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Abstract

Twin 5-month seasonal forecast experiments are performed to predict the September 2018 mean
and minimum ice extent using the fully coupled Navy Earth System Prediction Capability
(ESPC). In the control run, ensemble forecasts are initialized from the operational US Navy
Global Ocean Forecasting System (GOFS) 3.1 but do not assimilate ice thickness data.
Another set of forecasts are initialized from the same GOFS 3.1 fields but with sea ice thickness
derived from CryoSat-2 (CS2). The Navy ESPC ensemble mean September 2018 minimum sea
ice extent initialized with GOFS 3.1 ice thickness was over-predicted by 0.68M km2 (5.27M
km2) vs the ensemble forecasts initialized with CS2 ice thickness that had an error of 0.40M
km2 (4.99M km2), a 43% reduction in error. The September mean integrated ice edge error
shows a 18% improvement for the Pan-Arctic with the CS2 data vs the control forecasts.
Comparison against upward looking sonar ice thickness in the Beaufort Sea reveals a lower
bias and RMSE with the CS2 forecasts at all three moorings. Ice concentration at these locations
is also improved, but neither set of forecasts show ice free conditions as observed at moorings A
and D.

1. Introduction

Seasonal sea ice prediction (Merryfield and others, 2013; Stroeve and others, 2014; Blockley
and Peterson, 2018) is gaining in importance as operational ice production centers (e.g.,
National Ice Center (NIC), Environment and Climate Change Canada) are fielding requests
to provide extended-range forecasts of sea ice conditions to support navigation, in some
cases months in advance. The NIC has been using the U.S. Navy’s pre-operational 45-day
fully-coupled modeling system to support ICEX 2018, and the McMurdo Resupply missions
in the Ross Sea in 2018 and 2019. The Navy ESPC has provided model output (both Arctic
and Antarctic) in support of the Year of Polar Prediction (YOPP, Allard and others, 2018a)
and are regular contributors to the Sea Ice Prediction Network (SIPN2, https://www.arcus.
org/sipn). In addition to ice thickness and ice concentration forecasts, ice drift forecasts can
be used to monitor the expected movement of the ice edge within the Marginal Ice Zone.
We are regular contributors to Sea Ice Drift Forecast Experiment (https://www.polarpredic-
tion.net/yopp-activities/sidfex/) and the Multidisciplinary drifting Observatory for the Study
of Arctic Climate (MOSAiC, https://www.mosaic-expedition.org/) projects.

With the availability of new sources of satellite-derived ice thickness (derived from free-
board) products, it is prudent to incorporate observed ice thickness measurements into oper-
ational modeling systems to improve both the short-term (e.g., days) and long-term (months)
forecasts. In this paper, we describe the U.S. Navy’s efforts to improve the prediction of the
September Arctic sea ice mean and minimum by reinitializing a fully-coupled global modeling
system with CryoSat-2 ice thickness data.

A global coupled climate model was used by Day and others (2014) to examine the impact
of Arctic sea ice thickness initialization on seasonal forecast skill. A series of experiments were
performed by initializing the sea ice thickness on 1 January and 1 July vs control simulations
initialized with climatological ice thickness. They found a significant improvement in forecast
skill for the September sea ice extent and lower RMSE for the 2 m air temperature vs the cli-
matological experiments. Blanchard-Wrigglesworth and others (2016) examined model uncer-
tainty and the predictability of the September 2015 sea ice extent by initializing eight
dynamical models (both global and regional) with the same ice thickness field from the
Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (Schweiger and others,
2011) for 1 May 2015. They found a large divergence in the September sea ice extent for all
the models that varied by several million km2. Performing post-processing of the model fore-
casts with a bias correction using each model’s climatology resulted in much improved fore-
casts for sea ice extent and sea ice volume.
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Williams and others (2016) examined seasonal forecasting of
the Arctic sea ice extent with a dynamical mechanism based on
winter preconditioning. A Lagrangian trajectory model was used
to backtrack the September sea ice edge to any date from the pre-
vious winter. They found a 38% reduction in error when using a
multivariate regression model of the September sea ice extent
based on ice export from the peripheral Arctic seas and Fram
Strait ice export. Using the CICE model, Schröder and others
(2014) found skill in predicting the September Arctic sea ice min-
imum based on the spring melt pond fraction.

