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LINEAR TRANSFORMATIONS ON MATRICES: THE
INVARIANCE OF GENERALIZED PERMUTATION
MATRICES, 1

HOCK ONG AND E. P. BOTTA

1. Introduction. Let F be a field, M, (F) be the vector space of all #-square
matrices with entries in F and % a subset of M, (F). It is of interest to deter-
mine the structure of linear maps 7" : M, (F) — M,(F) such that T(%) C %.
For example: Let % be GL(n, C), the group of all nonsingular # X # matrices
over C [5]; the subset of all rank 1 matrices in M,,x,(F) [4] (Mux.(F) is the
vector space of all m X n matrices over F); the unitary group [2]; or the set
of all matrices X in M,(F) such that det(X) = 0 [1]. Other results in this
direction can be found in [3]. In this paper we consider % to be a set of
generalized permutation matrices relative to some permutation group (set)
and with entries in some nontrivial subgroup of F* where F* is the multipli-
cative group of F. We classify those T": M,(F) — M,(F) such that T (%) =
9 . Furthermore we also determine the structure of the set of all such 7. The
main results will be stated in Section 4.

2. Definitions and notation. We denote by .S, the symmetric group of
degree n acting on the set {1, 2, ..., n}. If Sis a subset of F we define

I,08) = {a = (@, @, ...,a,) : a; € S}.

The identity element of S,, the additive identity and the multiplicative identity
of F will be denoted by e, 0, 1 respectively. The matrix with 1 in the (z, j)
position and 0 elsewhere will be denoted by E;;. If « € T,(F*) and ¢ € S,
then P(a, ¢) will be the matrix whose (7, j) entry is a:(; (Where §;; = 1 if
1 = j and 0 elsewhere) and we call P(e, o) a generalized permutaiion mairix.
If ¢ € T,(F) is the sequence all of whose entries are equal to 1 we write P (o)
for P(e, o) and call P(s) a permutation matrix corresponding fo o. If G is a
nonempty subset of S, and H a subgroup of F* we define
P(G,H) = {P(a,0) :a € T,(H) and ¢ € G},
J P(G,H) = {T : T is a linear transformation on M, (F) to itself

and T(P(G, H)) = P(G, H)}.

If e=1{E,:i=1,2,...,n} C M,(F) is a set of n matrices we say ¢ is a
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G — H unitary set if e is a linearly independent set and for all & € T',(H),

n

E(a) = 12_:1 aEy
belongs to P (G, H).

Let

A = {H : H is a subgroup of F* and there do not exist
a,b € F* such that He + b C H}.
The set # is nonempty. For example:
(a) Itis trivial that F* is in 5 for every field F.

(b) If H is a subgroup of the unit circle C = {z: |z| = 1} of the complex
plane and |H| > 2 where |H| denotes the order of H then H is in 3.

Proof. If a, b are in F* then the circle |za + b| = 1 intersects the unit circle
at most two points.

(c) Every nontrivial finite subgroup H of F* is in .

Proof. 1f there exist a, b € F* such that He + b © H then since H is finite,
Ha + b = H. 1t is easily seen that when % runs over H, ha + b also runs
over H. Hence

(2 h)a+1H|b= ;L;:Ih.

heH

It is well known that H is cyclic and elements in H are exactly the roots of
x!”1 = 1. Hence Y ,ex b = 0 and so |H|b = 0. Clearly this is impossible if
char F = 0. If p = char F # 0 then p||H||p” — 1 for some positive integer r
which is again impossible.

The n-square matrices all of whose entries are 0, all of whose entries are 1
and the identity matrix will be denoted by 0,, J,, I, respectively or 0, J, I if
no ambiguity arises. If 4 = (ay;) and B = (by;) are in M,(F) then their
Hadamard product A*B = C = (¢y;) is the m-square matrix defined by
Ci; = @ybyy. If 4 is m-square matrix and B is an m-square matrix then 4 @ B
will denote their direct sum. If X = (x;;) € M,(F) and ¢ € S,, X, will be
the matrix whose (¢, j) entry is x;; if ¢(2) = j and 0 elsewhere.

If H is a subgroup of F* let M, (H) be the set of all #n-square matrices with
entries in H. Since H is a group, it is easy to see that the set M,(H) with the
operation Hadamard product is a group and will be denoted by M, (H).
Under the correspondence

A—’(ally~"yalny"'1anly"'vann)

where 4 = (ay) € M,(H), it is obvious that M,(H) is isomorphic to the
direct product H X ... X H (n? times).

