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ON THE GENERATION OF WATER WAVES
AT AN INERTIAL SURFACE

P. F. RHODES-ROBINSON

(Received 14 September 1982)

Abstract

In this paper we develop the Laplace-transform method to solve initial-value problems for
the velocity potential describing the generation of infinitesimal capillary-gravity waves in
a motionless liquid with an inertial surface composed of uniformly distributed floating
particles. The two principal problems considered are the forced motions due to a
submerged wave source and an immersed vertical plane wave-maker, which begin to
operate in a time-dependent manner at a given instant. The transformed potentials are
calculated using techniques similar to those which are effective in traditional time-harmonic
problems with a free surface. The steady-state development in the time-harmonic example
taken demonstrates the existence of outgoing progressive waves under any inertial surface,
in contrast to the case of no surface tension when such waves cannot propagate under an
inertial surface that is too heavy. The solution is also noted of the Cauchy-Poisson
problem for the free motion following an initial elevation of the inertial surface, which is
obtained by the same method.

1. Introduction

It is a notable fact that small time-harmonic progressive gravity waves of given
angular frequency cannot exist at the surface of an ideal liquid (water) covered by
a thin uniform distribution of floating matter (broken ice, unstretched mat) if the
layer, or inertial surface, is too heavy. This result is in marked contrast to that for
a sufficiently light layer which can, like the familiar free surface, support such
waves. These two possibilities for an inertial surface were remarked on and
exemplified in the investigations of waves on a free surface incident upon an
adjoining inertial surface made by Peters [5] for infinite depth and Weitz and
Keller [12] for finite constant depth. It has also been shown, however, that the
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12] Generation of water waves 367

presence of surface tension ensures the existence of progressive capillary-gravity
waves at any inertial surface; see Rhodes-Robinson [9]. Both types of result are
exemplified herein for problems which involve small forced two-dimensional wave
motion generated from rest, perhaps impulsively, by specific action within a
liquid of infinite depth with an inertial surface.

The first problem considered involves motion due to a submerged line wave
source which starts to operate at a given time; the strength of the source is in
general variable, being time-dependent, and its position is fixed. The second
problem considered involves motion due to a flexible vertical plane wave-maker
after this starts to move with a time-dependent normal velocity, which is also
depth-dependent and must correspond to a small displacement of the wave-maker
from its original position (like some periodic oscillation, say).

The obvious approach in such initial-value problems, where the velocity poten-
tial of the irrotational flow satisfies a linearized boundary-value problem with
additional initial conditions, is to use the Laplace-transform method to eliminate
the time variable. This results in a reduced boundary-value problem involving the
transform parameter which is similar to that occuring in the analogous time-
harmonic problem with a free surface and can be solved by parallel techniques.
The required velocity potential is then expressed as the inverse of the transformed
potential. This method was used to investigate a moving point wave source of
variable strength and position in the survey of Wehausen and Laitone [11], but
was not developed any further. A direct approach is in general difficult and more
so for the wave-maker problem. An exception, however, is the special case of a
fixed line wave source of constant strength whose potential was obtained by
Finkelstein [2] after trying a likely form. An interesting but involved method for
the wave-maker was used by Kennard [4], who first calculated the easier classical
solution assuming absence of gravity and then adjusted this using intuitive ideas
from Cauchy-Poisson theory for motion under gravity following an initial eleva-
tion of the free surface. (These studies are for a free surface and ignore surface
tension; the latter two are also for two-dimensional motion.)