Seasonal prediction using the Climate Forecast System
Reanalysis (CFSR) was examined by Collow and others (2015)
where they performed a set of 9-month ensemble predictions
for the period of 2005–2014. Two sets of experiments were per-
formed in which initial March ice thickness was provided by
PIOMAS and CFSR. They found that the use of PIOMAS as a
proxy for satellite-derived ice thickness (e.g., CryoSat-2) per-
formed the best in predicting the September sea ice extent min-
imum as demonstrated by increased correlation and lower
RMSE. Dirkson and others (2017) utilized the Canadian
Climate Model version 3 (CanCM3) and three statistical models
used to derive initial sea ice thickness estimate to initialize a real-
time forecasting system for the period of 1981–2012. They found
that the combination of sea ice thickness fields that represented
the thinning of the ice pack over many years and interannual vari-
ability led to the best predictive skill for pan-Arctic ice area and
regional sea ice concentration.

The predictability of the September sea ice minimum by
assimilating CryoSat-2 (CS2) ice thickness data in the UK Met
Office’s coupled seasonal prediction system GloSea was examined
by Blockley and Peterson (2018). Seasonal predictions were initi-
alized on three different spring start dates for an eight-member
ensemble prediction system for the years 2011–2015. They
found a significant improvement vs a control set of ensembles
for the same time periods (without using CS2 data) for sea ice
extent and ice edge location for September forecasts as well as
improvements to near-surface air temperature and pressure fields.

Yang and others (2019) performed Arctic seasonal ice forecasts
for the period of 25 May–1 October 2016 using the 11-member
ensemble based Sea Ice Seasonal Prediction System comprised
the MITgcm ice-ocean modeling system with 18 km resolution.
Initial conditions were provided by restart fields from an oper-
ational ice-ocean modeling system which assimilates sea ice con-
centration and CS2/SMOS ice thickness. The study showed a
significant improvement in predicting the Arctic sea ice extent
for the Pan-Arctic. The best performance was found for the
Central Arctic, Canadian Archipelago and Baffin Bay/Davis
Strait/Labrador Seas. An evaluation of the ice thickness prediction
at the Beaufort Gyre Exploration Project (BGEP) Upward Looking
Sonar (ULS) moorings in the Beaufort Sea showed a significant
reduction in the RMSE at all three moorings compared to the oper-
ational Climate Forecast System Version 2 (CFSv2) ensembles
which were not initialized with satellite-derived ice thickness data.

2. Modeling system used

In this study, we use the Navy Earth System Prediction Capability
(Navy ESPC) (Barton and others, 2019), which is a global coupled
atmosphere – ocean – sea ice prediction system developed by the
Naval Research Laboratory. The component models include:
atmosphere – NAVy Global Environmental Model (NAVGEM);
ocean – HYbrid Coordinate Ocean Model (HYCOM) and sea
ice – Community Ice CodE (CICE, Hunke and Lipscomb,
2008). To couple the models, we use the National Unified
Operational Prediction Capability (NUOPC) tools built on top
of the Earth System Modeling Framework (ESMF). The sea ice

and ocean models are configured on the same tripole grid with
∼3.5 km resolution at the North Pole. HYCOM employs 41 verti-
cal levels in the water column. NAVGEM has a 37 km horizontal
resolution with 60 vertical levels. Navy ESPC is presently under-
going operational testing to support the generation of determinis-
tic (0 to 16 days), and probabilistic (0 to 45 days) forecasts. For the
coupling between HYCOM to CICE, HYCOM exports sea surface
temperature (SST), sea surface salinity (SSS) and the u- and
v-components of surface ocean current (SSU, SSV) to the
model coupler, which makes it available to both the atmosphere
and sea ice model. Table 1 summarizes the model fields
exchanged for coupling.

