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Let L be a fixed language and K be a set of structures related to L.
A sentence ¢ in L is said to be K-valid if and only if for every structure
Ain K, AE¢. If there exists a logical system S such that Sk ¢ is
equivalent to “¥ is K-valid”, then S is said to be a K-logic.

The sequence 2+« -5+ - - (8<a) is expressed by =z, -2, If fis
a map from « into {v,3}, Q’z,-- %, expresses a quantifier of the length
e. If all the values of f are constantly v or 3, then @Q’z,---2%, is also
written by v®,- -« -%, or az,- - - £, respectively and is said to be a homoge-
neous quantifier. If a quantifier is not homogeneous, it is said to be
hetrogeneous. If @« =w and f(n) =v for each even number n and f(n) =13
for each odd number #, then @Q7x,--.-%, is written by vzazvxdxs. -
The function f defined by the following conditions is said to be the dual
of f.

1. The lengths of f and f are the same.
2. f(@ =v if and only if f(8) =3.
3. f(p =13 if and only if f(p) =v.

If f and g are dual, then @’ and @’ are also said to be dual. The dual
quantifier of vazawx,vx,- -+ is written by axovx(laxz- -+, By a language, we
mean a set of logical symbols, individual constants, predicate constants,
and variables. We shall consider only the following particular kind of
languages.

1. Every quantifier in L is of the form @’.
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2. If Q@ isin L, then Q7 is in L.
3. L has sufficiently many bound variables i.e. the cardinality of the

set of all bound variables in L is regular and greater than the length of
any quantifier and any predicate constant in L.

4, L has sufficiently many free variables i.e. the cardinality of the
set of all formulas and the cardinality of the set of all free variables are
the same,

Let & be a structure related to L. U is said to be determinate if
and only if the following holds for every formula ¢ in L.

Qfxo' * '-%a(b(xo, M "iwam b ':dﬁ) or
Qtge o+ Re T P(®gy ¢+ ¢y By, * * -, dp) is satisfied in A

for every sequence a,, - + +,dg of members of the universe of .

(This schema is called the axiom of determinateness for the quantifier @’.)
If K is the class of all the determinate structures, then a K-logic is also
said to be a determinate logic. The word ‘“‘determinate” comes from the
axiom of determinateness in [5] and [6]. Roughly speaking, a structure A
is determinate if there exists a winning strategy for every definable game in
A.

This paper is a continuation of [3]. Only homogeneous quantifiers are
considered in [3]. For the system of [3], we proved the completeness
theorem, the cut-elimination theorem and the interpolation theorem.
However Malitz [4] found a counterexample of our interpolation theorem
and later we found an error in case 2 of the proof of our Theorem 5 [3].
In this paper, we shall generalize the system in [3] by introducing hetroge-
neous quantifier and prove that the system thus generalized is a determinate
logic. Then we shall prove that if a formula ¢ is provable in our deter-
minate logic and the inference for hetrogeneous quantifier is used only
once at the end of the proof of ¢, then ¢ is valid. (See Theorem 3 in § 3
for the precise form.) By using this property, the same method as in [3]
proves the following interpolation theorem. Let A and B be formulas
without hetrogeneous quantifiers. If A—— B is valid, then there exists a
formula C with hetrogeneous quantifiers such that A—>C and C—— B are
valid and every predicate constant or individual constant except = in C is
contained both in A and B.
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§ 1. A logical system.

We use sequents in our logical system. Sequents are of the form
I'—> 4, where I',4, and Greek capital letters in general denote sequences
of formulas of the length < 2* and 2 is the cardinal number of the set of
all formulas in L.

The postulates of our system is the following.

1. Beginning sequents.
D—>D
—>a=a

2. Rules of inference.

2. 1. Structural rule.

I'—4a
I—4"’

where every formula occurring in I" or in 4 is contained in 4
or in A respectively.

2. 2. Introduction of > in succedent.

{Al}knr"'_)d
I'— 4,{7 Ahier ’

where {A.;};; stands for the sequence A, A4,, .- -,A4,.
2. 3. Introduction of > in antecedent.

Ir— Ay {Al}ld
{7 Al}knp —>4

2. 4. Introduction of V in succedent.

F e A, {Al,p};«ﬁi,kr
Ir'—4,{V Az,,,}kr
#<B,

2. 5. Introduction of V in antecedent.

{Al,y‘}ld'y[,'—)d fOI‘ al]. {‘U)};Q' SuCh that Ha < ﬁ;(l<7’)
{#\</I9 Al.p}kr,F——)A

2. 6. Introduction of A in succedent.
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I —> 4,{A;,,}Lir for all {g;}ier such that g, < g<7)
F'_')A’{ﬂé\ﬁAl.y}kr

2. 7. Introduction of A in antecedent.

{Al.p}/«ﬁpkryr’—)A
{ A Az,,;}«r,F“**)A
n<B,

2. 8. Introduction of @ in succedent.

I' — 4, {A@) hier
I — 4,{Q:%,A:(%) }aer

Here @, means a sequence @, @,y 3@+ -+. If filp)=v,
then g, is said to be an eigenvariable of this inference.

2. 9. Introduction of @ in antecedent.

{A@) hers T —> 4
Qflszz(fz)}knF-‘")A

If fi(x) =3, then g, is said to be an eigenvariable of this
inference.

In both 2.8 and 2. 9 we use the following terminology. When an eigen-
variable occurs in @, Q/:%,A,(%,) in the schema is called a principal formula
of this eigenvariable and also a principal formula of the inference. A,(@))
is called the anxiliary formula of @/:.x,A;(%,). g is called the order of the
variable @, with respect to Q/:%,A,(%;). If the orders of two variables a
and » w.r.t. some one principal formula are gz and » and pz<y, then
a is said to be before b w.r.t. that principal formula.

3. Cut.

F'——)A,A1 fOI‘ all 2<T {Ag},kr,H‘_)/l
r,il—> 4,4

4. Rules for equality.
4. 1. First rules for equality.

(@ — f@ . (@ —— f@
@=0b,I"®—> 4B ° b=a,l®—s 45’

where @ =05 means the sequence {a =b},r and I'®—> 4®

https://doi.org/10.1017/5002776300001357X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001357X

A DETERMINATE LOGIC 117

means the result obtained from I®@—— 4@ by replacing some
occurrence of @, with &, for all a<7.

