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Abstract. A crossed product functor is said to be injective if it takes injective morphisms
to injective morphisms. In this paper we show that every locally compact group G
admits a maximal injective crossed product A 7→ A oinj G. Moreover, we give an explicit
construction of this functor that depends only on the maximal crossed product and the
existence of G-injective C∗-algebras; this is a sort of ‘dual’ result to the construction of
the minimal exact crossed product functor, the latter having been studied for its relationship
to the Baum–Connes conjecture. It turns out that oinj has interesting connections to
exactness, the local lifting property, amenable traces, and the weak expectation property.
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1. Introduction
Let G be a a locally compact group. A C∗-algebra equipped with a continuous action of
G will be called a G-algebra. An (exotic) crossed product functor oµ for G is a functor
A 7→ A oµ G from the category of G-algebras and equivariant ∗-homomorphisms into
the category of C∗-algebras and ∗-homomorphisms in which A oµ G is a C∗-completion
of the algebraic crossed product A oalg G = Cc(G, A) with respect to a C∗-norm ‖ · ‖µ
which satisfies

‖ · ‖r ≤ ‖ · ‖µ ≤ ‖ · ‖max,
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where ‖ · ‖r and ‖ · ‖max denote the norms of the reduced and maximal crossed products,
respectively. Thus, we see that for any exotic crossed product, the identity map on
Cc(G, A) induces surjections

A omax G � A oµ G � A or G.

Recently, the study of exotic crossed products has become a focus of research not only
because of interesting connections to the Baum–Connes conjecture, as revealed in [3, 11,
12], but also because of the fact that exotic crossed products and group algebras provide
interesting new examples of C∗-algebras attached to locally compact groups and their
actions (see, e.g., [8, 18, 25, 27, 28]).

A crossed product functor A 7→ A oµ G is said to be injective if it takes injective
morphisms to injective morphisms. Our goal in this paper is to show that there is always
a maximal injective crossed product oinj; this is a sort of ‘dual’ result to the existence of
a minimal exact crossed product functor that has been studied for its relationship to the
Baum–Connes conjecture (we refer to [13] for the most recent results on this functor).
There are no applications given here to Baum–Connes, but it turns out that oinj has some
interesting connections to exactness, the local lifting property (LLP), amenable traces, and
the weak expectation property (WEP), as well as G-injective algebras generally; our goal
is to elucidate these. We hope these show that oinj is a natural object.

After this introduction, we start with a preliminary section giving a self-contained
introduction to G-injective C∗-algebras, which were first studied by Hamana in [17].
The main fact we need in this paper is the observation that every G-algebra embeds
equivariantly into a G-injective one (see Corollary 2.5 below). The construction of the
maximal injective crossed product A oinj G is given in §3. Our results show that it can be
described as the completion of the algebraic crossed product A oalg G inside the maximal
crossed product B omax G if A ↪→ B is any G-equivariant embedding of A into a G-
injective C∗-algebra B. We show that this construction gives an injective crossed product
functor which is maximal among all injective crossed product functors for G. It follows
from this that A oinj G = A omax G for every G-injective algebra A. In fact, in §3 we
show that a similar statement holds for all G-algebras which satisfy a G-equivariant
version of Lance’s WEP (see Proposition 3.12).

In §4, we study some connections between properties of the injective crossed product
oinj, exactness of G, and the LLP of C∗max(G). Using a recent characterization of exact
locally compact groups as those groups which admit amenable actions on compact spaces,
due to Brodzki, Cave and Li in [6], it is fairly easy to show that the injective functor
coincides with the reduced crossed product functor for all exact G. This implies the
interesting observation that for exact G, the reduced crossed product functor is the only
injective crossed product functor for G, although (if G is not amenable) there are often
uncountably many crossed product functors with other good properties (see, e.g., [11] for
a detailed discussion). To make sure that we do not talk about reduced crossed products
only, we show that for a certain class of non-exact groups as constructed by Osajda [20], we
do have oinj 6=or . Another class of groups for which oinj =or is given by those discrete
groups G for which the maximal group algebra C∗max(G) has the LLP (see Definition 4.1).
Together with the above result on Osajda’s groups, this shows that for all these groups the
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group algebra C∗max(G) does not have the LLP. Indeed, our results suggest that the LLP
for C∗max(G) would possibly imply exactness, while we observe that the converse direction
fails, since the only other known examples of groups with C∗max(G) not having the LLP,
due to Thom in [26], turn out to be exact.