We recall that a nonempty subset G of S, is transitive if given 1 < 1,j < n
there exists ¢ € G such that ¢(¢) = j. A transitive subset G of S, is regular if
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given such a pair 7 and j there exists exactly one ¢ with ¢(¢) = j. A subset
G of S, is doubly transitive if given 1 < 1, j, p, ¢ < n with ¢ ## p, j # ¢ there
exists ¢ € G with ¢(2) = j, o(p) = ¢. If G is a subgroup of S, we denote by
N(G) the normalizer of G in S,. If G is a regular subset of .S, we shall write
G = {g1, ..., g} and for simplicity we shall write g,/ = hy, 2 =1,2,..., n.

If S is a set and 7 a mapping of S into S then s? will be the image of s € S
under . If G, K are two groups, ¢ : G — Aut(X) a homomorphism (respec-
tively, anti-homomorphism) and for & € K, g;, g2 € G,

(kE(h))E(M) = kE(gﬂ)E(Vl)’ (respectively’ kE(gl)E(Vﬂ)’
then the symbols (g, k), g € G, k € K form a group under the rule

(21, k1) (g2, k2) = (g1g2, kik2tV)

(g1, k1) (g2, k2) = (2182, k1t PPky)),
i.e. the semi-direct product of K by G with respect to ¢ and will be denoted
by (G, K); or (G, K).

For T € 9 P(G, H) and ¢ € G we define

T(G’) = {T(Eiq(i) . ’L = ]., 2, c ey n},

P(G) = {P(s) : 0 € G}.
The linear transformations P(¢), ¢ € G and R on M,(F) to itself are defined
as follows: For X € M,(F),

P(o)(X) = P(0)X,

R(X) = X

where ‘X is the transpose of X.

3. The groups {(S,, S, X ... X S,), M,(H)) and (N(G), M,(H)). Let H
be a subgroup of F* and S, X ... X S, denote the direct product of S, by
n times. For v, ¢ € S,, (w,qy, . . ., W) In S, X ... X S, define
@S, X ... XS5, —S5, X...XS, by

(Pv(wV(l)r e ,wV(n)) = (wvv(l)v ey ‘-')W(n))-

Then it is easy to see that ¢, is an automorphism of S, X ... X §,, and
defines ¢, an anti-isomorphism of .S, into the group of all automorphisms of
S, X ... X S,. We denote by (S,,S, X ... X.S,) the semi-direct product
of S, X ... X S, by S, with respect to the anti-isomorphism ¢.

Let G = {g1,...,g] be a regular subset of S,. For 4 € M,(H) and
(o, (U1, -+« b)) € (Sp, S, X ... X S,) we define
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Then for A, B € M,(H), since A,; and B, are h;-diagonal matrices,

(4 * B)<¢.(u1 ----- pn))

= 1?__:1 P () (A *Bhi)P(him_lga(t))

= E P(I‘t)AhiP(hﬁ-‘i—lgo(i)) * ; P(uj)B,,jP(h,uj'lg,(,))

i=1

and Afo®u-w) = J if and only if 4 = J. Therefore (o, (u1, ..., 1)) is
an automorphism of M,(H). For (o, (g1, ..., )Y and (7, (v1,...,%,)) in
(S,, S, X ... X S,), a computation shows that

(A(m(m ----- #n)))(f-(l'l ----- m) = (T (1. vn)) (o (u1s-.., n)) |

Hence we may define {{S,, S, X ... X S,), M,(H)), the corresponding semi-
direct product of M,(H) by (S,, S, X ... X S,).

Suppose now that G is a doubly transitive subgroup of S, and for 7 € N(G),
A € M,(H) we define

A7 = P(r)AP ().

Then it is easy to see that 7 is an automorphism of M, (H) and we denote the
corresponding semi-direct product of M,(H) by N(G) by (N(G), M,(H)).

4. Main results. First we characterize all G — H unitary sets for G a non-
empty subset of .S, and H a nontrivial group in.%# (Propositions 1 and 2). If
G is a transitive subset of S, and H is a nontrivial subgroup of F* we show
that 7 P(G, H) is a subgroup of GL(n?, F) (Proposition 3). If G is a regular
subset or a doubly transitive subset of S,(n > 2), H a nontrivial group in S’
and T €.9 P(G, H) then for 1 £14, j £ n there exist 1 £ p, ¢ < n and
aq; € H such that

T(Eij) = aifEmz

and for distinct (,j) we have distinct (p, ¢), i.e. the matrix representation
of T with respect to the usual basis {E;:1,7 = 1,2,...,n} is a generalized
permutation matrix (Lemmas 5 and 6). Furthermore we have the following
results:

THEOREM 1. Let G = {gi1, ..., g} be a regular subset of S, (n > 2) and H
a nontrivial group in H. Then T €. P(G, H) if and only if there exist o; =
(@p,...,a,) € T(H),1=1,2,...,nand uy, ..., pu, o €S, such that

T(Eihk(i)) = aith)Euk(t)h,,(k)#k(i)r Lk=1,...,n
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or in another form

n

TX) =4+ Z P(#t)XhiP(hiﬂt_lgv(i))y X € M,(F)

i=1
where A = [ {0 w1y ¢ M. (H) and by = g1,

THEOREM 2. Let G = {g1, ..., g} be a regular subset of S, (n > 2) and H
a nontrivial group in H. If for

((5’ (F-ly e eey Nn))r A) € <<Sm Sn X ... X Sn)y Mn(H)>
and X € M,(F) we define

XUorwtomn)) 4 = 45X 0 10eens ;A»))’
then I P (G, H) is equal to the group {({S,, S, X ... X S,), M,(H)).