4, 2. Second rule for equality.
Let 3} be an arbitrary set of variables and 31 be a set consisting
of all prime formulas of the form « = b such that ¢ and b belong
to 3. (2]%) is said to be a decomposition of 3} if and only if
PUT =% and 2N¥T=0.

O, —> 4,¥ for all decompositions (@]%) of 31
I'—> 4

Every formal proof must satisfy the following eigenvariable conditions.

5. 1. If a free variable occurs in two or more places as eigenvariables,
the principal formulas of these occurences are the same formula and the
orders of this eigenvariable w.r.t. each principal are the same. If a occurs
in two different auxiliary formulas A(a@,) and A(@,) as an eigenvariable of a
principal formula @’ZA(%) and 4, and a,, are @, then a, and a,, are
the same for all v <<,

5.2. To each free variable @, an ordinal number named the height
h(a) of @ must be assigned and satisfy the conditions.

5. 2. 1. The height k(a) of an eigenvariable a is greater than the
height 4(b) of every free variable b in the principal formula of the eigenva-
riable a.

5. 2. 2. The height of an eigenvariable « is greater than the height
of b if b is before @ w.r.t. a principal formula of an eigenvariable a.

5. 3. No variable occurring in an inference as an eigenvariable may

occur in the end sequent.

Remark. The following weaker modification of eigenvariable conditions
is enough to get a determinate logic. Replace the last half of 5.1 by the
following. If A(@) is a auxiliary formula of a principal formula Q’ZA(x)
and q, and @, are eigenvariables of @’ZA(x) and v+, then a4, and a, are
different. If @ occurs in two different auxiliary formulas A(@,) and A(@,)
as an eigenvariable of a principal formula Q’ZA(%) and 4, and a,,, are q,
then a;,, and a,,, are the same for any noneigenvariable g, of Q'ZA(Z),
for each v <p.

5. 2. 2. can be replaced by the following 5. 2. 2'.
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5.2. 2. The height of an eigenvariable a is greater than the height
of b if a is an eigenvariable of a principal formula and 5 is before a w.r.t.
this principal formula but » is not an eigenvariable of this principal
formula.

§ 22 Examples of cut-free formal proof.

1) If I'—> 4 has no hetrogeneous quantifiers and is valid, then there
exists a cut-free proof of I'—> 4 because a completeness theorem and a
cut-elimination theorem can be proved for such a sequent. As one of the
simplest cases of this kind, we shall show a cut-free proof of the axiom of
depending choice.

F(an, @ne)) —> F(ay, G4y
{F(@ms Os1) Yruco —> F(Gps @psy) for every n<o
{F(am’ am+1)}m<m —_—)né\w F(am anﬂ)

{F(ams am+1)}m<w—_)vx0!xlxz' ¢ né\w F(m'm xn*—l)

{(VveayF (2, Y)}meo —> V03X, Xo0 « + /} F (%, %p+1)
nw

vaayF(x, y) —> v 320,250 « + é\ F(2,, Tp+1)
In this proof, A(a,) is defined to be m for each m < o.

2) The proof of axiom of determinateness.
Let @ be {&},. and & be {b,}.cs.

A@@, b) — A@, b)
—> A@, b), 7 A@,b)

—> Q'FA%,b), Q% 7 AT, b)

In this proof, k(@) =1+ 2 and h(b,) =0.

3) Malitz’s example.

Malitz found a counterexample for the interpolation theorem for the homo-
geneous infinitary language. His example is the following. Let A and B
be two well-ordered sets with the same order type. If F and G are two
order preserving one-to-one map from A onto B, then F and G are the
same. Let Ln(=,<) be a formula which expresses that < together with =
is a linear ordering relation. Let I be a sequence of the following
formulas.
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1 1 2 2
Ln(=9 <)9 Ln(:‘, <)’
vavyvaye(s = y A 1 = v —> (F(z,4) <> F(y,0)),

vevavavele = y A u = v —> (G(x,u) <> Gly, o),
vavyvuvo(F(z,u) A F(y,v) —> (x < Yye>u < v) A (@ = y<>u 2 )
vavyvuvo(G(x,u) A G(y,v) — (x <1 Yye>u i v) A (@ - Yye>u - v))
It should be remarked that all the quantifiers in I are universal at the
front of a formula. The following sequent is easily proved to be valid.

I'yvzayF(z,y),veayG(e, y),

1
veayF(y, 2), v2eayG(y, ), F(a, b) —> G(a,b),32,%,+ + + A (Xp4y < ;)

We are going to get a cut-free proof of this sequent. Let T be the set of
all finite sequences of 1 and 2. It is understood that the empty sequence is
a member of 7. We use ¢ as a variable expressing a member of 7. The
set D of free variables is defined as follows.

1) e D. (ais a a, where r is an empty-sequence.)
2) ar€ D, then &' and b2 are members of D.
3) b € D, then a! and a® are members of D,

4) All members of D are obtained by 1),2) and 3).

The members of D are q,b',b% a",a'% a®,a®, b, b1, - - ., [ is a sequence
of all the formulas which are obtained from a formula in I' by deleting
all the universal quantifiers and replacing bound variables by the members
of D. (From one formula, infinitely many formulas will be obtained. Of
course, in one instance of substitution, the same member of D should be
substituted for the same bound variable in a formula.) 4’ is a sequence of
all the formulas of the form

F(a,b), Fla',b), Gla,b*), Gla?y) (ceT).

In the following lemmas, we state several sequents which are provable in
the ordinary first order predicate calculus and so cut-free provable in
Gentzen’s LK.
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Lemma 1. The following are LK-provable.

1) I''y4'—>b =10,
where b1 = b2 ts an abbreviation of b z b2, In the same way, a1 = av
s an abbreviation of a - aw,

9) I A4 —> b2 = b,

3) I' 4 —a' =g,

4) I' 4 —>a® =g,

Proof. Obviously, I',F(a?,b"), F(a?,b)—> b =b whence follows 1)
trivially. The proof of 2),3) and 4) are similar.