In the control runs (Pegion and others, 2019), ensemble fore-
casts are initialized from the operational US Navy Global Ocean
Forecasting System (GOFS) 3.1 (Metzger and others, 2014) for
the ocean and sea ice using the Navy Coupled Ocean Data
Assimilation (NCODA, Cummings and Smedstad, 2014) system
that assimilates Special Sensor Microwave Imager/Sounder
(SSMIS, Maslanik and Stroeve, 1999) and JAXA Advanced
Microwave Scanning Radiometer2 (AMSR2, Comiso and others,
2003, Comiso and Nishio, 2008) sea ice concentration products
for the cryosphere. Atmospheric initial conditions are from oper-
ational NAVGEM (Hogan and others, 2014) using the Naval
Research Laboratory Atmospheric Variational Data Assimilation
System (NAVDAS) (Baker and others, 2007). The ensemble-based
forecasts are generated using a time-lagged approach in which the
first ensemble member is initialized on 1 May 2018 and run
through the end of September. This is repeated for 2–10 May
2018, in which a separate set of forecasts are run through the
end of September. The time-lagged initialization is short enough
(10 days) that it does not have an impact on the results presented
in this study.

Another set of experiments are initialized from the same sea
ice restart files above, but with ice thickness derived from
CryoSat-2 (Kurtz and Harbeck, 2017) for the 10-day period
beginning 1 May 2018. We use the technique to reinitialize the
CICE ice thickness field from CS2 as described by Allard and
others (2018b). We calculate the anomaly between the observed
ice thickness field (on the model grid) from the control experi-
ment for a particular date (e.g., 1 May 2018). The anomaly is
added to the ice thickness field for the CS2 experiment. If the
observed ice concentration indicates ice is present, while the
CS2 ice thickness field indicates no ice is present, the data assimi-
lation system adds 0.5 m of ice at these locations. For areas outside
the Central Arctic (e.g., Barents Sea), the mean snow depth of
first-year ice from climatology (see Tilling and others, 2015) is
used in the CS2 retrievals.

Both sets of experiments are performed with 10 time-lagged
ensemble members for the period of 1–10 May 2018 run through
30 September 2018. We present results for the predicted vs

Table 1. Model fields exported to atmosphere, ocean and ice models for
coupling

NAVGEM HYCOM CICE

u-wind @10 m Sea sfc temp Ice concentration
v-wind @10 m Sea sfc salinity Ice stress x-dir
Air temp @2m Sea sfc u-ocean Ice stress y-dir
Specific humidity @2m Sea sfc v-ocean Shortwave flux at ice bottom
Air density @2m Longwave flux at ice bottom
sfc air temp Salt flux at bottom
Downward shortwave Water flux at bottom
Downward longwave u-comp ice velocity
Precipitation v-comp ice velocity
Mean sea level pressure Ice thickness

Ice albedo
Ice sfc temp
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observed September sea ice mean and minimum extent to exam-
ine the impact of satellite-derived ice thickness initialization vs the
set of experiments which did not utilize this data. Figure 1 pre-
sents the difference between the forecasts with and without CS2
initialization on 15 May and 15 September. Albeit early in the sea-
sonal forecast period, the model’s ice thickness bias compared to
CS2 is evident on 15 May. In both figures, the CS2 forecasts show
thicker ice is evident along the Canadian Archipelago with thin-
ner ice, especially on 15 May, along the Canadian, U.S. and
Russian coasts.