The Laplace-transform method is developed herein for an inertial surface to
solve the two problems described earlier, assuming first that there is no surface
tension. It is found that the wave-source potential makes its usual appearance in
the wave-maker solution so is fundamental; this is a consequence of a basic
formula obtained using Green's theorem with transformed potentials. Particular
wave-source potentials are discussed as examples for the case of time-harmonic
strength, where the two possible steady-state forms with and without outgoing
progressive waves are obtained by appropriate asymptotic procedures; also for
the interesting case where the strength is impulsive at the initial instant but
otherwise zero, and for the classical case of constant strength.

https://doi.org/10.1017/S0334270000004124 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004124


368 P. F. Rhodes-Robinson [3|

The same two problems are then solved in the presence of surface tension,
when the layer can also be thought of as a heavy stretched membrane. Now,
however, a second fundamental potential is needed describing motion having a
small time-dependent inertial-surface slope at a fixed vertical plane wall. The
same methods, suitably generalized, give the solutions and there are always
outgoing progressive waves in the time-harmonic case now. Simplified results for
a free surface can be deduced, which have not been obtained previously either.

Extension of the results as obtained for two-dimensional motion in a single
liquid of infinite depth may be made to three-dimensional motion, finite constant
depth and two superposed liquids; other generating mechanisms can also be
taken. A useful application of the result for a fixed point wave source of variable
strength would appear to be in modelling a submerged vapour bubble under an
inertial surface, done recently in a simplified form by Blake and Cerone [1].

The solution is also obtained herein for the initial-value problem describing
free two-dimensional motion in a liquid of infinite depth following an initial
displacement of its inertial surface from rest (the classical Cauchy-Poisson prob-
lem). The Laplace-transform method is convenient in the present context and
Green's theorem provides a suitable basic formula again. This result also may be
extended to other situations.

2. Basic formulation for gravity waves at an inertial surface

We consider the motion under gravity g of an ideal liquid of volume density p
whose surface is completely covered by an inertial surface composed of a thin
uniform distribution of disconnected heavy floating matter of area density pe,
say. The special case of a free surface is well known and corresponds to e = 0.
The depth is taken as infinite, and the effect of surface tension is temporarily
omitted.

The motion is small and commences at time t — 0 from a state of rest in which
the inertial surface has position y — 0 and the liquid occupies the region y > 0.
There is no effect from the constant atmospheric pressure that is assumed above
the inertial surface. Two-dimensional motion is envisaged, and in addition to the
vertical coordinate y we use the horizontal coordinate x. The motion is irrota-
tional since it is generated from rest and may be described in linearized theory by
a velocity potential <j>(x, y, t) for t > 0 which satisfies Laplace's equation

V2<f> = 0 in y>0 (2.1)
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|4l Generation of water waves 369

(continuity of mass in fluid region). If the inertial surface has depression TJ(X, t)
from the equilibrium position, the joint boundary conditions relating (f>, rj at this
are the kinematic condition

*y = i\, on y = 0 (2.2)

(inertial-surface particles remain there) and the dynamic condition

<f>, = grj + ei\,t on y = 0 (2.3)

(equation of motion of inertial surface). For convenience, (2.3) may be expressed
as

$, = g-q on y = 0, (2.4)

if we use (2.2) and define

<*> = <f> - # , . . ( 2 . 5 )

Elimination of -q in (2.2) and (2.4) then gives the single inertial-surface condition

* , , - S * v = ° on y = 0 (2.6)

for </>. There are also initial conditions on the inertial surface; since TJ must be
continuous at all times (even if the motion starts impulsively), it is seen from (2.4)
that $, is continuous; thus O is continuous (differentiable). In particular this
applies at the start of the motion, so initial values correspond to equilibrium
values obtainable by noting that <j> = 17 = 0 (/ < 0). Thus we obtain the pair of
initial conditions

$ = TJ = O on .y = 0 at t = 0; (2.7)

or equivalently, using (2.4), we have instead

$ = $, = 0 on y = 0 at / = 0 (2.8)

in terms of $ alone. Both the sets (2.7) and (2.8) will be used.
To summarize then, a problem will be formulated mathematically as an

initial-value problem for Laplace's equation (2.1), subject to the basic boundary
and initial conditions (2.6) and (2.8) at the inertial surface and additional specific
boundary conditions.

