposition of certain local conditions imply a surprising global
one, namely boundedness of the given lattice.
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0. Introduction

Applications of nonstandard methods to distributive lattices have been ex-
plored in [5]. As noted in [5], many such applications depend on the existence
of a hyperfinite extension Dv of a given distributive lattice D. The exis-
tence of such an extension was in fact shown to follow from the fact that
D is locally finite, and in [11] an equivalence for algebraic structures was
established, of which the following is a specific case:

THEOREM 0.1. A lattice L is locally finite if and only if it has a hyperfinite
extension L

V

In the present work, we will actually apply a more general theorem and
more general methods from [11], still restricting our attention to lattices.
Thus we review some pertinent definitions:
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[2] Some finiteness conditions in lattices 267

DEFINITIONS. Let & be a lattice property.
(1) Any lattice with property & is called a &-lattice.
(2) A lattice L is a local-&-lattice if and only if each finitely generated

sublattice of L is a ^-lattice.
(3) The property & is finite generation-hereditary if and only if every

•^•-lattice is a local-^-lattice.
(4) If L is a lattice and K is an internal sublattice of *L, then AT is a

hyper-&>-lattice if it satisfies *3°.
The properties which we shall consider will be finite generation-hereditary

ones, for, as was shown in [11], only such a property lends itself to a non-
standard characterization of the following form:

THEOREM 0.2. Let & be a finite generation-hereditary property of lattices,
and let L be a lattice. Then L is a local- &-.lattice if and only if it has a
hyper-ZP extension in *L.

We will not prove Theorems 0.1 and 0.2 here, because the proof of 0.2,
form which 0.1 follows, is given in [11], and the methods employed there
are similar to those used in the current work. Yet, unlike in [11], here we
will have the added assumption that the structures we work with are (not
necessarily distributive) lattices.

DEFINITIONS. Let L = (L, A, V) be a lattice and let f,g:L^>L.
(1) The ordered pair ( / , g) is a polarity of L if and only if / is a decreas-

ing join-endomorphism of L and g is an increasing meet-endomorphism of
L, such that if x e L, then we have that f(g(x)) <x< g(f(x)).

(2) The ordered pair ( / , g) is a local polarity of L if and only if each
finite subset R of L is contained in a finitely generated sublattice K of L
for which (f\K, g\K) is a polarity of K.

(3) A tolerance of L is a reflexive, symmetric sublattice of L2 .
(4) The function f:L -* L is a local join (meet) endomorphism of L if

and only if each finite subset F of L is contained in a finitely generated
sublattice K of L on which the restriction of / is a join (meet) endomor-
phism.

Let us review certain results about tolerances and polarities on finite lat-
tices, such as can be found in David Hobby and Ralph McKenzie [10], and
others (e.g. [1]). Many of our results will have analogues in the finite case.
In fact, our goal here is to obtain results for the localized notions of toler-
ances and polarities, and to use nonstandard methods for these results when
it seems natural to do so. In the case of locally finite lattices, of which dis-
tributive lattices are a prime example, we often apply nonstandard techniques
to results from the finite case, as in [5], [11], and others. For the fundamen-
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tal nonstandard techniques and notation, the reader is referred to texts on
nonstandard analysis, such as [9], [12], [13].

1. Some standard results about polarities and tolerances

In [10], [1], others, standard results are given for polarities and tolerances
of finite lattices, and some of the proofs given do not depend on the finiteness
assumption. In such cases, we shall remove this assumption in what follows,
but we will not reproduce the proofs here. The reader is referred to the
bibliography for current research (e.g. [3], [4], [16], [17], etc.) on tolerances
of lattices in the nonlocalized form.

LEMMA 1.1 (cf. [10, 1.2]). Let L be a lattice, and let f,g:L^L. Then
( / , g) is a polarity of L if and only if both of the following hold.

(i) Either f is decreasing or g is increasing.
(ii) Forallx,yeL, f(x) < y if and only if x < g(y).

LEMMA 1.2 (cf. [10, 1.2]). Let L be a finite lattice.
(i) The set of polarities of L defines a one-to-one correspondence between

the set of all decreasing join endomorphisms of L and the set of all increasing
meet endomorphisms of L.