In §5, we study the group algebra C∗inj(G)= Coinj G associated to oinj. Extending a
well-known result for C∗r (G), we show that C∗inj(G) admits an amenable trace if and only
if G is amenable, which hints at some similarity between C∗inj(G) and C∗r (G). Since the
trivial representation 1G : C∗max(G)→ C is always an amenable trace, this directly implies
that C∗inj(G)= C∗max(G) if and only if G is amenable. There is a certain similarity between
the defining properties of an amenable trace and Lance’s WEP for a C∗-algebra B, and for
discrete groups we can show that if A oinj G has the WEP, then A oinj G = A omax G.
If A = C, this implies that C∗inj(G) has the WEP if and only if G is amenable, which
gives another variant of a well-known result for the reduced group algebra C∗r (G) (see [9,
Proposition 3.6.9]). In particular, if G is discrete and exact, then our result shows that the
WEP for A or G implies that A or G ∼= A omax G, which indicates that, in general, the
WEP for A or G should be related to some kind of amenability for the action of G on A.

In §6, we show that the injective crossed product behaves quite naturally with respect
to closed subgroups. It turns out that the injective crossed product functor for a locally
compact group G always ‘restricts’ to the injective functor for M , for every closed
subgroup M of G. Moreover, if M is an open supgroup of G and A is a G-algebra, then
A oinj M always embeds faithfully into A oinj G, a fact well known for the maximal and
the reduced crossed products. We close this paper with a short discussion in §7 of various
open questions regarding the maximal injective crossed product functor.

2. Preliminaries on G-injectivity
In this section, we give some background on G-injectivity for a locally compact group G.
This is presumably well known to at least some experts, but we provide details for
the reader’s convenience and because we could not find exactly what we wanted in the
literature.

Definition 2.1. An equivariant ccp map φ : A→ B between G-algebras is G-injective if
for any equivariant injective ∗-homomorphism ι : A→ C the dashed arrow in the diagram

C
φ̃

��
A

ι

OO

φ // B

can be filled in with an equivariant contractive completely positive (ccp) map.
A G-algebra B is G-injective if any equivariant ccp map A→ B is G-injective.

For the next result, recall that a C∗-algebra B is injective if it is G-injective in the above
sense for G the trivial group. The most important example is B(H) for any Hilbert space
H ; this is a consequence of Arveson’s extension theorem (see [9, Theorem 1.6.1]). The
following result is essentially the same as [17, Lemma 2.2], but as we work in a slightly
different context, we give a proof for the reader’s convenience.
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Recall that if B is a C∗-algebra then a function f : G→ B is right uniformly
continuous if for any ε > 0 there exists a neighbourhood U of the identity in G such that
‖ f (g)− f (h)‖< ε whenever gh−1 is in U . We let Cub(G, B) denote the C∗-algebra of
all bounded right uniformly continuous functions from G to B, and write Cub(G) if B = C.
We equip Cub(G, B) with the action γ induced by the left translation action of G on itself:

γg( f )(h) := f (g−1h).

This action is continuous, and thus Cub(G, B) is a G-algebra.

PROPOSITION 2.2. Let B be an injective C∗-algebra. Then Cub(G, B) is G-injective.