We note that for the particular case of established time-harmonic motion of
angular frequency a, when

*„ + a2<t> = <&„ + a2<D = 0, (2.9)

the inertial-surface condition (2.6) becomes

K® + <j>y = K<}> + (1 - Ke)<t>y = 0 o n y = 0, (2.10)

where K = o2/g and (2.5) has been used. For 0 < Ke < 1 the form of (2.10) is
K*<J> + <t>v ~ 0 on y — 0 so it is merely a modification of the usual free-surface
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condition corresponding to e = 0, where K* = K/{\ — Ke); in particular, it
allows progressive waves with wave number K*. However, for Ke > 1 the form of
(2.10) is different and does not allow progressive waves. These two possibilities
were noted by Peters [5], who investigated the transmission of incident waves into
an inertial surface (unstretched floating mat).

3. Laplace-transform method

The obvious method of solution of the initial-value problem now formulated in
principle is to take the Laplace transform in time t (keeping other variables fixed),
defined as

r t (p>0)

for any time-dependent quantity / . It follows in the usual manner that the
transforms of the time derivatives /, / are pf — f(0), p2f— pf(0) — /(0) respec-
tively in terms of / and the initial values /, /(0). Note that the transforms of <j>, i\
will have the dependence <j>(x, y\ p), i)(x; p) for two-dimensional motion.

Thus the initial-value problem for <j> can be transformed into a boundary-value
problem for <J> which also, from (2.1), satisfies Laplace's equation

V2^ = 0 in y>0. (3.1)

The transform of the inertial-surface condition (2.6) is

p2®-g4>y=p2$-(g + ep2)4>y = 0 on y = 0, (3.2)

from (2.8) and (2.5). The form of (3.1) and (3.2) suggests that the determination
of <$> might be accomplished using methods similar to those that are successful for
analogous time-harmonic problems with e = 0; <£ is then found as an inverse
transform.

We note that the transformed joint conditions on the inertial surface are

\ = p:n on j> = 0 (3.3)

and

p<f> = grj on y = 0, (3.4)

from (2.2), (2.4) and (2.7); thus we find that

(3.5)

g + ep2) (3.6)
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in terms of <f>, from (3.3), (3.4) and (2.5). Either of (3.5) or (3.6) may be used to
find i) as an inverse once <j> is known. Note also that elimination of i) in (3.5) and
(3.6) again gives (3.2).

4. Variable wave source under an inertial surface

The first problem is to find the potential denoted by G(x, y; X, Y; t), say,
describing the symmetric motion due to a submerged wave source of given
arbitrary strength m(t) located at the fixed position (X, Y), Y > 0 in a liquid of
infinite horizontal expanse that starts to operate at t = 0. Then for t > 0 we find
that G is the solution in the region^ > 0 of the

initial-value problem

V2G = 0, except at (X, Y),
Hll-gGy = 0 on y = 0,

G~m(t)logp as p ̂  0, \ (4.1)
| vG\^> 0 as p -» oo,

H(Q) = H,(0) = 0 on y = 0,

where H = G - eGy and p = [(x - X)2 + (y - y ) 2 ] l / 2 ; this includes (2.1), (2.6)
and (2.8), to which are added the singularity condition near a source and the
condition for no motion at infinity (an abbreviated notation is used for the initial
values).

Taking the transform, it is seen that G(x, y\ X, Y; p) is the solution in the
same region y > 0 of the

boundary-value problem

V2G = 0, except at (X, Y),
p2G- = 0 on = 0,

G~w(/?) logp as p -» 0,

0 as p -> oo

(4-2)

(p > 0); this includes (3.1), (3.2) and the transforms of the additional conditions.
The solution of (4.2) is clearly a multiple of m and may be readily obtained by

several methods (similar to those used in the familiar problem for the time-
harmonic wave source with e = 0) and in different forms, the only suitable one
here being

G = m
oo e-k(y+Y)