THEOREM 3. Let G be a doubly transitive subgroup of S, (n > 2) and H a
nontrivial group in H. Then T € I P (G, H) if and only if there exist A € M,(H),
u € N(G) and ¢ € G such that

T(X) = A+P(ep)XP(uY), X € M, (F) or
T(X) = A+P(op)'XP (1), X € M,(F).

THEOREM 4. Let G be a doubly transitive subgroup of S, (n > 2) and H a
nontrivial group in . If for (u, A) € (N(G), M,(H)) we define

X(o4) = AxP(¢)XP(s7), X € M,(F)
then 9 P (G, H) is equal to the group

P(G) o (N(G), M,(H)) o {I, R}
where o s the usual composition of linear transformations. As an abstract group,
there exists a subgroup . 1P (G, H) of index 2|G| in.7 P(G, H) and 7 P (G, H)
s 1somorphic to the group

(N(G),H X ... X H).

n? times
To complete our list we have the following

THEOREM 5. If |H| > 2 and H € H then Theorems 1 and 2 are true when
n=2 If H={1, —1} then I P(S,, H) consists of the group of linear trans-
formations generated by the set

2
{T?T(X) =A% ), Pu)XyPgwgesn), o pype € Sp, 4 € M2(H)}

i=

together with the linear transformation S defined as follows:

[ :l
1 1

S(E21)=%[1 :1], S(Ew):%[_i _i]

S(Eu) = %[} i] v S(Ew) =

D=
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5. Structure of G — H unitary sets. Let G be a nonempty subset of S,
and H a group inJ#.

ProrosiTioN 1. Suppose |H| > 2 and {441, ..., 4, ©T M, (F)isa G— H
unitary set. Then there exist ay,...,a, € H, 7 € S,, ¢ € G such that
A= aE(yetrny, 1=1,2,...,n.
Proof. Itis obvious for n = 1, hence assumen > 1. Since (1,..., 1) € T,(H),
S i1 A4,isin P(G, H) hence there existac € Gand B8 = (B1,...,8,) € T.(H)
such that

; A, =P8, o).

Since |H| > 2 there exist distinct £, 7 € H and both are distinct from 1. Then
there exist 7, v € G and vy = (y1,...,7v), 6 = (01,...,8,) € T, (H) such
that

n

£4, + Z Ay =Py, 1),

=2

741 + 22 A;= P, v).
Hence

Ay =1 =& (PB o) — Py, 7).

Assume ¢ 5% 7. Then there exists 1 < 7 < n such that ¢=1(1) # 71(z). But

Ar= (10 =) (PB o) = PG,») = E—n)(Ply,7) — PG ),

or
1 —=n)PB,o) — (E—n)""P(y,7) =
(@ =)= (= n)"HP,»)

i.e. the matrix on the left hand side has two nonzero entries in the 7th row and
the right has at most one, a contradiction. Hence ¢ = 7 and

Al = P((l - E)—I(B - 'Y)r 0') = P<011 U)

say. Similarly we have 4, = P(0;, ¢) where 8, € T, (F),71=1,2,..., n.

Now if we write 4, = (a:*), B =1,2,...,n then a;f = 0 if j # ¢71(4)
and Y %1 aafi,-1y € H for all (@1, ...,0,) € T,(H),2=1,2,...,n Sup-
pose the number of nonzero terms in {a*;,-1(5 : B = 1,2,...,n} is not less
than two, say aly-1(5 # 0 and a?,-15 # 0. Then we may choose
as, . ..,a, € Hsothat Y 5_sopa® -1y # 0. Let

— _ n k
a = alid“(i)v b= Zk—?aka ie=1(4)-

Then aa + b € H for all «; € H, 1.e. Ha + b € H which is a contradiction.

https://doi.org/10.4153/CJM-1976-047-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-047-9

LINEAR TRANSFORMATIONS ON MATRICES 461

Hence for each 2= 1,2,...,n there exists exactly one %k such that
aFi-10y # 0 and a's-15 = 0 for all I # k. If for some &, a¥;,-1¢5 # 0 and
aFie-105 # 0, 1 5 j then there exists [ such that 4, = 0 which is impossible
since A4i,..., A4, are linearly independent. Hence there exist 7 € S, and
ay, ..., a, € Hsuch that