Proof. Let
φ : A→ Cub(G, B)

be an equivariant ccp map, and let ι : A→ C be an equivariant embedding. Let δe :

Cub(G, B)→ B be defined by f 7→ f (e), and let ψ : A→ B be defined by ψ = δe ◦ φ,
which is ccp. Injectivity of B gives a ccp extension ψ̃ : C→ B of ψ to C . Let α denote
the action of G on C , and define

φ̃ : C→ Cub(G, B), φ̃(c)(g) := ψ̃(αg−1(c)).

This function is equivariant and has the property that φ̃(c)(g) is positive or contractive for
each g ∈ G whenever a has these properties. Using the identification Mn(Cub(G, B))=
Cub(G, Mn(B)), this gives that φ̃ is ccp; we leave the straightforward check that it extends
φ to the reader. �

Remark 2.3. If B is equipped with a non-trivial G-action β, we may also consider
Cub(G, B) equipped with the ‘diagonal’ action

γg( f )(h) := βg f (g−1h).

The resulting G-algebra is equivariantly isomorphic to the one from Proposition 2.2, so it
is also G-injective whenever B is (non-equivariantly) injective.

COROLLARY 2.4. For any G-algebra A, there exists an equivariant embedding A→ B of
A into a G-injective G-algebra B.

Proof. Choose a faithful representation π : A→ B(H). Since B(H) is injective, B =
Cub(G, B(H)) is G-injective by the result of Proposition 2.2. Then, if α denotes the action
of G on A, the map

π̃ : A→ B, π̃(a)(g) := π(αg−1(a))

is an equivariant embedding. �

Lemma 2.2 also allows us to give another example of G-injective maps; this will be
useful later.
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COROLLARY 2.5. Let (A, α) be a G-algebra, and fix a (not necessarily equivariant,
or faithful) non-degenerate ∗-representation π : A→ B(H). Let π̃ : A→ B(L2(G, H))
denote the representation used in the definition of the left regular representation: explicitly,

(π̃(a)ξ)(g) := π(αg−1(a))ξ(g);

note that π̃ is equivariant for the inner action on B(L2(G, H)) induced by the
amplification of the regular representation. We let B(L2(G, H))c denote the G-continuous
part of this algebra.

Then, the ∗-homomorphism π̃ : A→ B(L2(G, H))c is G-injective. In particular, if π
is injective, π̃ will be a G-injective embedding.

Proof. The map π̃ : A→ B(L2(G, H))c factors through Cub(G, B(H)) as in Proposition
2.2, when the latter is included by multiplication operators in B(L2(G, H))c in the natural
way. It is straightforward to see that a map that factors through a G-injective algebra is
G-injective. �

3. The maximal injective crossed product
In this section, G denotes a general locally compact group.

Definition 3.1. Let A be a G-algebra. For each equivariant injective ∗-homomorphism
ι : A→ B, define the ι-norm on Cc(G, A) by

‖a‖ι := ‖(ιo G)(a)‖BomaxG ,

and let A oι G denote the corresponding completion. Define the injective norm on
Cc(G, A) by

‖a‖inj := inf{‖a‖ι | ι : A→ B an equivariant injection}

and the injective crossed product A oinj G to be the corresponding completion.

Note that ‖ · ‖inj dominates the reduced norm (by injectivity of the latter), so it is a norm
on Cc(G, A), not just a seminorm.

In order to study oinj, we will make heavy use of the material on G-injective maps in
the previous section.

LEMMA 3.2. Let π : A→ B be a G-injective embedding. Then A oinj G identifies with
the closure of Cc(G, A) under its natural embedding in B omax G.

Proof. Let φ : A→ C be any G-equivariant embedding. We need to show that ‖a‖π ≤
‖a‖φ for any a ∈ Cc(G, A). As π is G-injective, there exists a ccp equivariant map
ψ : C→ B making the diagram

C
ψ

��
A

φ

OO

π // B
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commute. The maximal crossed product is functorial for ccp maps, as follows from, for
example, [12, Theorem 4.9]. Taking maximal crossed products, we get a commutative
diagram

C omax G
ψoG

&&
A omax G

φoG

OO

πoG // B omax G

where φ o G and π o G are ∗-homomorphisms and ψ o G is ccp. It follows that for any
a ∈ Cc(G, A),

‖a‖π = ‖(π o G)(a)‖ = ‖(ψ o G) ◦ (φ o G)(a)‖ ≤ ‖(φ o G)(a)‖ = ‖a‖φ

as required. �

From the above lemma, we get the following immediate corollary.