(g + ep2)k+p
:cosk{x- X)dk , (4-3)
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where also p' = [(x — X)2 + (y + Y)2]l/2; or, on rearranging,

G — m log— — ',

[71

rr^

Are)
cos k(x — X)- -dk (4.4)

where W = [gk/(\ + /ce)]i /2.
The inverse transform of (4.4) presents no difficulty. Thus, noting that the

inverse of S2/(S22 + p2) is sin Q,t, we have by the convolution theorem that

G — m
\ + ke

cos k(x-X)dk

-2 (°° —j—-—rcos k(x - X) f'm(r)sm fi(r - x) drdk, (4.5)
•'o k(\ + ke) •'o

the required wave-source potential. (This is not nor could be a multiple of m.)
Note that (7(0) = 0 (smooth start to motion) if w(0) = 0, but G(0) ¥= 0

(impulsive start to motion) if w(0) ¥= 0; however,

H(0) = m(0) ^ - e y±J-W = 0

on y — 0 for any value of m(0) as required.
The shape of the inertial surface can be calculated directly from (4.5) using

(2.2); noting (2.7), this gives on integration (using an abbreviated notation)

where

G*(t) = f'G(r)dT.

To facilitate this calculation, we note that G* is the potential for a wave source of
strength in* given by

m
t(t)=f'm(r)dT;Jo

thus we find that

r°° e~kY f n 1
77 = -2 , , , cosk(x- X)\m*(t) - J2 / w*(r)sinfi(? - T ) drl dk

Jo I + Ke [ Jo J

= —2
— Ar V

COSA:(A: - A') ('m(r)cos^(t - r)drdk, (4.6)

https://doi.org/10.1017/S0334270000004124 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004124


[81 Generation of water waves 373

on integration by parts. This calculation is equivalent to using (3.5) to obtain TJ
and taking the inverse; however, the simplified result (4.6) can be obtained
directly using instead (3.6) which gives

— kY

using (4.3) also.
Note that TJ as given by (4.6) must satisfy the mass-input equation

(T)dT, (4.8)

since the amount of liquid above the equilibrium level of the inertial surface must
correspond to the net amount emitted into the region by the source since it
started operating. In terms of transformed quantities (4.8) becomes

(4.9)
x

and may be verified in this form using TJ as given by (4.7) and Fourier cosine-
integral theory.

It will be found helpful later to use the special wave source G = Gspec that has
impulsive strength m = S(t); then from (4.5) this has potential

r°° 9,e'k(y+Y)

~2 TT, 7-^cosk(x- X)sinQtdk, (4.10)
A) k(l + ke)

which is regular for t > 0. Further, note that for the general wave source

G(t) = f'm(T)GsPec(t-T)dT (4.11)
'o
f

•'o

in terms of Gspec (since G = mGspec).
The classical wave source of constant strength m = 1, say, has potential

dr = log£ - /o VTT7

ki+Y) 1 _

k { x )~ 2 / 0

from (4.10) and (4.11). This potential was found for e = 0 by Finkelstein [2] using
a different method (trial form of solution).

An important concluding example now follows.
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5. Time-harmonic wave source and steady-state development

Taking m = sin at, we find from (4.5) that

[ n -.00 e-k(y+Y)
log—: — 2e I — :—cos k(x — X) dk

°p Jo 1 + ke

iie~kiy+ Y) , , , , , \l sin at — a sin!

The established form of this potential is now sought as / -» oo and from (2.9)
will be G ~ A cos at + B sin at, where A, B will satisfy (2.1) and (2.10). To find
the steady-state terms in (5.1), we must isolate and eliminate the transient terms.
Two quite different outcomes are expected, from the earlier discussion on
progressive waves. These depend on whether or not the denominator of the
second integrand in (5.1) vanishes in the range of integration k > 0: precisely,
fi2 — a2 or equivalently (1 — Ke)k — K has such a root when 0 < Ke < 1 but
none when Ke 3= 1.