3. Results

Figure 2 depicts the sea ice extent for all ten ensemble members
for both sets of forecasts. The sea ice extent ensemble mean
shown in Figure 2a closely matches the observed extent through
29 July; afterwards it gradually shows a positive bias that remains
for the duration of the forecast period. Figure 2b shows that the
ensemble mean is closer to the observed minimum ice extent,
but ∼18 days early. The CS2 ensemble mean forecast sea ice

extent shown in Figure 2b closely mirrors observations through
31 August (∼120 days) before showing a positive bias for the
remainder of the forecast period. The Navy ESPC ensemble
mean September 2018 minimum sea ice extent initialized with
GOFS 3.1 ice thickness (control) was over-predicted by 0.64 M
km2 vs the ensemble set of forecasts initialized with CS2 ice thick-
ness which had an error of 0.36 M km2 (observed mean extent
was 4.63 M km2), a 43% reduction in error. The National Snow
and Ice Data Center (NSIDC) minimum (Fetterer and others,
2017) was observed on 23 September, while the Navy ESPC min-
ima occurred on 5 September for both sets of forecasts.

Figure 3 depicts the Pan-Arctic sea ice volume (1000 km3) for
the 5-month forecast period vs the PIOMAS sea ice volume esti-
mates. Although actual Pan-Arctic sea ice volume data does not
exist, PIOMAS is generally used for comparison and is widely
used by the sea ice modeling community. The control run
shown on the left begins with a lower volume vs PIOMAS but
is higher beginning in early June and maintains a positive bias
for the remainder of the forecast period. The CS2 ensemble fore-
casts initial volume shown in Figure 3b is in excellent agreement
with PIOMAS but by mid-May begins to trend higher, with an

Fig. 1. Ensemble mean ice thickness difference (m) between forecasts initialized with CS2 and control forecasts for (left) 15 May 2018 and (right) 15 September
2018. Blue shades indicate that CS2 has less ice than control.

Fig. 2. (a) Arctic sea ice extent (M km2) for the control run (red) vs (b) the runs per-
formed with CS2 initialization (blue). The thick dark red/blue lines represent the
ensemble mean, while the thin lines are the individual ensemble members. NSIDC
data are shown in black. Dashed black line represents observed 4.63 M km2 minimum
extent on 23 September 2018.

Fig. 3. (a) Arctic sea ice volume (1000 km3) for the control run (red) vs (b) the runs
performed with CS2 initialization (blue). The thick dark red/blue lines represent
the ensemble mean, while the thin lines are the individual ensemble members.
PIOMAS results are shown in black.
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overall higher volume compared to the control run shown in
Figure 3a. We attribute this higher volume to the thicker initial
ice shown in the Central Arctic between the Canadian
Archipelago and the North Pole shown in Figure 1 where CS2
ice thickness is 2–2.5 m thicker than the control run. An examin-
ation of NASA Operation IceBridge (OIB) ice thickness overlaid
on CS2 thickness for early May (not shown) reveals the CS2
ensemble forecasts have significantly thicker ice compared to
the OIB data. We attribute this to the complex scattering behavior
from CS2 that can lead to anomalous features in the thickness
fields. Therefore we have more confidence the thinner OIB ice
thickness is more realistic than what we see from CS2 ensemble
forecasts in this region.

The predicted September mean sea ice extent is shown in
Figure 4. The solid red and blue lines represent the ensemble
mean and the black solid line depicts the NSIDC mean ice extent.
Figure 4c depicts the ensemble mean ice extent for the control
and CS2 forecasts. The most noticeable improvement is found
in the Beaufort/Chukchi Sea. Overall, some improvement in
shown in all regions except off the coast of northeast Greenland

and near Banks Island (73.08°N, 120.72°W, see Fig. 7 for more
detail) where there are significant differences between the
observed and predicted ice edge.