COROLLARY 3.3. Suppose that A is G-injective. Then A oinj G = A omax G. �

PROPOSITION 3.4. The injective crossed product defines a crossed product functor.

Proof. Let φ : A→ C be an arbitrary ∗-homomorphism. Let

πA : A→ BA and πC : C→ BC

be G-injective ∗-homomorphisms as in Corollary 2.4. Now, in the diagram

BA // BC

A

πA

OO

φ // C

πC

OO

the definition of injectivity for BC applied to the inclusion A→ BA and to the composition
πC ◦ φ : A→ BC allows us to fill in the dashed arrow with an equivariant ccp map, say φ̃.
Applying Lemma 3.2 and using functoriality of the ccp maps, we get a diagram

BA omax G
φ̃oG // BC omax G

A oinj G

πAoG

OO

C oinj G

πCoG

OO

where the vertical maps are injections. Identifying A oinj G and C oinj G with their
images under the vertical maps, the restriction of φ̃ o G to A oinj G is the map required
by functoriality. �

PROPOSITION 3.5. The functor oinj is the maximal injective crossed product functor.

Proof. We must first show that oinj is injective. Let φ : A→ C be an injective equivariant
∗-homomorphism. Let πA : A→ BA and πC : C→ BC be G-injective embeddings as in
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Corollary 2.4, and consider the following diagram.

BA BCoo

A

πA

OO

φ
// C

πC

OO

The composition πC ◦ φ : A→ BC is injective, so as the inclusion A→ BA is G-injective,
the dashed arrow can be filled in with an equivariant ccp map, say ψ . Taking crossed
products gives a diagram

BA omax G BC omax G
ψoGoo

A oinj G

πAoG

OO

φoG
// C oinj G

πCoG

OO

where the vertical maps are injective by Lemma 3.2. The composition

(ψ o G) ◦ (πC o G) ◦ (φ o G)

is thus injective as it agrees with the left-hand vertical map; hence, φ o G is injective as
required.

To see that oinj is the maximal injective crossed product, let oµ be any other injective
crossed product and let A→ BA be a G-injective embedding. Then we look at the
following diagram.

A oinj G // BA omax G

��
A oµ G // BA oµ G

The composition A oinj G→ BA oµ G has image isomorphic to A oµ G, as oµ is
injective, and is the identity on Cc(G, A); this yields a homomorphism A oinj G �
A oµ G extending the identity on Cc(G, A). This completes the proof. �

Remark 3.6. Recall from [12] that a crossed product functor oµ for G is called a
correspondence functor if it is functorial for G-equivariant correspondences in the sense
that if E is a G-equivariant correspondence from A to B, then there is a canonical
construction of a crossed product correspondence E oµ G from A oµ G to B oµ G.
It was shown in [11, 12] that correspondence functors enjoy many nice properties. For
example, they admit dual coactions and a descent in Kasparov’s G-equivariant bivariant
K -theory (see [12, §§5 and 6]). Moreover, [12, Theorem 4.9] shows (among other things)
that for a given crossed product functor oµ, the following are equivalent:
(1) oµ is a correspondence functor;
(2) oµ is injective on G-invariant hereditary subalgebras in the sense that if B ⊆ A is

G-invariant hereditary subalgebra of A, then B oµ G injects into A oµ G;
(3) oµ is functorial for ccp maps.
Hence, the following corollary is immediate from the fact that oinj is injective.
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COROLLARY 3.7. The injective functor oinj is a correspondence functor. �

Among the many nice implications of being a correspondence functor, we mention the
following, which we shall use in §5 below. It follows directly from Corollary 3.7 and [12,
Theorem 5.6].