Taking first the case 0 < Ke < 1, this root is k = K/{\ - Ke) - K* as defined
earlier. Introduce a Cauchy principal value at k = K* ($2 = a) and split the
second integral in (5.1) into two. Then clearly the transient terms of G are wholly
contained in the part

/ Q g s i n a ,
J k(l + ke) V V-a2

= 4a
fi —a

on substituting fi as the variable of integration and modifying the
integrand—putting £2' = Sl(k'). (We assume e ¥= 0, but the conclusion is the same
for e = 0 also.) It is then seen that the first of these integral terms is transient, by
the Riemann-Lebesgue lemma; also, the integral in the second term may be
expanded as

+

after substituting u = (fi — a)t, so is partly transient since the two integrals have
the limiting values m and 0 respectively as t -> 00—noting that (g /e ) l / 2 > a here.
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Ho) Generation of water waves 375

Thus collecting all steady-state terms together and putting fl2 = gk/{\ + ke) and
a2 = gK, we find that

[ p fooe-kly+r) 1
log-^ - 2e\ cosk(x - X) dk\

e-k(y+Y)cosk{x- X) „

(l+ke)[(l-Ke)k-K]dk

+ 2TTCOS at e ' ^ + ^ c o s K*(x - X)

as t -» 00; or, when the two integrals are combined, this is

g4-2f COS*(JC -

: * ( x - ^ ) (5.2)

as t -* 00. This potential satisfies (2.10) in the form K*G + Gv — 0 on y — 0 and
represents outgoing progressive waves as |x — X\^> 00; these are not fully explicit
in (5.2), but may be determined as having potential

2ire-K'^+Y)cos(K*\x - X\-at).

Note that the result (5.2) may also be obtained directly by comparison with the
known time-harmonic result for e = 0 in Thome [10].

Taking now the case Ke > 1, there is no root and the calculation is quite
straightforward since a direct application of the Riemann-Lebesgue lemma in
(5.1) suffices to remove the transient terms immediately. Thus instead

cosk(x - X) dk
k

. - . (x ek^+Yhosk(x- X) „
+ 2 sin at -T-. L-r J—zrdk

Jo (1 +ke)[(Ke- \)k + K]

logi-2(Jft-l)/o {Ke_l)k + K^k(x~X)^ (5.3)
as / -» 00. This potential satisfies (2.10) in the form KG - (Ke - \)Gy = 0 on
y = 0, and has a particularly simple form for Ke = 1. Note the absence of
outgoing progressive waves as \x — X\--> 00, which means that the separation of
the time factor sin at could be expected. The potential (5.3), like its predecessor
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(5.2) in fact, has a concise alternative form; this is found by contour integration
and the singular term may then be incorporated in the integral to give

G ~ -Isinotf00—, — TF{y;k)F(Y;k)dk
Jo k[(Ke - 1) k2 + K2\

(5.4)

as / -» 00, where F(s; k) = (Ke — l)&cos ks + Ksin ks.

6. Vertical wave-maker problem

Next we turn to a practical problem and find the potential <j>(x, y, t) describing
motion in a liquid of semi-infinite horizontal expanse (x > 0) due to a suitably
prescribed outward normal velocity distribution U(y, t) on the vertical boundary
x — 0, where U -> 0 as y -• 00. This begins at t = 0 and must correspond to a
small horizontal displacement of a flexible boundary from x = 0, on which the
boundary condition is applied in the linearization. Then for / > 0 we now have
that </> is the solution in the region x > 0, y > 0 of the

initial-value problem

<£„ — g<j>v = 0 o n y = 0 ,

<j>x=U(y,t) on x = 0,

| V</>|̂  0 as r —> oo,

0(0) = 3>,(°) = 0 on y = 0,

where 4> = <£> — £</>,. and /• = (J:2 + _y2)l /2.
Then 4> is the soiution in the same region x > 0, y > 0 of the

boundary-value problem

(g+ ep2)*y = 0 on y = 0,

= U(y;p) on x = 0,

I V<J> I -» 0 a s r -» CXJ

(6.1)