Lemma 2. The following are LK-provable.
1) 1"1, A/’ br —_ brlZ__)arl - atZ

2) F/, A/’ ar = arlZ,_)brl — er

Proof. Under the hypotheses of I and 4’,b* = b** implies a? = g%,

Using the previous lemma, we have a? =a?. The proof of 2) is similar.

Lemma 3. The following are provable in LK.
1) I, 4, b = priz —> gt = g2 (i =1,2).

2) I, 4, a7 = g2 > bl = p2 (i =1,2).

Proof. Under the hypotheses of I and 4, b =b'2— b = p12—>
a' = a? (Lemmas 1 and 2). The other cases are similarly proved.

LEMMA 4.  The following is provable in LK.
I' 4, b = bt — b = b2,

Proof. This is easily proved by the induction on the length of ¢, using
lemma 3.

LemMa 5. The following are provable in LK.

1) I, 4,b* = b2 —> Gla, b)
2) I'', 4,0 <b—a*<a
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2 1
where b1 <b: and a1<<aw are abbreviations of b1 <b: and a1 <ae
respectively.

3 I apr<bh—ad<a

Proof.

1) I'",G(a,b?),b' = b*—> G(a,b")

2) I'",F(a,bY),b' <b? G(a,b?,Ga?%b)—>a?<a
3) I',F(a,b'),b* <b!y F(a®,b?) —>a* <a.

Lemma 6. The following are provable in LK

1) I',4,5% = b —> Gla, b)
2) I"/, Al, btl < er ______)afl2 <ar
3) I'4,b*<b'—ai<a.

Proof. The proofs of 2) and 3) are similar to the proof of Lemma 5.
1) follows from Lemma 4 and 1) of Lemma 5.

DerFiNITION. R'(c) means b1 =02 if { =0;b1<b?, if { =1; and #2<
b, if i =2, T, is a set of all members ¢ in 7 such that the length of
< is odd.

The following immediately follows from Lemma 6.

Lemma 7. The following is cut-free provable for each sequence of i.(=0,1,2)
(T (= To)-

. 1
{Rl'(T)}reTo’[”’ 4" —> /n\ tn+1 < tns G(ay bl))

where t, is a member of D whose length is 2n.

Lemma 8. The following is cut-free provable.

1
LA NEg@ e o o 7 A (g < 2,) —> Gla, bY)
n

2 2 2
Proof. 'This follows from Lemma 7, since vavy(x<yVzaz=yV y<z)
is contained in I
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TueoreM. The following is cut-free provable.

1
Fy A’onxl e 7 A (xnﬂ < xn)’ F(a, b) — G(a’ b)

n

Proof. Take b to be b'. Then define i(a?) and A(b”) to be the length
of - and the length of 7/ respectively. - Then the theorem follows from
Lemma 8.

§ 3. Validity of provable formulas.

First of all, we shall prove the following theorem.

THEOREM 1. Let A be a determinate structure and I' —> 4 be provable in
the system in § 1. Then I' —> 4 is satisfied in .

Proof. Take an arbitrary formula with a quantifier at the beginning,
say

Q'FA%, a),

—

where @ is the sequence of all free variables in this formula and the
length of # is «. For each 7 <a, we introduce a Skolem function

gi'r(xéo’ ¢ 9x5,,’ i '95) or ngi‘f(xqo, M '9“’1},,9 M 'a‘—l.)

according as f(r)=3 or f(r)=v, where &,--:,§, -+ are all ordinals

& <7 satisfying f(§) =v and 7, + ++,7, + -+ are all ordinals » <7 satisfying

fp)) =3. We define the following interpretation of gf” and g[* w.r.t. .
If Q’ZA(%,a) is satisfied in A, then gi”s are functions satisfying

1- 1- vxé’oxfl. * 'A(-im M "a)’
where &, is 2, if f(7)=v and &, is g}"(®e, - - +,a@) if f(r)=3. Let D be

the universe of ¥ and 0 be a member of D. @ is understood to be a
sequence of members of D. If Q'/FA(X,@) is not satisfied in A, then
gl7’s are interpreted to be a constant function 0 in A

If @'F > A(%, @) is satisfied in ¥, then §{”’s are functions satisfying

1.2, VYo, A&y« + »,a),

where Z, is @, if f(r) =3 and & is §i"(we, - +,a) if fN=v. If Q&=
A(Z,@) is not satisfied in A, then gi”s are interpreted to be a constant
function 0 in 9.
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Now let P be a proof-figure in our logical system. Well-order all the
eigenvariables in P in such a way that k(e) <h(a) if g<7r and let the
well-ordered sequence be a,,a;, -+ +,a;+-+. We shall define terms ¢, ¢,
«+ e, s+ ++ by transfinite induction on B  Assume that ¢, - .,f, have
been defined; we shall define ¢,, Let Q'ZA(X,5) and A(d,b) be the
principal formula and an auxiliary formula of @; and let the order of g,
w.r.t. this principal formula be 7 i.e., let @, be d,. For each d,, let g,
be either the already-defined ¢, for which d, is @, in case d, is an eigen-
variable; or else d, itself, if d, is a free variable not used as an eigenvari-
able. Likewise for each b, let s, be obtained in the same way. Therefore
Uy + + 2y and sy, + + +,s5; have been defined for dy, - --,d; and by, - -,b,
where & is the length of 5. Then ¢, is defined to be g7(uey + + =5 Sos = =, $5)
OF gh™(thyyy * + + 5 Sos * » +, &) according as f(r) is 3 or v. This definition does
not depend on the choice of A(d,b) because of 5.1 of § 1.