A,—l(i) = a,——l({)E{,>l(1), 1= 1, 2, ...,n Or
Ai = a»tE-r(i)g“]T(i)’ 1= 1, 2, NN (D

ProposiTION 2. If |H| = 2 and {44, ..., 4,} € M,(F) is a G — H unitary
set then there exist permutation matrices P and Q, an integer r (0 < r < n)
and e, ¢ € H such that n — r is even and if P{A4,,...,A4,}0Q = {E,, ..., E,}
then

E; = [e1] ® Opy,
Ey = 01 ® [e2] ® Oy,

E, = Or—l @ [fr] ® 0 —79

Er+1 = Or ® % [fll 5-12] @ On-—r—?;

13 $1a
_ .| £ :Fg'u]
Er+2 - Or @ 2 |:¢§'13 :i:é‘m @ O —7—2)

E,,= On—2 ® % |:§‘tl §t2] yt = %(n - ?’),

§l3 §-l4
ile :Fg‘ﬂ
m ooy [ 78]
Sl TSRy
Proof. It is obvious for n = 1 hence assume #n > 1.
Since (1,...,1) € T,(H) thereexist ¢ € Ganda = (ay,...,a,) € T, (H)
such that
> A,= P(a,5).
i=1
For k=1,2,...,n, let 6,;, =1 if =% and 6,;, = —1 if 7 k. Then
0 = (61, ...,0,) € T,(H) and hence there exist 8, = (Bi1, ..., Brx) IN

I,(H),r;inG,7 =1,2,...,nsuch that

Ay — Z A;=PBi,m), k=1,2,...,n.

=k
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Hence
24; = Ploe,0) + P(Br, 1), k=1,2,...,n.
Since |H| = 2 we must have 1 # —1. Hence char # 2 and
Ay = 27'P(a,0) + 27'P By, 1), kB =1,2,...,m.

To complete the proof we need the following lemmas, using the above
notations.

LEmmA 1. If o=1(q) # 7,1 (q) for some 1 <s, ¢ < n then there exists a
t # s such that 7,71(q) = 7, 1q) and 7,71(q) # 75°1(q) for all © #£ s, t.

Proof. We may assume s = ¢ = 1.
If 7.71(1) # 7.~ '(1) for all 7 ## 1 then clearly it is impossible. If » = 2
the statement is then clear. Hence assume # > 2 and there are 7 integers, say

1,2,...,r, such that r > 2, 7 1(1) = ... = 7,71(1) and 7;/1(1) # ,~1(1)
fori=r+4+1,...,n Nowsince 4; — X ix; A1 = PB;,7,),5=1,2,...,7
we have
(A,- — Z Ai)l.,“lu) =0, 7=1,2,...,r.
=)
Since for £k =1,2,...,7, (Ap)1e-1y = 27 'a; %2 0; hence for j # k, 1 =< j,
k=7

(Aj — Ay - Z Ai)la_l(l) #= 0.

175,k

Since A; 4+ Ay — X ixjx 4+ is a generalized permutation matrix and
o=1(1) # r7i(1),

(Aj + Ay — Z Ai) 1nta = 0.

=5,k

Comparing this with >-7.1 4, = P(a, ¢) we conclude that
2(4; + A1y = 0.

Since char F # 2,
(A; + 411y = 0.

But this is true for all k % j, 1 < j, k < r and » > 2; hence
(A)1r-1y =0, i=1,2,...,7

a contradiction.

LEmMMa 2. If 7,71(t) = 7,71(¢) # o 1(t) for some 1 < r, s, t < n then for
i1#r, 5, (A)y =0foreachj=1,2,...,n.

Proof. We may assumer = 1, s = 2and ¢ = 1.
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If n = 2, the statement is clear. Hence assume 7 > 2. We have seen that
7,71(1) # 771(1) for 75 1,2 in Lemma 1 hence (4,)ir-10y = 0 for all
1% 1,2

Suppose there are some 7 # 1, 2 such that (4,); # 0, & # 7,71(1). We may
assume (4)1;, #0 for ¢ =3,4,...,7, 3=<r=<n and (4, =0 for
1=r+1,r4+2,...,n We choose 6; ¢ H, 7 = 3,4, ..., n, according to r
is even or 7 is odd and k # ¢ '(1), b = ¢7'(1) # 7;1(1) or k = ¢1(1) =
77 1(1) as follows:

r even r odd
k % a7i(1) or k=c71(1) k # ¢71(1) or kE=o"1(1)
k=o71(1) # 7,71(1) = 7;71(1) k=o"1(1) # 7;,71(1) = 7;71(1)
7 even and
0; = —2(A)k 0; = —(4:)1x

32i2r—2

0; = —2(A)e 0: = — (A

7 even and
r—1g4=r 0; = 2(A)1k 0; = (A
7 odd and
6; = 2(A)x 0; = (Ax 0; = 2(A)x 0: = (A
31y
r<i=mn 1 1 1 1

Since if j # ¢71(1), 777 1(1), (A:)1; = 0 for each 7 = 1,2 and (41)1-11y =
(A2)15-11y = 27 'a; we have

(Al — A2)1j =0 fOI' ] # Tl—l(l).