(6-2)

(/? > 0), in which U -> 0 asj? -> 00.
The solution of (6.2) is most easily obtained (following one method used in the

familiar problem for the time-harmonic wave-maker with e = 0) by use of Green's
theorem with the auxiliary exact Green's function

GsPec(x, y; X, Y; p) + Gspec{x, y; -X, Y; p);
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this satisfies the same boundary-value problem as Gspec(jc, y; X, Y; p) referred to
earlier in the above region if X > 0, that is (4.2) with m = 1, and in addition gives
zero normal velocity on the wave-maker boundary x = 0. Taking the contour for
Green's theorem as the boundary of the fluid region with a small circular
indentation excluding (X, Y), we obtain the integral formula over the wave-maker
boundary

*(X, Y;p) = ±- r[G***(Q, y, X, Y; p) + G*ec(0, y; -X, Y; p)]U(y; p) dy,
In JQ

since the contributions from the inertial surface and infinity both vanish (as does
the unknown part of the wave-maker contribution involving <f>), so that

<j>(x,y;p) = - G«*c(x,y;O,Y;p)U(Y;p)dY (6.3)

on simplification and using the obvious reciprocity property (before changing
back to original variables).

Thus, quite simply, the required inverse potential </>(*, y,t) is equivalent to a
distribution on the wave-maker boundary Y > 0 of the variable wave sources
G(x, y; 0, Y; t) with strength density (\/IT)U(Y, t), whose potentials are identifia-
ble as

- f'G^':(x,y;O,Y;t-r)U(Y,r)dr
•n Jo

from the earlier result (4.11). This representation of the solution, which might
have been expected, is a generalization of the known steady-state time-harmonic
result with e = 0. The explicit form can be found using the result (4.10) for Gspcc.

If U(y,t) is proportional to sin at, the result for / > 0 involves the time-
harmonic wave source (5.1); in the steady state, there are outgoing progressive
waves as x —> oo for 0 < Ke < 1 only of course.

The general wave-maker solution was obtained in explicit form for e = 0 by
Kennard [4] using a somewhat complicated method; a detailed discussion of the
time-harmonic case was also given, and the classical result of Havelock [3]
obtained as the steady-state development.

7. Effect of surface tension

If in the basic formulation we now allow for the presence of surface tension
T = pT', say, and consider capillary-gravity waves, the kinematic condition (2.2)
at the inertial surface remains as

*V = TJ, on y = 0, (7.1)
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but the dynamic condition (2.3) at the inertial surface is modified to

<t>, = gV + ei],, ~ T'r\xx on y = 0; (7.2)

thus, on eliminating TJ in (7.1) and (7.2), we now obtain

<*>„ - g<S>y - 7 > w = 0 on y = 0 (7.3)

as the new inertial-surface condition replacing (2.6), where again 3> = <j> — e<j>y as
in (2.5). The initial conditions (2.7) and (2.8) on the inertial surface arc also
unchanged, and are

= TJ(O) = 0, or O(0) = $,(0) = 0 on y = 0. (7.4)

For established time-harmonic motion of angular frequency a, the potentials
satisfy (2.9) and the inertial-surface condition replacing (2.10) is obtained from
(7.3) as

K* + (1 - Ke)4>y + M4>yyy = 0 on y = 0, (7.5)

where K = a 2/g as before and M — T'/g. The form of (7.5) allows progressive
waves for all Ke > 0 as shown in Rhodes-Robinson [9], provided M > 0; these
have wave number K* given by K*(1 — Ke + MK*2) — K.