(ii) If p is a tolerance of L, then there is a (unique) polarity (f,g) of L
for which p = {(x, y) e L2\f(x V y) < x A y}; in fact f and g are given by

f(x) = min{(y e L\(x ,y)€p}, and g(x) = max{y e L\(x, y) e p}.

(iii) If ( / , g) is a polarity of L, then there is a (unique) tolerance p of
L for which

f(x) = min{y e L\(x, y) € p}, and g(x) = m&x{y e L\(x, y) e p}.

In fact p is defined by p = {(x, y) e L2\f(x V y) < x A y}.

We shall investigate properties of connected tolerances in locally finite
lattices, so let us review the definitions and some results (from the finite
case) which are pertinent to such an investigation:

DEFINITIONS. Let L be a lattice.
(1) A tolerance p of L is connected if its transitive closure (the congru-

ence it generates) is L2 .
(2) A tolerance p of L is locally connected if its restriction p\K — p n

K2 to any finitely generated sublattice K of L is connected as a tolerance
of K.
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[4] Some finiteness conditions in lattices 269

(3) A tolerance p of L is locally subconnected if each finite subset F of
L is contained in some finitely generated sublattice K of L for which the
restriction p\K — p n K2 is connected as a tolerance of K.

(4) Let x, y e L and suppose x < y. If for all z e L, x < z <y implies
that z e {x, y) , then we say y covers x, and we denote this relationship
by x -< y.

(5) The covering relation of L is the set

CL = {{x, y) e L2\x -< y or y -< x).

(6) The covering relation of L is locally realized if every finite subset F
of L is contained in a finitely generated sublattice K of L for which we
have that CK = CL\K = CLf\K2 .

The following lemma will generalize (in some sense naturally) to locally
finite lattices, by application of its nonstandard version to hyperfinite exten-
sions:

LEMMA 1.3 (cf. [10, 1.3]). Let p be a tolerance of a finite lattice L, and
let ( / , g) be the polarity defined by p, that is, let

f(x) = min{y € L\(x, y) € p}, and g{x) = max{y e L\{x, y) e p}.

Then the following are equivalent.
(i) The tolerance p is connected.
(ii) There is a strictly increasing sequence (x0, ..., xn_l, xn) in L with

x0 = 0, xn = 1, and (x(, xi=l) e p for all i < n. {Note that we denote
max(L) and min(L) by 1 and 0, respectively.)

(iii) The map f is strictly decreasing on ^ \ { 0 } .
(iv) The map g is strictly increasing on L\{\}.

Note that when Lemma 1.3 is generalized to the locally finite case, we
have no real hope of including condition (ii) in the list, since it implies
boundedness. Yet of course the *-transform of all of Lemma 1.3 will hold
on any hyperfinite extension of a locally finite lattice, and this is in fact our
tool in investigating locally subconnected tolerances of locally finite lattices.

The covering relation CL on a lattice L is important in the study of
connected tolerances in the finite case, and of course we shall explore its role
in the locally finite case. We denote the diagonal, {(x, x)\x € L}, of a
lattice L by AL, and the assumption of finiteness for L yields

LEMMA 1.4 (cf. [10, 1.4]). Let L be a finite lattice.
(i) If p = (AL u CL) is the sublattice of L2 generated by ALl)CL, then p

is the smallest connected tolerance of L.

https://doi.org/10.1017/S1446788700035849 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035849


270 Matt Insall [5]

(ii) A meet endomorphism g (or a join endomorphism f) of L is strictly
increasing ( or strictly decreasing) if and only if x -< y in L implies that
g(x) >y (or x -<y in L implies f(x) < y).

Two particular classes of finite lattices, the tight ones and the 0, l-simple
ones, form an integral part of tame congruence theory for finite algebras, as
presented in [10]. If these are expanded to include some infinite lattices,
then we find uses of nonstandard methods in generalizing results about such
lattices to localized versions of various properties. Consider the following
standard definitions:

DEFINITIONS. Let L be a bounded lattice.
(1) If <p:L —> M is a lattice homomorphism, then it is 0, l-separating if

<P~\<P(0)) = {0} and <p-l(<p(l)) = {l}.
(2) The lattice L is 0, l-simple if it is nontrivial and every nonconstant

lattice homomorphism <p:L—>M is 0, l-separating.
(3) The lattice L is tight if it is nontrivial and every proper tolerance p

of L is such that (0, a) € p implies a = 0 , and dually, (b, 1) € p implies
that 6 = 1 .