Hence whether 7 is even or odd,
(A1 — Ay — Y, oiA,-)lk # 0.
i=3

Since A1 — Z?=2Ai = P(Bl, T1) and (A{)lnvla) = 0 fOl' 1 # 1, 2 it fOllOWS
that

(Al — A, — Z eiAi) ity # 0
pang

Since k # 7,71(1) the matrix 4, — 4, — > ._3 64, has two nonzero entries
in the first row, a contradiction.
This proves (4;);; = 0forz# 1,2andj=1,2,...,n.

LEMMA 3. If (A5)w-1np # 0, (Ay)¢; = 0 for all j 5= o='(t), then (4;)y; =0
foralli#s,7=1,2,...,n.
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Proof. We may assume that s = 1 and ¢ = 1.

Suppose there exist some 7 # 1 and j # ¢~1(1) such that (4;)1; # 0. Then
A; = 2""Pla, o) + 271P(B, 74) and 7, 1(1) = j ## ¢~ '(1) hence 7, # ¢. By
Lemma 2 this is impossible. Hence (4;):; = O for all 2 # 1 and j # +~1(1).

Now suppose (4 ;)1,-11) # 0 forsomes £ 1,say+1 =2,3,...,7,2 Sr =n
and (4)1-10y = 0 forr + 1 <4 < n. If 7 is even, choose 8; = (4;)1,-1(p if
tisodd, 1 21 =<7;60;, = —(A)w-1yif iiseven, 1 <7 =<7 and 0, = 1 if
r<i=<n Then§,€ Hfort=1,2,...,nand O -10:4:)10-1y = 0. If r
is odd, choose 6; as in the case 7 is even for ¢ = 1,2,...,r — 2 and 0, =
AN1e-1qy for 1=r—1,7; 6,=1 for 1=7r+1,r+2,...,n Then

(3"%=10:4 ) 1,-11y = 3. Since we have shown that (4,);; =0 for 2 <7 < 2,
7 # 771(1) we conclude that Y.7_; 6;4; ¢ P(G, H) which is a contradiction.
This proves Lemma 3.

Now for 4 € M,(F) let N(4) be the number of nonzero entries in A.
Recall that

A1~=2"1P(a,¢7)+2_1P(31,71~), ’i=1,2,...,n.

If 7, = ¢ then N(4;) = 1since 4; # 0. If 7, ## ¢ then there exist j # k such
that 7,7'(j) # o7'(j), 7' (k) # o~ '(k) hence N(4;) = 4. Now with a rear-

rangement of the subscripts of 4,4, . .., 4, there exists an integer 7,0 <7 = n
suchthat7i = 7o = ... =7, =c¢andforr <1 < n,7; # o,1.e.forl <1 = 7,
N(A,))=1and N4,) =24 fori=r+1,r+ 2,...,n Then the number
of nonzero entries in 44, ..., 4, is

;’1 N(4,) + iilN(Ai) >7+4m — 7).

On the other hand, by Lemmas 2 and 3, for each ¢, 1 £ ¢ < n, if 7,71(t) =
o 1(t) forall7 = 1, 2,...,n, there is at most one k such that (4;) -1y # 0
and there is at least one such k for otherwise > i_; A; has a zero tth row, a
contradiction. If 7,71(¢) # o~'(t) for some j then there exist exactly one
I # 7 such that 7,71(¢) # ¢'(t), (A)w-1(n 0, (A)iri-1(n #0, 1 =173,1
and (A44);s =0 for 1 34,1, s=1,2,...,n Hence in all 4, 4,,..., 4,
each row either has one nonzero entry or four nonzero entries. Hence there
exists an integer s, 0 < s < n such that there are s rows with one nonzero
entry and #n — s rows with four nonzero entries and the number of nonzero
entries in Ay, As, ..., A,is s + 4(n — s). Hence

s+4(n —s)=2zr+4n—r) or s—r =4(s —7r)

which is possible if and only if » = 5. But 7 is the number of matrices among

Ay, A., ..., 4, in which there is at least one row with exactly one nonzero
entry. Hence » > s is impossible and » = s or

n

; N4y + ZIN(Ai) =7r+4n — 7).

i=r+
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This forces N(4;) =1 for 1 =1,2,...,r and N(4,) =4 for 1 =7 + 1,
r + 2,...,n Now by multiplying the set {41, ..., 4,} by suitable permuta-
tion matrices allows us to assume that for ¢ = 1,2,...,7, (4:)y # 0 and
(4) % = 0 for either j # 7 or k # 1.