The transform of the inertial-surface condition (7.3) is now

p2$- (g + ep2)$y- T'$yyy = 0 on y = 0, (7.6)

obtained in the same manner as (3.2) before, and the same problems may now be
attempted using modified techniques appropriate to the presence of surface
tension (similar again to those in problems for time-harmonic motion with e = 0)
to determine the transform potential <j>. The shape of the inertial surface is then
found as an inverse using (3.5) as before, or else from the solution of the simple
differential equation

subject to certain end conditions, which replaces (3.6).
Thus the variable wave-source potential G of strength m now has transform

G — m P^ 2 l
P Jo k{g + ep2 + T'k2) + p

cosk(x- X)dk (7.7)

which generalises (4.3), but may still be put in the same form (4.4) as before
(7" = 0) if now we take instead fi = [k(g + T'k2)/(\ + ke)]]/2; thus G has its
previous form (4.5) also. The corresponding TJ in (4.6) therefore remains the same,
and continues to satisfy the mass-input equation (4.8).
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(14) Generation of water waves 379

The examples of particular wave-source potentials like Gspec in (4.10) and also
(4.12) are formally unchanged, as is the result (4.11). The time-harmonic wave-
source potential (5.1) has only one possible steady-state development, however,
since fl2 — a2 or equivalently k(\ — Ke + Mk2) — K vanishes at k = K* (fi = a)
for all Ke > 0; see Rhodes-Robinson [9]. This is found to be

•sinaf log-*7- 2 f '— cos k(x - X) dk
P J k(\ K + Mk2) K
7 2 f

P Jo k(\ - Ke + Mk2) - K

+ 27rcosaf l ~ Ke + MK*\e-*'<y+YkoSK*(x - X) (7.8)
1 - Ke + 3MK*2

as / -» oo (M > 0) and represents outgoing progressive waves at infinity. Again
the result (7.8) may be obtained directly by comparison with the known time-
harmonic result for e = 0 in Rhodes-Robinson [6].

8. Variable-slope potential

Before proceeding to the wave-maker problem with surface tension, we first
look for a potential G0(x, y, t) describing hypothetical motion in a liquid of
semi-infinite horizontal expanse (x > 0) corresponding to a suitably prescribed
downward inertial-surface slope TTA(/) at a fixed wall along x = 0, where we
require A(0) = 0. (Such a potential is known to exist for established time-harmonic
motion in the presence of surface tension when e = 0; see Rhodes-Robinson [6].)
Putting T)X(0, t) = TTA in (7.1) after taking the x derivative, we thus obtain the
edge condition CJOX^(0 + ,0, t) — wA; also G0x = 0 on x = 0, since there is no
normal velocity on the wall. The initial-value problem for Go could now be
written down for / > 0. Thus it is found that the transformed potential G0(x, y; p)
is the solution in the region x > 0, y > 0 of the

boundary-value problem

= 0 on y = 0,

GOx = 0 on x = 0,

GQxy(0+,0)=p-nA(p),

0 as r-> oo

(8.1)
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The easiest way to solve (8.1) is by Green's theorem with the exact Green's
function Gspec(x, y; X, Y; p) + Gspec(x, y; -X, Y; p) again. Thus we obtain the
result

G0(X, Y; p) = -T'A(p)G^%0,0; X, Y; p)/p, (8.2)

with only the inertial surface contributing to the contour integral around the
boundary of the liquid region; the details omitted are similar to some time-
harmonic calculations for £ = 0 in Rhodes-Robinson [6]. Evaluating (8.2) using
the formally unchanged Gspec from (4.4) with m= 1, we find that (changing
variables)

Go = 2T'A (°° / , '] coskx J ^dk. (8.3)
Jo 1 + ke fi2 + /?2

Thus, noting that the inverse of p/(Q,2 + p2) is cosR/, we have by the
convolution theorem that

Go = 2f f -^—j-coskxf'Ai^cosnit-^dTdk, (8.4)
J0 1 + KB Jo

the required slope potential which exists only for T' > 0.
Taking A = sin at for which A(0) = 0 as required, we find from (8.4) that

e'ky cos at - cos Q,t . .
k ^ ( 8 5 ) '

IMa f°° e xoskx „ , nsmat
cos at4- — — dk +ô k(\ - Ke + Mk2) - K 1 - Ke + 3MK*2

(8-6)

as / -• oo (M > 0), in agreement with the known time-harmonic result for e = 0
in Rhodes-Robinson [6].