Now substitute #, %, « <, +++ for a,a, - +,a, -+ respectively in
P. Let P’ be the proof-figure thus obtained from P. The end-sequents
of P’ and P are the same because the end-sequent of P has no eigenvari-
ables. We shall show that every sequent of P’ is satisfied in %. We have
only to show that if the upper sequents of an inference in P’ are satisfied
in ¥, then the lower sequent of this inference is also satisfied in %. Since
the other cases are obvious, we only consider the inferences on quantifiers.
The introduction of @ in the antecedent in P’ is of the following form

g 1, —otttcee , A, S), [ —> 4
t -+, Q'TA®R, 3), JT—>4

where #, is of the form gf7(u., - -,3) if f(r) =
The introduction of @ in the succedent in P’ is of the following form

Ir—>4, <A@, S), -
r'—>4,- - ,Qfoa‘c' ), »

2. 2.

where #! is of the form gﬁ'f(u,jo, «.«,8), if f(r)=v. Therefore, what we

have to show is

3.1. Q'FARX,’5 — A#,S) for 2.1 and
3.2. A@',3) —> Q'%AZ,s5) for 2. 2.

However 3.1 immediately follows from 1.1. Now we shall consider 3. 2.
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Assume that > Q’ZA(7,s) holds in . Since A is determinate, Q% > A(&, 3)
holds in %A. Therefore what we have to show is

Q7 7 AZ,5) — 7 A4, 3),
which follows from 1. 2.
Since the determinateness of U is used only for 3.2 and the axiom of

the determinateness always holds for a homogeneous quantifier, we have
the following theorem.

THEOREM 2. Let a proof-figure P in our determinate logic satisfy the follow-
ing condition. Every quantifier introduced in the succedent in P is homogeneous.
Then the end-sequent of P is valid.

We can show a little more. First we shall define a logical system VSS
which is a valid subsystem of our determinate logic.

DEeFiNiTION. A proof-figure P in our determinate logic is said to be a
proof-figure in VSS if every inference I in P on the introduction of @ in
succedent is homogeneous or has the form

' —> 4, Ad)
' —> 4,Q"FAX)

4. 1.

where no eigenvariable in P used prior to I'—> 4,Q’ZFA(X) occurs in
I' —> 4,Q"ZA(X).

TaEOREM 3. If a sequent S is provable in VSS, then S is valid.

Proof. Define gi* only for homogeneous f and g]” as in the proof of
Theorem 1. Then define substitution also as in the proof of Theorem 1
except that all eigenvariables in the inference of 4. 1 remain unsubstituted.
Then P will be transformed to P’. What we have to show is that every
sequent S’ in P’ is satisfied in . This is shown by the transfinite induc-
tion on the complexity of the proof to S. We can repeat the proof of
Theorem 1 except in the following case. S is infered by the inference I

I —> 4, A,
I'—>4,Q°TA(

b)
% 0)’

where @’ is not homogeneous. In order to illustrate the proof, we assume
that Q'% is vax3x,vae,ax,- -+ and d is dy,dy,dy, + + +.  Since I satisfies 4. 1
and h(d) < h(d) <h(dy)) <-++, (I'—>4,A(d,b)) is of the form I''—> 4,
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A(dy, t(dy, 3), dy t4(dy, dy, 5), + + +,5). It follows from the inductive hypothesis
that I'" — 4', A(d,, t,(dy, 3), dy, t5(dy, d3, 3), + » +,5) is satisfied in A for every
sequence dy,dy, d,, - + + of members of A.  Therefore I'"— 4',Q %A, is
satisfied in L.

We shall consider another logical system.

DeriniTION. A figure P is said to be a proof-figure in RHS (restricted
homogeneous system) if P satisfies the following conditions

5.1. All quantifiers in P are 3.
5. 2. P satisfies all conditions of proof-figure in § 1 except 5. 1-5. 3.
5. 3. Every inference in P of type 2.9 in § 1 is of the following form

{A@) e, [ —> 4
{SEIAZ(?”—'I) }I<T’ F —> 4

where no @, occurs in
{32, 4@ ) bacr, T —> 4.
Then we have the following proposition.

PropositioN 1. If I'—> 4 is provable in RHS and the heights h’s are
defined for all free variables in ' —> 4. Then there exists a proof-figure P' to
I' —> 4 wn RHS such that the heights in P’ of free variables in I' —> 4 are the
same with h.

Proof. We may assume that the same eigenvariable is never used in
two different places.  (Otherwise, we can reletter some eigenvariables.)
Then we define heights of free variables from the bottom so that the proof-
figure in RHS satisfies the conditions 5. 1-5. 3 in § 1. Since our proof-figure
satisfies 5. 3 in the previous definition, this is easily done.

§ 4. A completeness theorem.

First we shall prove the following theorem.

THEOREM 1. Let '—> 4 be a sequent. Then there exists a cui-free proof
of I'—>4 in our determinate logic or else there exists a structure U (possibly not
determinate) such that every formula in I' is satisfied in U and no formula in 4 is
satisfied in A,
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Proof. Every free variable in I' or 4 is treated as an individual
constant. Let D, be an arbitrary non-empty set containing all individual
constants in I' and 4. Let D be the closure of D, w.r.t. all the functions
gi7 and gi7 for all formulas A in our language, i.e., D is generated by all
gi”’s and gi”’s from D,  (Actually it is enough that D is closed w.r.t. all
the functions ¢§7 and g;” for all subformulas A of a formula in I" or 4.)
In this proof, a member of D— D, is treated as a free variable and a
member of D, is treated as an individual constant. Let E be the set of
all formulas of the form s =1¢, where s and ¢ are members of D. Let
(@]¥) be an arbitrary decomposition of E and consider the following
sequent 1, 1.

1.1. @,'—>4,¥%

If all the sequents of the form 1.1 are provable without cut, then I'— 4
is also provable without cut. If there exists a counterexample for a sequent
of the form 1.1, then it is also a counterexample for I'—> 4.

Let S be '—> 4. We shall define the figure P(S) by the following
way.

1) The lowest sequent is S.
2) Immediate ancestor of S are all the sequents of the form 1. 1.