PROPOSITION 3.8. Let G be a locally compact group and let (A, α) be a G-algebra.
Then, the crossed product functor oinj is a duality functor, meaning that the canonical
representation

(A, G)→M(A oinj G ⊗ C∗max(G))

sending a 7→ a ⊗ 1 and g 7→ δg ⊗ δg extends to an (injective) homomorphism (called the
dual coaction)

α̂inj : A oinj G ↪→M(A oinj G ⊗ C∗max(G)).

The G-WEP. We saw in Corollary 3.3 that for G-injective algebras A, the injective crossed
product by G coincides with the maximal crossed product by G. We shall now introduce
a larger class of G-algebras which enjoy the same property. Recall that a C∗-algebra A
has Lance’s WEP if every embedding A ↪→ B into another C∗-algebra B admits a weak
conditional expectation, that is, a ccp map p : B→ A∗∗ which restricts to the identity on
A (see [9, Definition 3.6.7]). We now introduce a G-equivariant version of this property.

Definition 3.9. Let G be a locally compact group. A G-algebra A has the G-equivariant
weak expectation property (G-WEP) if for every G-equivariant embedding ι : A ↪→ B into
some other G-algebra B, there is an equivariant ccp map p : B→ A∗∗ whose composition
with ι coincides with the canonical inclusion A ↪→ A∗∗.

Here, we consider A∗∗ endowed with the double dual action α∗∗ : G→ Aut(A∗∗) of
the given action α : G→ Aut(A). Let A∗∗c denote the subalgebra of A∗∗ consisting of
all G-continuous elements of A∗∗. Then, for any G-algebra B, the image of any norm
decreasing G-equivariant map B→ A∗∗ lies in A∗∗c . In particular, this applies to the ccp
map p : B→ A∗∗ in the above definition.

PROPOSITION 3.10. Let G be a locally compact group. Then the following hold.
(1) Every G-injective G-algebra has the G-WEP.
(2) If A is a G-algebra such that there exists a G-invariant C∗-subalgebra C ⊆ A∗∗c

which is G-injective and contains A, then A has the G-WEP.

Proof. It suffices to show (2). Assume that A ⊆ C ⊆ A∗∗c are as in (2). Let ι : A ↪→ B be a
G-equivariant embedding into a G-algebra B. Then, the G-injectivity of C applied to the
inclusion i : A ↪→ C (which is the co-restriction of the canonical embedding A ↪→ A∗∗)
implies the existence of a G-equivariant ccp map p : B→ C ⊆ A∗∗ with p ◦ ι= i . �

Example 3.11. Let B = B(H) be the C∗-algebra of bounded operators on some Hilbert
space H endowed with the trivial G-action. We know that the G-algebra Cub(G, B) is
G-injective (with respect to the translation G-action). Since this is canonically embedded
into the double dual of the G-algebra C0(G,K), where K :=K(H), it follows from (2) in
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the above proposition that any G-algebra A lying between C0(G,K) and Cub(G, B) has
the G-WEP.

PROPOSITION 3.12. If A is a G-algebra with the G-WEP, then A oinj G = A omax G.

Proof. Given a G-equivariant embedding ι : A ↪→ B, there is a G-equivariant ccp
map p : B→ A∗∗c with p ◦ ι(a)= a for all a ∈ A. Notice that A omax G embeds into
A∗∗c omax G. Indeed, by the universal property of omax, we have a canonical
homomorphism A∗∗c omax G→ (A omax G)∗∗ whose composition

A omax G→ A∗∗c omax G→ (A omax G)∗∗

is the canonical bidual embbeding. We can therefore identify A omax G ⊆ A∗∗c omax G.
Now, by functoriality of the maximal crossed product for ccp maps, p induces a ccp
map p omax G : B omax G→ A∗∗c omax G satisfying (p omax G) ◦ (ιomax G)(x)= x
for all x ∈ A omax G so that ιomax G : A omax G→ B omax G is injective. Since B was
arbitrary, the result follows from the definition of the injective crossed product. �

Remark 3.13. Although above we identified a class of G-algebras such that A oinj G =
A omax G, we shall see later that for a locally compact group G, the maximal injective
functor oinj coincides with omax if and only if G is amenable. Indeed, we show in
Proposition 5.3 below that the corresponding group algebras coincide if and only if G
is amenable.