Note that these definitions generalize those given in [10] for finite lattices.
Now let us define localizations of some properties which we shall study. (Note
that we use the fact that any finitely generated lattice is bounded: the supre-
mum and infimum of a finite generating set are the bounds for the given
finitely generated lattice.)

DEFINITIONS. Let L be any lattice.
(1) We say that L is locally subtight if each finite subset F of L is

contained in some tight finitely generated sublattice of L.
(2) If L is locally subbounded then it is locally sub-0, l-simple if each

finite subset F of L is contained in some 0, l-simple finitely generated
sublattice of L.

(3) We say that L is locally tight if each finitely generated sublattice of L
is tight.

(4) If q>:L —* M is a lattice homomorphism, then it is locally 0 , 1 -
separating if its restriction to any finitely generated sublattice is 0, l-separat-
ing.

In [10], various lemmas and exercises are presented regarding (finite) 0,1-
simple and tight lattices. We will generalize some of these results to their
corresponding localizations. At least one of these, however, can be used
to find an interesting global result about certain locally tight lattices which
are locally finite (with some additional local properties to be defined later),
namely that they are actually bounded. To this end, let us review the results
of [10] which are pertinent to this investigation.
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[6] Some finiteness conditions in lattices 271

LEMMA 1.5 (cf. [10, 1.7]). A finite lattice L is tight if and only if it is
0, l-simple and every strictly increasing meet endomorphism of L is constant
{that is, L2 is the only connected tolerance of L).

LEMMA 1.6 (cf. [10, 1.8]). Let L be a nontrivial bounded lattice. Then the
following are equivalent:
• (i) the lattice L is 0, l-simple,

(ii) there is a largest nontrivial (i.e. / L2) congruence 6 of L, and 8
satisfies both [l]e = {1} and [0]e = {0}.

PROPOSITION 1.7 (cf. [10, 1.9(2)]). Let qr.L -> M be a surjective 0, 1-
separating lattice homomorphism, where L and M are finite lattices. If L
is 0, l-simple, then so is M.

The final result of [10] which we wish to consider is the following ex-
pression of the relationship between 0, 1-separating homomorphisms and
tightness for finite lattices, which we shall, of course generalize to the locally
finite case. Other generalizations may be obtained, but those we shall give
seem to elucidate the nonstandard proof methods in these lattices quite well.

LEMMA 1.8 (cf. [10, 1.10]). Let ip:L-* M be a surjective 0, l-separating
homomorphism between finite lattices L and M. Then L is tight if and only
if M is tight.

2. Localizations and nonstandard methods

We shall consider the results of the previous section essentially in order
of their appearance, always keeping in mind that the lattices and maps we
consider are included among the objects of a suitable superstructure, 6 ,
and therefore have nonstandard extensions in *6 (see, for example, [5], [9],
[11], [12], [13], [14], [15]). Our first proposition provides us with our basic
nonstandard tool in working with local polarities of any lattice whatsoever:

PROPOSITION 2.1. Let L be a lattice with f,g:L -» L. Then the pair
( / , g) is a local polarity of L if and only if L has a hyperfinitely generated
extension Lv for which ( /„ , gv) = (*f\Lv, *g\Lv) is a (hyper)polarity of
L.

V '

PROOF. If ( / , g) is a local polarity of L, then let H c *L be a hyperfinite
set containing L. By transfer, *L has a hyperfinitely generated sublattice
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Lv containing H for which (fv, gu) is a hyperpolarity. This is the desired
extension Lv.

Now suppose (fv, gv) is a hyperpolarity of a hyperfinitely generated ex-
tension Lv of L, and let F C L be finite. Then the set F is contained
in some hyperfinitely generated sublattice K of *L (namely K = Lv) for
which (*/l-K\ *g\K) is a hyperpolarity of K. Downward transfer yields
existence of a finitely generated sublattice K of L which contains F and
for which the pair (f\K, g\K) is a polarity of K. Thus ( / , g) is a local
polarity of L, as desired.