We calculate the Integrated Ice Edge Error (IIEE, Goessling
and others, 2016) to assess the skill in the control and CS2 fore-
casts for regions shown in Figure 5 to determine how well the
models agree on the 15% sea ice concentration isoline. Model
data are interpolated to the 25 km NSIDC ice concentration
grid. Figure 6a shows the IIEE for the Pan-Arctic domain. Both
model forecasts easily beat anomaly persistence (based on
20-year climatology from the period of 1998–2017) indicated by
the black dashed line. The control run shows a slightly lower
error for the period of∼ 15 June–31 July, while the CS2 forecasts
show a more significant reduction in error from 1 August–30
September. Minor improvement is shown for the Beaufort/
Chukchi/Bering Seas (Fig. 6b), but the CS2 and persistence values
are very similar. Little difference is shown for the Barents/Kara
Seas (Fig. 6c) and Canadian Archipelago (Fig. 6d) where both
forecasts are clear improvements over persistence. Table 2 pre-
sents the mean IIEE for September for Arctic regions shown in
Figure 5. An 18% improvement over the control run is exhibited
by the CS2 forecasts for the entire Arctic domain, with the Bering/
Chukchi/Beaufort region exhibiting the best regional improve-
ment over the control run at 30%, while the Greenland/
Norwegian Sea showed the only decline at 6%.

We evaluate the ice thickness at the three mooring locations
shown in Figure 7. ULS ice draft from the Woods Hole
Oceanographic Institution BGEP (Krishfield and Proshutinsky,
2006) are used in this study. Raw ice draft data sampled at 2 s
intervals is converted to ice thickness by dividing the draft by
0.89 (Rothrock and others, 2003). A 5-day moving average of
the ULS was calculated to filter noisy data. Figure 8a, c and e
show the comparison of observed ice thickness at moorings A,
B and D (respectively) vs the control and CS2 5-month predic-
tions. While the ULS indicates open water beginning in August
at mooring A and little or no ice in September at mooring D,
the forecasts indicate ice throughout the period at all three moor-
ing locations. The CS2 results at mooring A highlight the best
agreement with observation with a minimum ice thickness of
∼0.25–0.30 m in September. Table 3 presents summary statistics
for ice thickness showing the CS2 forecasts performed best with
the lower bias and RMSE at all three moorings. An examination
of the mean ice extent shown in Figure 7 illustrates that mooring
B is poleward of the mean sea ice extent, but mooring A is closer
to the mean extent for the CS2 set of experiments. Figure 8b, d
and f present ice concentration from both SSMIS and AMSR2

Fig. 4. (a) September mean sea ice extent prediction for ten ensemble members from control run; dark red line denotes ensemble mean. (b) Same as (a) but based
on CS2 initialization; dark blue line represents ensemble mean. (c) Ensemble mean for control (red) and CS2 (blue). Black lines denote NSIDC observed mean
September extent.

Fig. 5. Arctic regions used for the IIEE analysis.
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interpolated to the ULS mooring locations compared against the
control and CS2 forecasts. CS2 results at mooring A show the best
qualitative performance with reduced ice concentration vs the
control run. However, since the models did not predict open
water, concentration values are higher than observed.

To better understand the impact of CS2 initialization on the
seasonal prediction of the September Arctic mean and minimum
sea ice extent we analyzed the September mean 2 m air tempera-
ture. Figure 9a depicts the September mean 2 m air temperature

difference from NAVGEM between the CS2 and control forecasts.
Yellow/red shading indicates that the CS2 run is warmer by 2–4°C
in the Chukchi Sea as shown by the red rectangle. Figure 9b shows
the air temperature averaged for this rectangle between 72 and 78°
N and 180 to 140°E. The ensemble spread is indicated by the red
(control) and blue (CS2) shading. The most significant difference
appears in September when the air temperature difference is on
the order of 2–3°C as shown in Figure 9c. The CS2 initialization
led to thinner/no ice in this region as shown in Figure 1 resulting
in open water and a generally warmer air temperature in May and
again in late August through September.