3) When a sequent I —> 4 is
{7 Cx}kh I—> Al, {7 Dp};«ﬁ!

where " and 4’ have no formulas whose outermost logical symbol is =,
and IT—> 4 is constructed by 2) or 8), the immediate ancestor of I — 4
is

{Dp}[l<57 I'—> Aly {Cllkh

4) When a sequent I —> 4 is

{ v Cl.y}p<rvpl_>4/,{ V Dp.u}a<6y
/1<r" p<7,
where I and 4’ have no formulas whose outermost logical symbol is V,

and when I7—— 4 is constructed by 3), then the immediate ancestors of
II —> A are

{CZI‘,F}/‘<T’F/ i A,’ {Dp.a}p<5,.v<3
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for all sequences {4,},; such that 2, <7,
5) When a sequent I —> A is
{K/;” Crplucr [ —> 4, {K/\BDD,,.,,}M,
where I'" and 4’ have no formulas whose outermost logical symbol in A,

and when IT~—> /4 is constructed by 5), then the immediate ancestors of
II—> A are

{Cl,,u}krﬂ,,ud,-pl — A’s {D ,.a}u<6
for all sequences {1}, such that 1, <7.

6) When a sequent I —> 4 is
(V& AE, oy [ —> 4

where I'" has no formulas whose outermost logical symbol is @, and when
I —> A is constructed by 5), then the immediate ancestors of I —> /A are

{Az(fx,m $) s I —> 4’

for all #,,, satisfying the following.

Fow 38 {fi0s * * *stius * * * her Where 7 is the length of %. If &,&,---
are all ordinals <7 such that f(& =v and if 7,7, -+ are all ordinals
<7 such that f(y) =3, then #;,.¢,%,.e +++ 18 an arbitrary sequence of
members of D and t,, =01 "(tiue, ¢ 55 L, runs over all such

sequences.
7) When a sequent IT—> 4 is
I — 4, {Q) %, A%, §2)}ics

where 4’ has no formulas whose outermost logical symbol is @, and when
II —> /A is constructed by 6), then the immediate ancestors of I —> A are

F/ —_> A/, {AX(ZZ.I‘, §2>};A.1<6’

for all i,,, satisfying the following.

Fap 38 {tamos * * *slauss * * * Lor Where 7 is the length of . If &,&,.--
are all ordinals <7 such that f(¢) =v, and, if 5,7, -+ are all ordinals
<7 such that f(y) =3, then ¢, %usp **+ are arbitrary members of D

and #,,.e= 00ty * * *»82). £, runs over all such sequences.
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8) When a sequent I7—>4 is

{Sx = tl}kﬁ’[”'__)AI,

where I’ has no formulas of the form s =¢ and when I7 —> 4 is constructed
by 7), then the immediate ancestor of II —> 4 is the sequent [I'— /!,
where IT' and A' are sequences of all the formulas obtained from a formula
in IT and 4 respectively, by arbitrary interchange of s, and ¢,(z<p). (So
II' and A' obviously include I7 and 4 respectively.)

A branch of P(S) is an infinite sequence S =S,,S;,5,, + -+ such that
Sn+1 18 an immediate ancestor of S,. We have two cases.

Case 1. In every branch of P(S), there exists at least one sequent of
the form

Ir'y,D,I'y—>4,D, 4, or I'—> 4,, s=s,4,

Case 2. There exists at least one branch of P(S), in which there are
no sequents of the form

I'yD,Ty—>4,D, 4, or I'—> 4y, s =s,4,

In case 1, S is provable without cut. First we define the height of
the free variable as follows.

2.1. If ee D, then A(a) =0.
2. 2. If o is gﬁ,r(bm * °’b€9 . ') or gg’r(bos ¢t ’be, ¢ ')’

then h(a) is the supremum of all A(d) + 1’s.

It is easily shown that P(S) satisfies the conditions 5.1 and 5. 3 in § 1.
In this proof, a figure P is said to be a semi-proof if and only if P satisfies
all the conditions of a proof-figure except 5. 1-5.3 in § 1. P is said to be
a quasi-proof if and only if P satisfies all the conditions of a proof-figure
except 5.3 in § 1. Now consider the following conditions on P.

3.1. Pis a cut-free semiproof.

3. 2. Every individual constant or free variable in P occurs in P(S)
and every inference on @ in P occurs in P(S).

If P satisfies 3.1 and 3. 2, then P obviously satisfies 5. 1-5. 2 in § 1
and therefore P is a cut-free quasi-proof. Now consider the condition C
on a sequent S’ that S’ has a quasi-proof P satisfying 3.1 and 3. 2. Let
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S’ be in P(S). It is easily seen that if every ancestor of S’ satisfies C,
then S’ satisfies C. Suppose that S is not provable without cut. Then
S does not satisfy C. Then some ancestor of S, say S;, does not satisfy
C. Continuing this argument, we get a sequence S,S;,S,, -+, where
Sn+1 1S an ancestor of S, and does not satisfy C for each n. This contra-
dicts the hypothesis of Case 1.

In case 2, there exists a structure U in which every formula in I" is
true and every formula in 4 is false. In the rest of this proof, we fix one
branch, whose existence is assumed in the hypothesis of Case 2, and
consider only the formulas and sequents in this branch, i.e. a sequent
always means a sequent in this branch. We only have to define an
interpretation which makes all the sequents in this branch false with respect
to D.

LemMa 1. If a formula 7 A occurs in the antecedent (or succedent) of a
sequent, then the formula A occurs in the succedent (or antecedent) of a sequent.

Lemma 2. If a jformula AVB A; occurs in the antecedent (or succedent) of a
<

sequent, then a formula A, for some (or every) 2<<fB occurs in the antecedent (or
succedent) of a sequent.

Lemma 3. If a formula x/\g A, occurs in the antecedent (or succedent) of a
<

sequent, then a formula A, for every (or some) A <<PB occurs in the antecedent (or
succedent) of a sequent.

LemMa 4. If Q'ZTA(%,3) occurs in an antecedent of a sequent and &,&, + +
are all ordinals such that f(&)=v and 94,7, + - - are all ordinals such that f(y) =3,
then for an arbitrary sequence t.,t;, « «+ of members of D, the formula A(F) is in

an antecedent of a sequent, where t, = gi"(te, + + +,3) for each 7 =175+ .