Since any hyperfinitely generated extension of a locally finite lattice (in its
nonstandard extension) is actually hyperfinite, we get the following corollary,
which is useful in dealing with local polarities of locally finite lattices:

COROLLARY 2.2. Let L be a locally finite lattice with maps f ,g.L -*L.
Then ( / , g) is a local polarity of L if and only if L has a hyperfinite exten-
sion Lv for which (/„, gv) = (*f\Lv, *g\Lv) is a {hyper)polarity of Lv .

Recall that Lemma 1.2 established that the set of polarities defines a one-to-
one correspondence between decreasing join endomorphisms and increasing
meet endomorphisms on a finite lattice. Now we shall show a similar result
for the set of local polarities of a locally finite lattice, by a tidy application
of Corollary 2.2.

PROPOSITION 2.3. Let L be a locally finite lattice. Then the set of local
polarities of L defines a one-to-one correspondence between its domain and
range.

PROOF. Let (f,g),(f, h) and (e, h) be local polarities of L, with the
intention of proving that f — e and g = h. Let Lv, L^ and Ly be
hyperfinite extensions of L for which {fv, g j , (fM, h^) and (ey, hy) are
hyperpolarities, respectively. Let x e L. Then, as in Lemma 1.2, we get
gv{x) = m a x ^ e Lv\fv{y) < x}. Thus, since g = gJL and f = fJL,
we get g{x) > y for all y e L with f{y) < x. By transfer, if y e L is
such that * f{y) < x, then *g{x) > y. Therefore, since g(x) = *g(x) and
h = h^L, we have

h(x) = h^x) - max{y e L^iy) < x}

- max{y e L/f(y) < x} < g(x).

A similar argument yields g(x) < h(x), so g = h . Dually, f = e, and we
are done.
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[8] Some finiteness conditions in lattices 273

Since it is possible that a given decreasing join endomorphism of an in-
finite locally finite lattice might not be paired with any increasing meet en-
domorphism as a polarity, it is merely a convenience to make the following
definitions.

DEFINITIONS. Let L be a lattice with f:L-> L.
(1) We call / a locally polarizable join endomorphism of L if there is

some g:L -+ L such that the pair ( / , g) is a local polarity of L.
(2) We call / a locally polarizable meet endomorphism of L if there is

some g:L —• L such that the pair (g, f) is a local polarity of L.
Note then that Proposition 2.3 merely states that on a locally finite lattice,

the locally polarizable join endomorphisms and the locally polarizable meet
endomorphisms are in a one-to-one correspondence, and the correspondence
is defined, of course, by the set of local polarities of the given lattice.

Let us now look at tolerances of locally finite lattices. Here we shall use
relationships between tolerances and polarities, as is done in the finite case.
The following lemma is the result of a simple application of the transfer
principle to the fact that restrictions of tolerances to sublattices are tolerances.

LEMMA 2.4. Let L be a locally finite lattice with hyperfinite extension Lv .
If p is a tolerance of L, then pv - *p\Lv is a (hyper)tolerance of Lv .

Use of this fact is made in the following proposition, which is the non-
standard version of Lemma 1.2(ii) for hyperfinite extensions of locally finite
lattices. It will play an important part in our investigation of tolerances.

PROPOSITION 2.5. Let L be a locally finite lattice and let p be a toler-
ance of L. Then for any hyperfinite extension Lv of L, there is a unique
(hyper)polarity (<p, y) on Lv for which

Pv = {(* , y) e L\\<p(x vy)<xAy}.

In fact, <p and y are given by

(p{x) = min{y e Lu\(x, y) e pu},

and

y(x) = max{y e LJ(x,y) e />„}.

PROOF. By transfer of the finite case (Lemma 1.2) we have that (<p, y),
as defined, is a hyperpolarity on Lv and we have that

Pv = i(x ,y)eLl\<p(xVy)<xA y}.
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Now to show uniqueness, note first that, also by transfer of the finite case, if
{a, fi) is a hyperpolarity of Lv , then there is a unique hypertolerance T of
L for which a and p. are defined on L by the following formulas:

a{x) = ram{y e LJ(x, y) € T} and fi(x) = max{y e LJ(x, y) e pj.

a particular, if (a, n) satisfies pv = {(x, y) G L2

pv = x. Hence a = q> and p. — y, so we are done.
In particular, if (a, n) satisfies pv = {(x, y) € L2

u\o(x V y) < x A y}, then

Our next proposition is a standard result, but we provide a nonstandard
proof, for no other reason than its brevity and its aesthetic appeal to the
(author's) intuition in thinking about lattices:

PROPOSITION 2.6. Let L be a locally finite lattice and let ( / , g) be a local
polarity of L. Then the relation p defined by

p = {(x, y) e L2\f(x Vy) < x Ay}

is a tolerance of L.