Now if r = n the result is established. If » < n let r < 7 < #%. Since 7; # o
there exist distinct &,1,7» < k, ! < n such that o (k) # 7, 1(k), o~1(l) #
71(l). Since N(4;) = 4 we have ¢7(q) = 7,417 %(q) for all ¢ # &, . Hence
7,01 = (kl). By Lemma 1 there exists a j,7» < j < #n and j # ¢ such that
(k) = 771(k) # o 1(k). Also 7,071 = (kl') for some I’ # k. But o7!1(I') =
;7 Y(k) = 77 1(k) = ¢'(!). Hencel = I'and 7; = 7,. Since 2 1=1 4; = P(a, o)
it follows that 8 = —Bu, 8;: = —B:; and the matrices have the following
form (if & < land o71(k) < o~1(1)).

— o~'(k) () —
0 o -+« . 0 - - -0
0 0
0 0a;0 < - 080 0|k
0 0
4, = % :
0 0
0 08,0 - 0a; 0 !
0 0
0 0 0 0
_ o1(k) () _
0 0 0 0
0 0
0 0a: 0 -0 —Bu 0 0k
0 0
A1 = % N
0 0
0 -0 —B40- -0 0 0f!
0 0
0 0 0 0
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In this way we can pair off the matrices 4,41, . . . , 4, and multiplying the set
{Ay, Ag, ..., A4,} by suitable permutation matrices we can bring it to the
required form. This proves Proposition 2.

6. The group .7 P(G, H).

ProPoSITION 3. If G is a transitive subset of S, and H a nontrivial subgroup
of F* then 9 P (G, H) 1s a subgroup of the group of all nonsingular n* X n*
matrices over F.

Proof. We show that span P(G, H) contains a basis for M,(F). Since G is
transitive, given 1 < 4,j < n we can find ¢ € G such that ¢(j) = 2. Define
a,B € I, (H) via o, = 1 for all k, 8 =1 if k1 and B8, = £ € H. Then a
simple computation shows that

P(a, O') - P(B, 0') = (1 - E)E”.
If |H| = 2 then char F 5 2 and choose £ = —1. If |H| > 2 choose ¢ so that
1 — £ 0. Then the set {(1 — §)E;;:4,7=1,2,...,n} is clearly a basis
for M,(F). Hence if T €.9 P(G, H), image T 2 span (P(G, H)) = M,(F)

so T is nonsingular.

LEMMA 4. Let G be a transitive subset of S, and H a nontrivial subgroup of F*.
If T € PG, H) and o € G then T'(¢7) 1s a G — H unitary set.

Proof. Clearly for all @« € T,(H) we have

Z aiEicfl(i) = P(ar G') € P(GvH)
i=1

Since T preserves P (G, H) we have

21 al' (Ew') = T(Zl OliEw“(i)) € P(G,H).
Also T is nonsingular hence 7 (5~!) is a linearly independent set and the result
follows.

7. Structure of the group .7 P(G, H): G regular. In this section we
assume G be a regular subset of S, (# > 2) and H a nontrivial group in 5.

LEMMA 5. If T € 9 P(G,H) and 1 £ 1,j < n then there exist integers 1 < p,
q é n and [0 27 € H such that T(E”) = aijE,,,,.

Proof. If |H| > 2 this follows immediately from Proposition 1 and Lemma 4
if we choose ¢ € G with o(j) = 7 and consider the G — H unitary set T (¢ 1).

We suppose that [H| = 2 then Proposition 2 and Lemma 4 apply. If » = »
(i.e. no matrices of the second type appear in T'(¢~!)) the result follows.
Hence we assume that for some 7 # [ we have
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— /4 q —
o - - - 0 0 -0
0 0
0 -+ - 00 - - - 0e&0 - - - 0fr
0 0
T(Em1(0) = : : : -l
0 0
0 00 0e0 0fs
. 0 0
0 - 0 0 0
[0 - 0 0 0]
0 0
0 - - - 0xea0 - - - 0Feld - - - 0fr
0 0
T(E,,-x(,)) =
0 0
0 0F el -0 +e0 0fs
. 0 0
Lo - 0 0 o]

We now note that (just writing the appropriate 2-square submatrices and
choosing signs properly)

? q

X =T(Eiw) + TEAD) [0 ned s’

_ _ _ = _ 0 773:| r
Y=TEuw ) — T(E D) = [774 0lsr M € H.

Since n > 2 there exists an integer & (1 < k < n) such that & # ¢,[. The
set G is regular so that the knowledge of one nonzero position in a matrix
P(a, ) determines the permutation 7 uniquely. We now note that the two

https://doi.org/10.4153/CJM-1976-047-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-047-9

468 H. ONG AND E. P. BOTTA

matrices

> T(Ew'w) +X and k;:lT(Ek,—l(k)) +Y

k1,1

belong to P (G, H) and have at least one nonzero entry in common, a contra-
diction. Therefore the case in question cannot occur and the result follows.