LemMa 5. If Q'ZA(,3) occurs in a succedent of a sequent and &,&, + « -
are all ordinals such that f(&) =v and 3g,79,, + + « are all ordinals such that f(y) =1,
then for an arbitrary sequence t,,t,, -+« of members of D, the formula A(f) is in
a succedent of a sequent, where t. = gi*(t,, - +,5) for each & =§,&, - .

These lemmas are obvious.

Lemma 6. If a formula occurs in an antecedent of a sequent, then it does
not occur in a succedent of any sequent.
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The proof is by transfinite induction on the complexity of a formula

using Lemmas 1-5.

LEMMA 7.

1) For every member t of D, the formula t =t occurs in the antecedent of a

sequent.,

2) Let s and t be members of D, and if s =1t occurs in the antecedent of a
sequent, then t = s occurs in the antecedent of a sequent.

3) Let t,, ¢, and t; be members of D, and if t, =1, and t,=1t; occur in
the antecedent of a sequent, then the formula ¢, = t; occurs in an antecedent of a
sequent.

4)  Let s;,t(2<<p) be members of D. If A(sy, »«+,8, *+ ) and {s; = t:}ics
occur in the antecedent of a sequent, then Alug, + » + 4z, + + =) occurs in the antecedent
of a sequent for each sequence wy, + ¢ -, 4 ¢+ - Such that wu, is s; or t,

Proof. 1) ¢t =1t must be contained in ® and ¥ in 1.1. Since ¢ =1¢
cannot be contained in ¥ because of the hypothesis of Case 2, ¢t =t must

be contained in @.

2) Let s =1t occur in the antecedent of a sequent and #=s occur in
the succedent of a sequent, then there is a sequent which contains s =1¢
in the antecedent and ¢ =s in the succedent. By the construction 8) of
P(S), there must be a sequent of the form I';—> 4,,s =s,4, which is a
contradiction.

3) and 4) can be proved by the similar way.

According to Lemma 7, D can be decomposed into equivalence-classes
by =. Let D/= be the set of equivalence-classes so obtained; from now
on we write a class of D/= by a representative of it. We define a
structure A over D/= as follows. Let s be a variable in D. Then the
value of s w.ur.t. ¥ is defined to be the class represented by s. If P be a
predicate constant, then P(fy, «++,¢;,+++) is defined to be true w.r.t. «
if P(tg,+«+,t5+++) is in the antecedent of a sequent and is defined to be
false w.r.t. & otherwise. By the transfinite induction on the complexity of
A, we shall prove that A is true w.urt. % if A is in the antecedent of a
sequent and A is false wuar.t. & if A is in the succedent of a sequent.
Since the other cases are easy, we only consider the cases where A is
Q'7TA(Z, 3).

https://doi.org/10.1017/5002776300001357X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001357X

A DETERMINATE LOGIC 131

4.1, Q’TA(Z,s) in the antecedent of a sequent. In this case, it
follows from the inductive hypothesis and 6) of the construction of P(S)
that A(#;3) is true w.rit. % for every { satisfying the following condition:
If &,¢&,--- are all ordinals such that f(§)=v and if 7,7, - are all
ordinals such that f(y)=3, then ¢,=g}"(t;, --,5) for every 7. This
implies that Q'ZA(%,3) is true w.r.t. A,

4. 2. Q'%A(Z,3) is in the succedent of a sequent. In this case, it
follows from the inductive hypothesis and 7) of the construction of P(S)
that A(7,5) is false w.r.t. & for every 7 satisfying the following condition.
If &,¢, - are all ordinals such that f(§) =v and, if 5,7, -+ are all
ordinals such that f(y)=13, then ¢, =gi%¢,, -+,3). This implies that
7 A(,3) is true w.r.t. A for every such f. Hence follows that Q'% > A(%, 5)
is true w.r.t. A, Since @F 7 A(T,5)—> 7 Q'TA(X,5) is satisfied in all the
structures, Q'FA(%,5) is false w.r.t. %A,

The following theorem is a completeness theorem for our determinate
logic.

THEOREM 2. Let I'—> 4 be a sequent. Then I'—> 4 1is provable in our
determinate logic or there exists a determinate structure 0 such that every formula in
I is satisfied in A and no formula in 4 is satisfied in U,

Let D and D, be the same as in the proof of Theorem 1. Now I,
is defined to be a sequent of all formulas of the form

Q'TA®Z,3)V QTARX,3),

where A(%,§) is an arbitrary formula in our language and % and § are
only free variables in A(%,3) and § is an arbitrary sequence of members of
D. T is defined to be I',,I". Without loss of generality, we may assume
that no member of D, is ever used as an eigenvariable in any quasi-proof.
Then we have the following theorem.

THEOREM 3. ['—> 4 has a cut-free quasi-proof whose end-sequent is I' — 4
or else there exists a determinate structure U such that every formula in I is satisfied
in A and every formula in 4 is not satisfied in A.

Theorem 3 implies Theorem 2 as follows. Since every formula in I,
is provable in our determinate logic as in § 2, 2), I'—> 4 is obtained
from I'—> 4 by a cut as follows
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. P
___)Bo,...’—.__)Bﬁ’...,Bo’...,Bﬁ’.f.’['—_.)A
Ir'—4

where By, ++«,By + -+ is I',. It is easily seen that the thus obtained figure
satisfies all the properties of a proof-figure including 5. 3 in § 1.

The proof of Theorem 3 is obtained from the proof of Theorem 1 by
replacing a proof-figure and I' by a quasi-proof and I’ respectively. Since
I includes I, it is easily shown that 9 is determinate.

DeriniTioN. HLS (a homogeneous logic system) is obtained from our
determinate logic by adding a restriction that every quantifier be homoge-
neous.

Then the similar argument to § 3 and Theorem 1 in this section

implies the following theorem.

THEOREM 4. If I'—> 4 is provable in HLS, then I' —> 4 is valid. Con-
versely, if every quantifier in I' —> 4 s homogeneous, then I'—> 4 is provable
without cuts in HLS or there exists a structure N such that every formula in I' is
satisfied in A and every formula in 4 s not satisfied in A.