PROOF. Let Lv be a hyperfinite extension of L for which (fv, gv) is a
hyperpolarity. Note that we have

pv = {(x,y)eLl\fu(x\/y)<xAy},

and transfer of the finite case yields that this is a hypertolerance of Lu , that
is, pv is a reflexive and symmetric internal sublattice of L2

V . In particular,
pv is a tolerance of Lv . As we remarked before, restrictions of tolerances
to sublattices are tolerances, so since p = pv\L, p is a tolerance of L, as
desired.

We shall now characterize locally subconnected tolerances of locally finite
lattices, as is done for connected tolerances of finite lattices in Lemma 1.3.
Our attack on the locally finite case requires the following two observations.
We leave their proofs to the reader.

PROPOSITION 2.7. Let p be a tolerance of a locally finite lattice L. Then
p is locally subconnected if and only if on some hyperfinite extension Lv of
L, pv is hyperconnected.

COROLLARY 2.8. Let p be a tolerance of a locally finite lattice L. Then
the following are equivalent.

(i) The tolerance p is locally subconnected.
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[10] Some finiteness conditions in lattices 275

(ii) There is a hyperfinite extension Lv of L for which if (<p, y) is the
unique hyperpolarity of Lv which satisfies

Pu = {(x, y) e Ll\<p(xvy) < x Ay},

then q> is strictly decreasing on L\{0}.
(iii) There is a hyperfinite extension Lv of L for which if [<p ,y) is the

unique hyperpolarity of Lv which satisfies

pv = {(x, y) & Ll\<p(xVy) < x Ay},

then y is strictly increasing on L\{1}.

From the above, we also get the following corollary, which is a standard
result for locally subconnected tolerances of locally finite lattices, and is a
natural analogue of Lemma 1.3:

COROLLARY 2.9. Let ( / , g) be a polarity on a locally finite lattice L.
Then the following are equivalent.

(i) The tolerance p — {(x, y) € L2\f(xvy) < xAy} is locally subconnected.
(ii) The map f is strictly decreasing on L\{0}.
(iii) The map g is strictly increasing on L\{0}.

PROOF. All that is needed to show (i) «• (ii) is to note that / is strictly
decreasing on L\{0} if and only if its extension fv to some (and in fact to
every) hyperfinite Lv containing L is itself strictly decreasing on Lv\{Q} .
A similar (dual) observation yields the equivalence (i) & (iii).

A direct argument can be given for the following obvious proposition,
but our argument avoids "localization" within L. We note that the finite
analogue of this result is part (i) of Lemma 1.4.

PROPOSITION 2.10. Let L be a locally finite lattice in which the covering
relation is locally realized, and let p be the sublattice of L2 which is generated
by ALuCL. Then p is a connected tolerance of L, and it is in fact the smallest
locally sub-connected (and locally connected) tolerance of L.

PROOF. Let Lv be a hyperfinite extension of L, so that pv is a hypertol-
erance of Lv . Now, by transfer of the assumption that the covering relation
is locally realized in L, we may assume that o contains A, u C , , because
AL l)CL = (A, UC, )\Lv . Thus pv is hyperconnected as a hypertolerance
of Lv (by transfer of the finite theory, of course), so p is locally connected
and a standard argument yields connectedness of p: yet we will still give the
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nonstandard argument here. Let (x, y) be in L2 . Then (x, y) e L2
v, so

that for some hyperfinite //, the pair (x, y) is in p^, since the (internal)
transitive closure of pv is all of L2

v. Thus we get that (x, y) e *p/l > a n d s o

by transfer, there is a finite n for which we get (JC , y) € p" . It follows that
the transitive closure of p is all of L2 , that is, p is a connected tolerance
of L. If T is any locally connected tolerance of L (or equivalently, if T is
a locally subconnected tolerance of L), then xv is a hypertolerance of Lv .
Transfer of the finite theory yields that xv contains pv . But then x contains
p, and we are done.