Recall that we write G = {g1,...,8g} and h; = g;/". Fork=1,2,...,n
the set 7°(h;) is a G — H unitary set of matrices so it follows that

() = {.BiEipk—l(i) 1=1,2,...,n}

for some p; € G hence there exists p; € S, such that

T(Eihk(i)) = ai”k(’)E“k(i)l’k_l“lc(i)’ 1/ = 1, 2, A (D
Since T is nonsingular, there exists ¢ € S, such that p, = gey, 2 = 1,2, ..., n.
Hence

T(Eihk(i)) = az‘nk(i)Euk(ﬁh,(k)uk(i)y Lk=12...,n
On the other hand, a simple computation verifies that such 7"is in.9 P (G, H)
for any choices a1, as, . .., a, € T,(H) and u1, pa, . « . , pn, o € S,. This proves
Theorem 1.

Now for an n-square matrix X = (x;;) and g, € G we write
n

th = Z xihk(i)Eihk(D'

i=

Then for T € 9 P(G, H),

n
T(th) = Z:l xmk(i)amk(1)Euk<1>n,(,c)uku)
=

for some ay, . ..,a, € T, (H), p1, p2, - .+, o, 0 € S, By setting j = wu(2) we
have

n
F(th) = 2:1 xuk"(j)hkuk"(j)auk"(j)hknk“1(.1)Ejh(,(k)(1’)'
=

Since X,, = diag (X1, - - -+ %unyom )P (gx) We have

T(X»,) = diag (®u, -1 @ ngu, = %, =1 W, =1(0) - - -
=1 ) =1 () =1 gy =1 ) ) P (Zr )
P (u) diag (Xin,)@1n, 1), -+ + 5 Xany @) P (16 go0)
P(Hk) (th*Ah/c/)P(hkuk_lgu(k)) where 4" = (ay;) € M,(H)
P(Nk)Ahk/P(hkﬂk_lga(k))*P(“k)thP(hk“k—lga(k))'
Since X = > %1 Xy,

n

T(X)=Ax Z P(“i)XhiP(hi#i_—lgo(i))

1=

https://doi.org/10.4153/CJM-1976-047-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-047-9

LINEAR TRANSFORMATIONS ON MATRICES 469

where 4 = 3771 P(u;) A4/ P(hu;'gsp). Hence T associates with a matrix 4
in M,(H) and p1, p2, . - - , tny @ € S,. Let S be another element in.7 P (G, H)
which associates with B in M,(H) and vy, v, ..., v, 7 € S,, i.e.

S(X) = Bx iz_; P(Vi)XhiP(hiVi—lgo(t))~

Then

ST(X) = B * ;1 P(vacn) (An,(i) * P(Ni)XhiP(h'i/"'i—lga(i)))

X P(ha'(i)Vv(i)—lgw(i))
= B Z_:l P(Vi)AhiP(hiVi—lgf(i)) *

n

Z P(u,(,)pj)X,,J-P(hjuj—lva(,-)_lg,,(j)),

=1
i.e. ST associates with a matrix BxA{m O and v,aypn, - -+ Yoy, 70 € S,
if we define A(m (1)) a5 in (3.1). Also it is easy to see that if T associates
with 4 =J, py=...=u, =e then T(X) = X for all X € M,(F). This
proves Theorem 2.

8. Structure of the group 7 P(G, H): G doubly transitive. In this
section let H be a nontrivial group in 2 and n > 2.

LEMMA 6. Suppose G is a doubly transitive subset of S,. If T €  P(G, H)
and 1 < 1, j < n then there exist integers 1 < p, ¢ = n and ay; € H such that
T(E1j) = aUEM.

Proof. If |H| > 2 then the result follows from Proposition 1 and Lemma 4.
We suppose that |[H| = 2 and proceed as in Lemma 5 to obtain (only writing
the appropriate 2-square submatrices)

p q P q
_ _ |l e|r B - +e1 Fe |7
T(Eww) = [63 64] s’ T(Ew ) [::Fes :I:e4:| s’
Now n > 2 so there exists & # 1, [. Since G is doubly transitive, choose 7 € G
such that 771(/) # ¢~'(l) and 7='(¢) = o~ '(¢). Repeating the argument for
T(;~') we find

T(Eiw'n) = [61 62]
€3 €4
so by Proposition 2 we find there must exist k such that

+e1 Feo

Fes :I:e4] = = TEww).

T(Ewm) = [
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Now if I # k this implies T is singular, and if I # &k, 77*(I) # ¢~!(I) so again
T is singular, a contradiction.