Remark 3.14. The only property of the maximal crossed product functor used in our
constructions for the maximal injective crossed product oinj is its functoriality for G-
equivariant ccp maps. Therefore, the constructions of this section could be carried out
without change starting with an arbitrary correspondence functor oµ in place of the
maximal crossed product functor omax. Everything goes through as before, and the
resulting crossed product functor, say oinj(µ), is the largest injective crossed product
functor that is dominated by oµ. Moreover, for any G-injective algebra A we then have
A oinj(µ) G ∼= A oµ G. An analogous statement for algebras A with the G-WEP is not
clear, since the proof of Proposition 3.12 uses the universality of the maximal crossed
product. However, the proof goes through if we start with an exact correspondence functor
oµ by making use of [13, Theorem 3.5].

4. Connections with exactness and the LLP
There are two interesting cases where we can show that the injective crossed product agrees
with the reduced crossed product. Our goal in this section is to discuss these cases and
deduce some consequences: perhaps most notable of these is that we give examples where
or 6=oinj, and use this to give new examples of groups G for which C∗max(G) does not
have the LLP.

The first such case occurs when G is exact. We give an ad hoc definition of exactness
that is convenient for our purposes. See [6, Theorem A] for a proof that this is equivalent to
more standard definitions (the result of [6, Theorem A] is only stated for second countable
G, but the proof works in general with minor modifications). First, recall from [1] that a
continuous action of the locally compact group G on a locally compact space X is said
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to be amenable if there exists a net (mi )i∈I of continuous maps x 7→ mx
i from X into the

space Prob(G) of probability measures on G such that

lim
i
‖g · mx

i − mgx
i ‖ = 0

uniformly on compact subsets of X × G.

Definition 4.1. A locally compact group G is exact if it admits an amenable continuous
action on a compact space X .

PROPOSITION 4.2. Let G be an exact locally compact group. Then, for any G-algebra A,
A oinj G = A or G.

Proof. As G is exact, G acts continuously and amenably on some compact space X . Thus,
by [1, Theorem 5.3], for any G-algebra A, integrating the covariant representation of
(A, G) in (A ⊗ C(X))omax G given by

a 7→ a ⊗ 1, g 7→ δg

gives a ∗-homomorphism

A omax G→ (A ⊗ C(X))omax G = (A ⊗ C(X))or G.

As or is injective, this factors through A or G. Thus, the reduced norm on Cc(G, A) is
one of the norms that ‖ · ‖inj is the infimum over, and the result follows. �

For the second example where oinj =or , we need to restrict to the case of discrete
groups. We recall an ad hoc definition of the LLP that is convenient for our purposes. See
[9, Corollary 13.2.5] for a proof that this is equivalent to the usual definition.

Definition 4.3. A C∗-algebra A has the local lifting property (LLP) if for any Hilbert space
H , A ⊗ B(H)= A ⊗max B(H), that is, if there is a unique C∗-norm on the algebraic
tensor product A � B(H) for every H .

PROPOSITION 4.4. Let G be a discrete group such that C∗max(G) has the LLP. Then, for
any G-algebra A, A oinj G = A or G.

Proof. Let π : A→ B(H) be any faithful (non-equivariant) ∗-representation, where B(H)
is equipped with the trivial G-action. Let π̃ : A→ B(`2(G, H)) be the amplified form of
this representation as in Corollary 2.5, where we equip B(`2(G, H)) with the conjugation
action associated to the amplification of the left regular representation λ. Then, Lemma
3.2 implies that the integrated form

π̃ o G : Cc(G, A)→ B(`2(G, H))omax G

extends to an inclusion

A oinj G→ B(`2(G, H))omax G.