Now recall that we defined f:L —• L to be a local join (meet) endomor-
phism of L if each finite subset F of L is contained in a sublattice K of L
on which the restriction of / is a join (meet) endomorphism. The following
facts, stated without proof because their proofs follow exactly the same lines
as those of Theorems 0.1 and 0.2, and Proposition 2.1, are the basis for the
next theorem.

FACTS (cf. [11]). (1) A lattice L is locally subbounded if and only if it
has a bounded hyperfinitely generated extension in *L.

(2) A locally subbounded lattice L is locally subtight if and only if it has
a hyperfinitely generated internally tight extension in *L.

(3) A locally bounded lattice L is locally tight if and only if every one of
its hyperfinitely generated extensions in * L is internally tight.

(4) A function f:L -+ L is a local join (meet) endomorphism of L if
and only if on some hyperfinitely generated extension Lv of L, fv is a join
(meet) endomorphism.

THEOREM 2.11. Let L be a locally finite lattice with at least one strictly
increasing {on L\{\}) local meet endomorphism and at least one strictly de-
creasing {on L\{0}) local join endomorphism. If L is locally tight, then it is
bounded.

PROOF. We only show that L has a maximum element, 1. The existence
of a minimum, 0, in L, follows dually. Let f:L -* L be a strictly increasing
(on L\{1}) meet endomorphism and let Lv be a hyperfinite extension of
L on which fv is a meet endomorphism. Note that local tightness of L
implies internal tightness of Lv . Since / is strictly increasing on L\{1}, so
is fv ; hence by transfer of the finite case, fv is constant. Let 1 = max(L[/),
so that fv{x) — 1 for all x e Lv . In particular, if x e L, then f{x) - 1,
so in fact l e i . But then 1 = max(L), so we are done.

Another use of fact 3 from above is the following local version of Lemma
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1.6, for the case of locally subbounded lattices.

PROPOSITION 2.12. Let L be any lattice. Then L is locally sub- 0, l-simple
if and only if it has a bounded hyperfinitely generated extension Lv with a
largest proper internal congruence 0. Said congruence 6 satisfies [ l] e = {l}
and [0]e = {0}, where we have 1 = max(Lj/) and 0 = mm{Lv).

Note that Proposition 2.12 is of course the very tool one would need to
pursue a nonstandard study of locally sub- 0, l-simple lattices in general. We
do not continue in this course, but will point out two other (obvious) tools
developed in a similar way for other finite generation-hereditary properties of
lattices. The first we will state without proof, leaving its verification for the
reader (see its finite analogue). For the second, we shall provide the proof,
merely for aesthetic reasons.

PROPOSITION 2.13. Let L be a locally finite lattice, and let M be any
lattice. Suppose <p:L-+M is a surjective and locally 0, l-separating lattice
homomorphism. If L is locally sub- 0, l-simple, then so is M.

PROPOSITION 2.14. Let L be a locally finite lattice and let M be any
lattice. Suppose q>:L -> M is a surjective and locally 0, l-separating lattice
homomorphism. Then L is locally subtight if and only if M is.

PROOF. For hyperfinite extensions Lv and Mv of L and M, respectively
(note that M is locally finite since L is), with (pv{Lv) = Mv , we have that
Lv is internally tight if and only if Mv is internally tight, by transfer of the
finite case. The proposition follows.

3. The extension monad

In [11], the extension monad of an arbitrary algebra was introduced, and
its properties in that general setting were explored. Here, we wish to inves-
tigate the relationship which the extension monad of a lattice bears to the
local properties discussed herein. Let us first define this object, whose con-
struction from the original lattice resembles the construction of a monad for
an arbitrary filter. As was pointed out in [11], the notion of such monads in
general is due to Luxemburg [12].

DEFINITION. Let L = {L, A, V) be a lattice with enlargement *L. Then
the extension monad of L is the following sublattice of *L :

L — f]{K < *L\K is an internal extension of L).
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We will need certain facts proven in [11] about the extension monad which
are among the following:

FACTS (cf. [11]). (1) For any lattice L, the extension monad L is given
by the following formulas:

L — P ){# < *L\H is an internal hyperfinitely generated

extension of L}

= \J{{F)lfBt) < *L\F is a finite subset of L}.