Lastly, we examine the impact of CS2 initialization on the pre-
dicted sea surface temperature. Figure 10 depicts the mean
September 2018 HYCOM sea surface temperature difference
between the control and CS2 ensemble forecasts. The red colors
indicate where the CS2 forecasts are warmer due to a lack of ice
cover. Qualitatively, there is a strong correlation between the
warmer SSTs off the coast of Alaska, Bering Sea and East
Siberian Sea and the poleward position of the CS2 minimum

Fig. 6. Integrated IIEE (million km2) for control (red) and CS2 (blue) forecasts for (a) Pan Arctic, (b) Bering/Beaufort/Chukchi Sea, (c) Barents/Kara Seas and
(d) Canadian Archipelago. Anomaly persistence is indicated by the black dashed line.

Fig. 7. Location of ULS moorings in the Beaufort Sea. Lines represent September
mean ice extent for control (red), CS2 (blue) and observations (black) minimum ice
extent as shown in Figure 4c.

Table 2. September 2018 mean IIEE for the control and CS2 experiments

Region Control CS2
%

Improvement Persistence
%

Improvement

Arctic 2.18 1.79 18 3.68 51
Greenland/
Norwegian Seas

0.12 0.13 −6 0.28 54

Barents/Kara
Seas

0.24 0.23 5 0.90 74

Laptev Sea/E.
Siberian Sea

0.75 0.61 19 0.62 2

Bering/Chukchi/
Beaufort Seas

0.77 0.52 30 0.59 12

Canadian
Archipelago

0.31 0.30 4 0.92 67

Grey boxes indicate best performance.
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extent shown in Figure 5c. We note colder SSTs in the Fram
Strait, an area where we observed a southern retreat of the sea
ice extent minimum also shown in Figure 4c.

4. Summary and Discussion

The reinitialization of the Navy ESPC with CS2-derived ice thick-
ness data shows a noticeable difference at the start of the 5-month
forecasts (Fig. 1a). There is generally less ice in the Beaufort and
Chukchi Seas (compared to the GOFS 3.1 ice thickness) but sig-
nificantly more ice between the northern Greenland and

Ellesmere Island coasts to the North Pole. That pattern is still evi-
dent on 15 September (Fig. 1b) with open water seen in the mar-
ginal seas, but with a somewhat reduced magnitude.

We find a 43% reduction in the September minimum sea ice
extent error when initializing with CS2. Examining tabular data
associated with Figure 2, the predictive skill of the Pan-Arctic
sea ice extent is extended by 33 days (31 August vs 29 July)
using CS2 data. The ice volume predictions compared to
PIOMAS show a positive bias vs the control run. We attribute
this to thicker ice in portions of the central Arctic from CS2
that does not melt as much or advect out of the region compared
to control run. An examination of NASA IceBridge ice thickness
data for April 2018 reveals that the CS2 ice thickness appears to be
anomalously high in this region. The September mean sea ice
extent showed the most significant improvement in the
Beaufort/Chukchi Sea, with a September distance error reduction
of 35 km, a 20% improvement. Marginal improvements are also
seen in the East Siberian, Laptev, Kara, Barents Seas and the
Canadian Archipelago. We observe a slight degradation in per-
formance in the Greenland Sea. The IIEE for the Pan Arctic
showed a reduction in error of ∼0.33 m km2 during the period
of 1 August–15 September. Some improvement is also seen for
the Bering/Beaufort/Chukchi and Laptev Seas. The mean
September IIEE error is reduced by 18% in the Arctic using
CS2 data, with a 30% improvement shown for the Bering/
Chukchi/Beaufort Sea region.

The ESPC system demonstrates a positive ice thickness bias as
shown in Figure S1, which covers the period of 2017–2019 for the
150-day SIPN2 ensemble forecasts initialized 1 May but without

Fig. 8. (Left) 5-month ice thickness forecast at the ULS Moorings A, B and D shown in Figure 7 for the period of 1 May–30 September, 2018. Black lines on left denote
5-day moving average of observed ice thickness vs control (red) and CS2 (blue) ensemble forecasts. (Right) Predicted ice concentration at the same locations vs
AMSR2 (grey) and SSMIS (black). Shading and dashed lines indicate ensemble spread.