Identify `2(G, H) with H ⊗ `2(G) in the usual way. As the action of G on B(H ⊗ `2(G))
is inner, there is a canonical ‘untwisting isomorphism’

8 : B(H ⊗ `2(G))omax G→ B(H ⊗ `2(G))⊗max C∗max(G)

T δg 7→ T (1⊗ λg)⊗ δg.
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On the other hand, using the LLP for C∗max(G) gives a canonical identification

B(H ⊗ `2(G))⊗max C∗max(G)= B(H ⊗ `2(G))⊗ C∗max(G),

so we may identify the image of 8 with the algebra on the right-hand side above.
Consider, finally, the commutative diagram

A oinj G //

ψ

((

B(H ⊗ `2(G))omax G

8

��
B(H ⊗ `2(G))⊗ C∗max(G)

where the diagonal arrow ψ is by definition the composition of the other two maps and
so is, in particular, injective. Computing, the diagonal arrow is the integrated form of the
covariant pair given on a ∈ A and g ∈ G by

a 7→ π̃(a)⊗ 1, g 7→ 1⊗ λg ⊗ δg.

The image of this map therefore agrees precisely with the image of A or G under the
(injective) composition of the coaction

δ : A or G→ A or G ⊗ C∗max(G)

as in [15, Definition A.27] and of the tensor product ∗-homomorphism

(π̃ o (1⊗ λ))⊗ id : A or G ⊗ C∗max(G)→ B(H ⊗ `2(G))⊗ C∗max(G).

As we already remarked that the diagonal arrow ψ is injective, we thus have that
the identity map on Cc(G, A) extends to an injection A oinj G→ A or G, and we
are done. �

COROLLARY 4.5. If G is an exact locally compact group, or if G is discrete and C∗max(G)
has the LLP, then the reduced crossed product is the only injective crossed product functor.

Proof. If oµ is injective, then Proposition 3.5 gives that or ≤oµ ≤oinj. Hence, by
Propositions 4.2 and 4.4, all three are equal. �

This is in stark contrast to the case of exact crossed products: indeed, if G is any non-
amenable group, then there is a large class of exotic exact crossed products arising, for
example from the Brown–Guentner construction, as discussed in [11, Definition 3.6].

At this point, it is reasonable to ask whether oinj ever differs from the reduced crossed
product! We can show that indeed it does using the relatively explicit construction of
non-exact groups, due to Osajda [20]. For the proof we need the following fact, which is
immediate from Lemmas 2.2 and 3.2.

COROLLARY 4.6. For any discrete group G, `∞(G)omax G = `∞(G)oinj G. �

We can now show that oinj is at least sometimes not equal to or . Osajda shows that
groups as in the statement exist [20].

LEMMA 4.7. Let G be a non-exact group equipped with an isometric embedding X→ G,
where X is an expander that is a coarse union of a sequence of finite connected graphs with
a uniform bound on vertex degrees, and with girth tending to infinity. Then `∞(G)oinj

G 6= `∞(G)or G.
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Proof. Using Corollary 4.6, it suffices to prove that `∞(G)omax G 6= `∞(G)or G. Let
χX ∈ `

∞(G) be the characteristic function of X . Then, using that χX (`
∞(G)oalg G)χX

identifies with the algebraic uniform Roe algebra Cu[X ], it is not too difficult to see that
the corners

χX (`
∞(G)omax G)χX and χX (`

∞(G)or G)χX

identify respectively with the maximal and reduced uniform Roe algebras of X , denoted
by C∗u,max(X) and C∗u (X). Hence, it suffices to show that C∗u,max(X) and C∗u (X) are not
equal. This can be done K -theoretically using the main ideas of [29, 30]: the basic point
is that the maximal coarse Baum–Connes conjecture for X is true, but the usual version is
false. We give a somewhat more direct proof, however, based on [31, §8].