(Note. Here we have introduced the notation of [11] for the internal sublat-
tice (F)(int) of *L which is generated by F.)

(2) The lattice L is locally finite if and only if L = L.
(3) If / : L -»• M is a function between the underlying sets of two lattices

L and M, then / is a lattice homomorphism if and only if the restric-
tion / = *f\L is a lattice homomorphism, and in this case, we have that
f-.L^M.

Using the above facts, we may prove the following two theorems, which
simultaneously provide for and limit the use of the extension monad in the
study of local polarities.

THEOREM 3.1. Let L be a lattice with f,g:L^L. If the pair ( / , g) is
a local polarity of L, then ( / , g) is a polarity of the lattice L.

PROOF. Suppose ( / , g) is a local polarity of L. Then ( / , g) is a po-
larity of L, trivially, so (*/, *g) is a (hyper)polarity of *L. (Note that a
hyperpolarity is also a polarity, but the converse does not hold.) Thus, for
x G L, we have:

/(#(*)) = */(**(*)) < x < *g(*f(x)) = g(f(x)),

all by transfer and restriction. Similarly, / is a decreasing join-
homomorphism of L into *L and g is an increasing meet-homomorphism
of L into *L. Let F be a finite subset of L with x € (F)(in t ) . Then for
some finitely generated sublattice K of L which contains F, we have that
the pair (f\K, g\K) is a polarity of K. But then f(K) and g(K) are both
contained in K, so by transfer, */(*AT) and *gCK) are both contained in
*K; hence we get
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f(x) = 7(*) G *f((F){int)) C *fCK) C ' K L ,

and similarly, g(x) is in L . Thus f(L) and £(L) are both contained in
L, which makes ( / , g) a polarity of L.

THEOREM 3.2. Let L be a lattice with lattice endomorphisms f and g,
and suppose ( / , g) is a local polarity of L. Then ( / , g) is a local polarity
of L.

PROOF. First note that ( / , g) is a polarity of L, so that (*/, *g) is a
(hyper)polarity of *L. Let F be a finite subset of L and since ( / , g) is a
local polarity of L, let E be a finite subset of Z, with F contained in (E),
such that (f\{E), g\{E}) is a polarity of (E). Then f(E) U £(£) is con-
tained in (E) and so in (£)( in t ) , so that since /|<£)(int ) and £|(£)(int) are
internal lattice homomorphisms from (is)(mt) into *L with / ( £ ) and g{E)
contained in (£)( in t ) , we get that f((E){iat)) and g({E)m) are both con-
tained in (£-)(int). Thus (/|(£)(int),£|(£;)(int)) is ahyperpolarity of (£>(int).
Since F is contained in (£')(mt), we have established existence of a hyper-
finitely generated sublattice K of *L, namely K = (£) ( m t ) , which contains
F and for which {f\K, g\K) = (*f\K, *g\K) is a hyperpolarity of K. Since
F is a finite subset of L , we may apply downward transfer to obtain exis-
tence of a finitely generated sublattice K of L which contains F such that
(/|AT, g\K) is a polarity of K. Since .F was chosen arbitrarily, ( / , g) is a
local polarity of L, and we are done.

Note that Theorem 3.1 and 3.2 do not require local finiteness of the given
lattice L. In light of fact 2 in this section, we see that attempts to prove any
assertion about a locally finite lattice L, via its extension monad L are no
'easier' than direct attempts, since in this case, L = L. In particular, since
the results involving tolerances which were considered in the previous section
all included this assumption of local finiteness, we have no applications of
the notion of the extension monad to those results.

Another fact from [11] which limits application of this notion of the ex-
tension monad is the following: a lattice L is finitely generated if and only
if we have that L = *L. Thus assertions involving the extension monad of a
finitely generated lattice L are merely assertions about the nonstandard ex-
tension *L, and again L contributes nothing in this case. The applications
of the extension monad will always be in the realm 'between' finite genera-
tion and local finiteness, when L is neither L nor *L, as is possible in 3.1
and 3.2.
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