In the following we assume that G is a doubly transitive subgroup of S,.
Now we have

T(E;;) = a;;E,, forsomea;; € Hand1 =< p, ¢ £ n.
If there exist 1 £ & < n and ay € H such that & £ j and

T(Ey) = agE,; withp #randqg#s
then choose ¢ € G such that o7!(r) = s and ¢ 1(p) = ¢. Let P(s) =
S 1 Ew-1( € P(G,H). Now T-1 € 9 P(G, H) by Proposition 3, however
since T—I(Ers) = aik_lEik and T_l(qu) = aij—lE” the matrix T—I(P(G'))
must have two nonzero entries in row ¢ and since it has # nonzero entries it

must have a row equal to zero and is singular, a contradiction. Hence we may
conclude that either

T(Ei) = ayiEpuy, j=1,2,...,mn or

T(Ey) = ayBupe j=1,2,...,n
for some p € S,. Suppose that for some 1 <4, R <n (1 # k) and o, u € S,
that

T(E:;) = ayFpey, J=1,2,...,n,

T(Ek,) = ak’rE",(r)q, r = ]., 2, N (B

Now ¢(j) = ¢ for some j, and u(r) = p for some r, hence
ai ' T(Ey) = Epy = Eune = oy, T (Exr)

so the matrices T (E;;) and T (E,,) are linearly dependent and T is singular;
a contradiction. Hence either

T(E;:) = aiiEetyun, 4j=1,2,...,n or
T(Eqi) = ayBapey, 5Hi=1,2,...,n

for some o, u € S,, or with a short computation either
T'(X)=AxP(o)XP(u™), X € M,(F) or
T(X) = A+P(u)'XP(o~1), X € M,(F).

Now if the first form occurs let 7 € G. Since T'(P(r)) € P(G, H) we have
oru~! € G. Hence ¢Gu~! € G and it follows that ¢Gu—! = G. Let

L = {(o,p) € S, XS, : 6Gu~! = G}.

Clearly L is a subgroup of S, X S,. If ¢ ¢ N(G) then since .S, is a group,
there exists » € S, such that p=! = ¢~ and we have G = ¢Gu™! = ¢Go~ v =
G'v where G’ = o¢Go~! is a subgroup of S,. Hence » € G’ and G = G’ a con-
tradiction. Similarly p € N(G) hence L is a subgroup of N(G)XN(G). Now
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clearly if (¢, u) € L and one of ¢, pis in G then the other element must be in
G. If p € N(G) — G then again we write ¢ = vu for some » € S, and G =
vuGu~! = yG implies v € G, i.e. ¢ € Gu. Consequently if we let N'(G) =
{(s,0) : 0 € N(G)} then L = (GX{e}).N'(G). If the second form occurs
let 7 € G then again pr~'¢™! € G, i.e. pG~lo~! C G. Since G is a group we have
uGo™1 C G or uGo~! = G i.e. (u, ) € L. Therefore we have either

(8.1) T'(X) = AxP(ep)XP(u™), X € M,(F) or
(8.2) T(X) = AxP(op)' XP (™), X € M,(F)

where ¢ € G and p € N(G). On the other hand it is easily seen that for any
u € N(G) and ¢ € G, the T defined by (8.1) and (8.2) are in  P(G, H).
This proves Theorem 3.

Now let .7 1P(G, H) be the set of all elements in. 7 P(G, H) of the form
(8.1) with ¢ = e. If T, S are in .9 P (G, H) and associate with u € N(G),
A € M,(H)and r € N(G), B € M,(H) respectively, i.e.

T'(X) = A«P(uW)XP ™), X € M,(F),
S(X) = BxP(r)XP(+), X € M,(F)
then
ST(X) = BxA™*P (ru)X P ((rp)™"), X € M,(F)

where A7 = P(r)AP ('), i.e. ST associates with the element 7u € N(G)
and B*A7 in M,(H). Also if T associate with e € N(G), A = J then clearly
T is the identity linear transformation on M, (F). Hence .7 P (G, H) is iso-
morphic to the group (N (G), M,(H)).

Recall that P(G) = {P(¢) : ¢ € G} and for ¢ € G we define P(o)(X) =
P(e)X,X € M,(F). Clearly S of the form (8.1) associates with ¢ € G,
v € N(G), A € M,(H) if and only if S = P(¢) o T where T in.9 P(G, H)
associates with u € N(G) and P(¢c~1)A4 € M,(H). Hence if we denote by
T 2P (G, H) the set of all elements in.7 P(G, H) of the form (8.1) then

I .P(G,H) = P(G) o9 P(G, H).

By a simple computation we see that.7 P (G, H) is a group hence.7 P (G, H)
is of index |G| in S P (G, H).

Finally if R(X) = ‘X, X € M,(F) then clearly S is in .7 P(G, H) of the
form (8.2) if and only if S = TR where 7T is in.7 2P (G, H). This completes
the proof of Theorem 4.
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