Remark. We cannot improve Theorem 2 by replacing ‘“‘provable” by
“provable without cuts”. In order to see this, let « be the initial ordinal
of the cardinality of w,. Let f& w,, Then ¢(f) is defined to be a, = i, A
a, =i, AN+++, where i, =0 or 1 according as f(k)=0 or 1. The formula
¢(f) expresses the function f. Now let A< w,. Then A is expressed by
the formula fé/A ¢(f), where fé/A is defined in terms of V. Now the

o
theorem in [1] implies that there exists a set A € w, such that the axiom

of determinateness fails for the game defined by A. If a formula ¢ expresses
A, then

ve(x =0V a2=1—0=1,
Z(Ve @3, Vage = (Lo, Ty + + ¢ ) V XV RAX, e+« ZP(Lgy Byp + + +))

is provable in our determinate logic, where ¢ is constructed by 0,1, =, A,
w
and V. This means that va(x =0V 2 =1)—0=1 is provable in our
o
determinate logic if our language has V. However this is not provable
o

without cuts even if our language has V.
o
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§ 5. An interpolation theorem.

First, we shall define some proof-theoretic notion.

DEerFmniTION. Let P be a semi-proof without cut and I be an inference
in P. Let A be a formula in an upper sequent of I and B be a formula
in the lower sequent of I. B is said to be the immediate successor of A
if and only if the following is satisfied.

Case 1). Iis 2.1 in § 1.
If A is a formula in I" in 2.1, then B is the first formula in 17,

which is equal to A. If A is formula in 4 in 2.1, then B is the first
formula in 4, which is equal to A.

Case 2). I is one of 2,2-2.9 or 4.2 and A is a formula in I" or 4
in the upper sequent of I.

If A is the a-th formula in I or 4, then B is the a-th formula in I”
or 4 in the lower sequent respectively.

Case 3. If I'is2.2or 223 and A is A, then B is 7 A4, IfIis
2.4 0r 2.5 and A is A;, or A,,, then B is VB A, IfITis 2.6 o0r 2.7
n<p,

and A is A;,, or A, then Bis A Ay, IfIis2.8o0r 2.9 and A is

u<B,

A\@,), then B is Q/ix,A%,). If I'is 4.1 and A is the a-th formula in
@ of 4@, then B is the a-th formula in I'® or 4® respectively.

B is said to be a successor of A, if there exists a sequence Ay, Ay, * + -, A,
such that A=A, and B= A, and A;:; is the immediate successor of A,
for each i <.

Now our interpolation theorem is the following form.

TrEOREM 1. If a sequent I'y,T'y—> 4y, 4, is valid and does not have any
hetrogeneous quantifier, then there exists a formula C such that both the sequents

Ir,—4,, C and C,I',—> 4,

are valid and every free variable or predicate constant in C, except =, occurs in both
I',4, and T,,4,. (Remark that C may have hetrogencous quantifiers and or also
longer logical connective or quantifiers than logical symbols in L).

Our proof follows the proof of Theorem 5 in [3]. At first, we shall
prove the following lemma.
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LemmMa 1. Let P be a cui-free proof-figure to I',I',—> 4,4, in HLS and
satisfy the following conditions 1. 1-1, 3.

1. 1.  Every quantifier in P is 2.

2. 2. Every inference in P on the introduction of Q is an inference on the
introduction of 3 in succedent.

Then there exist cut-free proof-figures P, and P, in RHS and C satisfying the
JSollowing conditions.

2.1,  The end-sequent of P, is C,Iy—> 4, and the end-sequent of P, is
I'y—> 4,,C.

2. 2. Every free variable or predicate constant in C, except =, occurs in both
I'y,4, and Ty, 4, or =, (Remark that 1.1 is not an essential restriction on P
because v can be expressed by > and 1.)

Proof. The proof is by transfinite induction on the complexity of P.

Case 1: P consists of a single beginning sequent. The theorem is
obvious.
Case 2: The last inference of P is of the form

Iy, I'y —> 41, { Ai(@3) hacsys 435 { B(8,)}u<s,
Fla F2 — AL {gxle(El)}kﬂp A;s {3%3,1(27;‘)}“,42 ’

where 4, is 47, {3%;A:Z)}ics, and 4, is 45, {37,B7,)} uesr
By the inductive hypothesis, there exists C'(a,b) satisfying the following
conditions.

1) C1@,b), I't—> 41, {Ad@)}acs, and Iy —> 45, {Bu(b,)}ery C'(@, B)
are provable in RHS.

—
—

2) Every free variable and predicate constants in C(@,d) is either = or
contained in both I', 4%, {AJ@:)}is, and Iy, 45,{B.(5,)}ucsr @ is a sequence
of all variables in C’(@,5) which are not in I',4,. b is a sequence of all
variables in C’(z,5) which are not in I';,4,, Then a required formula C

is 3%vyC'(%Z, ), where v is considered as an abbreviation of >3 ~.

Case 3: The last inference of P is of the form

i@, [5@ — 4@, 4@
2 = by, 1O, IO —— 4D, 4D

|

a, = bu

)
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where I'y is @, = b, I"® and I, is @, = b,, ['}®. This can be divided in
two steps, namely; first, the substitution of @, for &,; then the substitution
of @, for 5., So we may assume that @, = b, is empty. By the inductive
hypothesis, there exists a formula C’(,5) which satisfies the theorem for
Ti@, M@ — 4@, 4@, @ is a sequence consisting of all variables in C/(@, )
which are not in I',4, and b is a sequence of all variables in C’(@,b)
which are not in I',,4,. Then take C to be axVy(/\ ay,, = by, A\ C'(%, 7)),
where a,, or b,, means some x or some y if a,, or by, are in @ or &
and a,,, or b,,, otherwise.

Case 4). The last inference of P is of the form

2, g;:: j:j:"” for all (2|v).
By the inductive hypothesis, there exist formulas Ci») such that Ceo ),
I''— 4, and 9,I',—> 4,,%,Cow) are provable in RHS. So (w\I/W) Cow),
I''— 4, and I';,—>4,, (@YW)C(MW) are provable in RHS. Let @ be a
sequence of all free variables in (0\1/9’) Ccop which do not appear in I, 4,.
We rewrite (mYW) Cwv) as C'(@). Then take C to be vZC/(%).