Table 3. Ice thickness statistics at 3 ULS locations for control and CS2 5-month
predictions

1 May–30 Sept 2018 ULS A Control CS2
Mean (m) 0.81 1.24 0.93
Bias 0.43 0.12
RMSE 0.49 0.21
R2 0.99 0.99
1 May–30 Sept 2018 ULS B Control CS2
Mean (m) 1.19 1.44 1.18
Bias 0.24 −0.01
RMSE 0.38 0.28
R2 0.92 0.93
1 May–30 Sept 2018 ULS D Control CS2
Mean (m) 0.87 1.39 1.24
Bias 0.52 0.42
RMSE 0.59 0.49
R2 0.94 0.94

Bold text indicate best performance
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CS2 data. Studies underway are investigating the use of CS2 2-day
along-track data in our real-time prediction systems. We antici-
pate the use of this data will reduce this thickness bias.

The ensemble mean predictions for the September sea ice
extent minimum show an improvement using CS2 data, however
the predicted sea extent minimum occurs 18 days earlier than
observed for either of the forecast experiments. The sea ice vol-
ume vs PIOMAS (Fig. 3) shows that the initial volume using
CS2 is consistent, however the volume difference actually
increases during the forecast period compared to the control
run. We attribute the role of the thicker ice mentioned in the pre-
vious paragraph, which does not melt enough as a contributing
cause of the higher volumes. We hypothesize that augmenting
the CS2 dataset with SMOS ice thickness (e.g., Yang and others,
2019) could lead to thinner ice in some of the marginal seas

possibly resulting in a more realistic Pan Arctic sea ice volume
when considering the impacts of ice advection.

The clear impact of CS2 initialization on the September sea ice
extent is shown in Figure 4c. The most noticeable improvement
compared to the NSIDC mean September ice extent is in the
Beaufort, Chukchi and portions of the East Siberian Seas. While
a marginal improvement is shown for the Laptev, Kara and
Barents Seas, there is still a significant difference compared to
the observed mean extent. The IIEE (Fig. 6a) for the entire Pan
Arctic domain shows a slightly higher error with the CS2 experi-
ments from days 50–90, but a much improved (lower error) score
is evident during days 90–150. The CS2 experiments show a
decrease in error from days 70–130, while the control experiments
show an increase for most of the 150-day forecast.

The CS2 set of ensembles showed a consistent improvement in
skill in forecasting ice thickness at all 3 BGEP ULS mooring site
sites (Fig. 8a, c and e) in the Beaufort Seas for the 150-day period
with a reduction in bias and RMSE at all three locations. These
finding are consistent with those of Yang and others (2019)
where they performed similar experiments for a 4-month period.
The coupled modeling system was unable to predict open water at
all mooring locations for either sets of experiments; however, the
ice concentration time series (Fig. 8b) shows a significant
improvement vs the control run. Again, we hypothesize that the
use of a blended CS2/SMOS ice thickness could lead to improved
forecasts.

We examined the impact of CS2 initialization on the 2 m air
temperature, especially during September and showed a signifi-
cant warming (Fig. 9a) in the Chukchi and Laptev Seas vs the
control run, an area where we observed a much improved sea
ice extent. This warming is also correlated with the warmer SST
modeled for this region (Fig. 10). Future work may investigate
how warmer predicted September SST’s may delay the onset of
freezing in the Autumn.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/aog.2020.15
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Fig. 9. (a) Mean September 2 m air temperature difference from NAVGEM between control and CS2 forecasts. Red rectangle denotes region of significantly warmer
temperatures. (b) 2 m air temperatures for the red rectangular box averaged from 72–78°N, 180–140°E. Spread between both sets of ensemble simulations is shown.
(c) CS2 minus control run 2 m air temperature for 5-month forecast period. Note significantly warmer temperatures in late September where open water occurs.

Fig. 10. HYCOM ensemble mean September 2018 sea surface temperature difference
(°C) between CS2 and control forecasts. Red colors indicate the CS2 runs resulted in
warmer SST.
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