The wave-maker problem for </>, in which are prescribed both the normal
velocity U on the wave-maker and also—in view of the existence of the variable-
slope potential Go—the inertial-surface slope irA at the wave-maker, can now be
solved by considering <j> — Go; this has the same normal velocity on, but zero
inertial-surface slope at, the wave-maker. Then § — GQ is found by the method
just used to be given by a distribution of the variable wave sources G on the
wave-maker boundary of strength density (\/w)U as in the absence of surface
tension. Thus <> is found in the same form as the known time-harmonic result for
£ = 0 obtained in Rhodes-Robinson [6]. (The problem remains to assign the
function A in practice; but see Rhodes-Robinson [8].)
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9. Extension to other situations

The potentials found herein for infinite depth may also be extended to finite
constant depth, both sets of results being for a single liquid with an inertial
surface. Further, both can then be extended to two superposed liquids of either
infinite or equal finite constant depth and height (the latter having a horizontal
bottom and lid) that are separated by an inertial interface, since each of the
problems may be reduced essentially to one for a corresponding single liquid with
an inertial surface exactly as for free-interface problems in Rhodes-Robinson [7].
There are always outgoing waves, except in the absence of surface or interfacial
tension when the inertial surface or interface is too heavy; see Rhodes-Robinson
[9] for details. The two possibilities for a single liquid of finite depth with T = 0
were noted by Weitz and Keller [12], who investigated the transmission of
incident waves into an inertial surface (floating ice).

In conclusion, we note that generalizations to three-dimensional problems can
also be made, like that for the variable submerged point wave source discussed for
a single liquid of infinite depth with e = T = 0 in Wehausen and Lai tone [11].
Other types of singularity can of course be examined in any situation.

10. Cauchy-Poisson problem for an inertial surface with an initial elevation

Here we find the potential <J> for free two-dimensional wave motion in the
presence of surface tension for a liquid of infinite horizontal expanse and depth
which is initially at rest and has given depression A(x) of its inertial surface,
where A -» 0 as | JJC | —* oo. This leads to an easier initial-value problem which may
be solved fairly readily by superposition of elementary solutions, as for e = 0.
However, using some of the preceding results the Laplace-transform method is
also quite effective in the present context. Initial conditions on the inertial surface
are

$(0) = 0, $,(0) = gA - T'A" on y = 0,

where $ = <l> — e$y again. The transformed inertial-surface condition is then

p2$- (g + ep2)*v- r*yvv = gA- FA" on y = 0
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and is non-homogeneous. The transformed boundary-value problem is solved by
Green's theorem with the unmodified exact Green's function Gspec, which gives the
integral formulas

$(X, Y; p) = - - ^ n^p e cUo(irA - T'A")dx
2* *Tt J) — oo

= ~TZ C [Gspec - £G?ec] v=n^ dx,
— " - - o o

on integration by parts twice, with only the inertial surface contributing. Thus, on
substituting for Gspec from (4.4) with m = 1, we have (changing variables)

^ O2 + />2 •'-oo

in explicit form. Therefore

(°° &(X)cos k(x - X)dXdk
• ' - o o

rb(X)cosk(x - X) dXdk,
• ' - o o

the required Cauchy-Poisson solution in which fi = [k(g + T'k2)/{\ + ke)]l/2

as before; the classical result is recovered by putting e = T = 0. The shape of the
inertial surface is given by

7) = - f°°cosQt I™A(X)cos k(x - X)dXdk.
m J0 J-<x

Note that by conservation of mass we must have

fK' A(*) dx = fXv(x, t) dx = 0.
- 0 0 -00

This result may also be extended to other situations.
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