Other cases: The proof is similar to the above.
Now we shall consider the proof of Theorem 1.

Proof of Theorem 1. Since I'y,I’,—> 4,,4, is valid, there exists a cut-
free proof-figure P to I',I',—> 4,4, in HLS. From § 4 follows that P
may be assumed to satisfy the following condition.

3. 1. If a variable occurs in two different auxiliary formulas as an
eigenvariable, then these two formulas are the same.

Moreover we assume the following on P without loss of generality.

3.2. Every quantifier in P is a.

3.3. The height of a free variable in I',,I’,—> 4,,4, is less than the
height of any eigenvariable in P.

3. 4. The heights of two different variables in P are different.
Let I'i—> 4] be a sequent in P. &(I'{,4;) be the sequence Ay, A, -,
A of all A’s such that A, is of the form >aZA(%)V A(@) where

PR
3% A(%) is a principal formula of an introduction of 3 in antecedent above
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I''—> 47 and A(a) is its auxiliary formula. Replacing I'i—>4; by
oI}, 47), 't —> 4, and inserting some appropriate structural inferences, we
get a new figure P’ satisfying the following conditions.

4. 1. P’ satisfies 1.1 and 1.2 in Lemma 1.
4. 2. The end-sequent of P’ is of the following form

{737, AdZ,, T) V Ala@,, T}, Ty
{7337143#(37;1’ Ep) \ BF(E.I’ d_;,)}, F2_> Al) Az-

4. 3. The height of any c;,, is less than the height of any @, The
height of any d,,. is less than the height of any b,,,.

4. 4. Every free variable or predicate constant except = in
32,3%,A(%:, 2;) occurs in Iy, 4, and every free variable or predicate constant
except = occuring in 132,ay.B,(¥. 2,) occurs in I, 4,.

4.5 Any @, and b,, are different. (Otherwise we can modify P’
'so that P’ satisfies 4. 5, because P satisfies 3, 1.)

Applying Lemma 1, we have C(@) such that the following conditions
are satisfied.

5.1 C(@), {7 3z, A(%,, ¢2) V Ala, ¢)}, Ih'—> 4, and {7 39,.BY. d_.p) Vv
B,b,,d,)}, I',—> 4,,C(@) are provable in RHS and let @, and @, be proof-

figures to these sequents in RHS.

5.2. Every free variable or predicate constant except = occuring in
C(@) is in both {AJ@,, €)}, I, 4, and {B,(8,,d,)}, o 4

5.3. @ is the sequence of all variables in C(z) which are not in both
I', 4, and I, 4, and well-ordered according to heights.

Then consider the following figure

i@,
C(@), {7 3%, 4%, T3) V Al@5, T}, I —> 4,
C(@), (3% (7 3%, AT, ©2) V A(%;, )}, [ —> 4,
C(@),{vzaz;(7 3z, A% 2:) V ANZ],Z2)}, [ —> 4,
Q' TC(®), {vzax[(Z 3%, A:(%1, 2,) V AlZ],2)}, [y —> 4,

where f is defined as follows.

6. 1. If a, is not contained in I',4, or I, 4, and a, is one of &,
then f(a)=1.
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6. 2. If a, is not contained in I',,4, or I, 4, and a, is one of a,,,
then f(a)=v.

6.3. If a, is contained in I'j, 4, but not in I, 4,, then f(a)=yv.

6. 4. If a, is contained in I}, 4, but not in I, 4;, then f(a)=13.

6. 5. If 6.1-6. 4 are not the case, then f(a)=1.
The heights in @, ¢, C(@), I',, 4, are defined to be the heights in P. The
heights of all other variables in @, can be defined adequately according to
Proposition 1 in § 3 so that the whole proof-figure satisfies 5. 1-5. 3 in § 1.
This means Q’zC(%x),I,—> 4, is valid. The validity of I'y—> 4,, Q’ZC(%)
is also easily shown by observing the following proof-figure in VSS.

1@
{7 39,.BlY, E“)_.V BF(Eﬂ, J”H,F2—> 4,,C(@)
{39.(7 39.B ¥ d,) NV Bly:,d,)}, ['y—> 4,,C(@)

{vgpa?_;p(7 3?7pr(.77;:, 2#) V Bﬂ(?/ﬁ"élx)}! FZ ——>429 C(a‘)
{v2,379.(7 39,BTw 2,) V BlTls2,)}, Ty —> 4, Q" TC(E

)
q.e.d.

In the same way, we can show the following theorem.

TrHEOREM 2. If every quantifier in I'y,Ty,—> 4,4, is homogeneous and
Iy, I'y—> 4,,4, is valid and does not contain =, and if I'y, 4, and Ty, 4, have at
least one predicate constant in common, then there exists a formula C such that both

the sequent
C,I',—> 4, and I'y—> 4,,C

are valid and every free variable or predicale constant in C is contained in both I,
4, and T, 4,.

Remark. 1. In theorems 1 and 2, we may add the condition that the
hetrogeneous quantifier in C is only one in the front of C.

Remark. 2. As for Malitz’s example in § 2, we can construct an

1 2
isomorphism between < and < by the following formula

1 2 1 2 1 2
V&, AY VEAY, e« (AX;<a—> AY;<b A A (0,<x; <> ¥, <y;) A&, =2; <> y,=y;))
i 1 1,7

2 1 1 2 1 2
AVY AT VY32, ¢ '(/\’!/i<b‘_) ANx,<al _/\(xi<xj > yi<yj)/\(xi=xj > '1/7;=?/j))-
i 1 ¥
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The order type a of in (;,<1) is denoted by |a|, and the order type of b
2
in (=,é) is denoted by [b],, Then [a|,<]b|, is equivalent to

1 2 1 2 1 2
V2 AY VLAY, * - (Ax;<a—> Ay, <bA N, <x; <> y,<y) AN(@;=2; <> y,=¥,)
i 1 1)

This is easily shown by transfinite induction on |a,.
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