Let 1 ∈ Cu[X ] denote the graph Laplacian on X ; thus, if X =
⊔

Xn is the
decomposition of X into finite connected graphs, we have that 1 has matrix coefficients
given by

1xy =


degree(x) x = y,
−1 x, y connected by an edge in some Xn,

0 otherwise.

According to the definition of X being an expander, there is some c > 0 such that
the spectrum specC∗u (X)

(1) of 1 considered as an element of C∗u (X) is contained in
{0} ∪ [c,∞). On the other hand, [31, Lemma 8.9], combined with the assumption that
the girth of the sequence (Xn) tends to infinity, implies that the spectrum specC∗u,max(X)

(1)

of1 considered as an element of C∗u,max(X) contains points in (0, c] for any c > 0. Hence,
C∗u,max(X) 6= C∗u (X), as required. �

The following corollary is immediate from Lemmas 4.4 and 4.7.

COROLLARY 4.8. Let G be as in the hypotheses of Lemma 4.7. Then C∗max(G) does not
have the LLP. �

There seem to be very few examples where C∗max(G) is known to not have the LLP.
We discuss this, and the connection between this property and exactness, in the next few
remarks.

Remark 4.9. The class of discrete groups G for which C∗max(G) has the LLP contains
all amenable groups and is closed under taking subgroups, and free products with finite
amalgam; see [22, Proposition 3.21] and following discussion. However, it is not clear to
us that it contains, for example, any non-exact group, or even a group without the Haagerup
approximation property. On the other hand, it appears that the only known examples where
C∗max(G) does not have the LLP, other than those of Corollary 4.8, are those constructed
by Thom in [26] (other examples where C∗max(G) does not have the LP were constructed
by Ozawa [23]).

Remark 4.10. It is natural to ask whether the LLP for C∗max(G) implies that G is exact.
Some evidence for this goes as follows. If C∗max(G) has the LLP, then Lemma 4.4 and
Corollary 4.6 imply that `∞(G)omax G = `∞(G)or G. It would be reasonable (well,
arguably. . . ) to expect that this implies that the action of G on the maximal ideal space
βG of `∞(G) is amenable, and thus that G is exact. Note that if ∂G := βG \ G is the
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associated corona of G, then the equality C(∂G)omax G = C(∂G)or G does imply—
indeed characterizes—that G is exact, using the results of [24, §5.1].

On the other hand, if one could produce a non-exact group with C∗max(G) having the
LLP, this would give an example of a non-amenable action on a compact space such that
the associated maximal and reduced crossed products are the same. This would answer a
long-standing open question.

Remark 4.11. The converse question, whether exactness of G implies that C∗max(G) has
the LLP, has a negative answer. Indeed, Thom’s example of a group without the LLP
from [26, §2] is exact. To construct his example G, Thom starts with a specfic (countable)
subgroup G0 of GL5(R), where R = Fp[t, t−1

] is the ring of Laurent polynomials over
the finite field with p elements for some prime p. He then defines G to be the quotient
of G0 by some specific subgroup C of its center. Now, G0 is a countable subgroup of
GLn(R), where R is a commutative ring with unit, and therefore has Yu’s property A by
[16, Theorems 4.6 and 5.2.1]. Hence, C∗r (G0) is exact by the main result of [21]. On the
other hand, as C is a central subgroup of G0, it is abelian, so in particular amenable, and
so the quotient map G0→ G induces a surjective ∗-homomorphism C∗r (G0)→ C∗r (G).
In particular, C∗r (G) is a quotient of an exact C∗-algebra, so exact by [9, Corollary 9.4.3].
Hence, G is exact. Similar reasoning shows that the other example of a group not satisfying
the LLP given in §3 of Thom’s paper is exact as well.

5. The injective group algebra, amenability, and the WEP
We now study the group algebra C∗inj(G) := CoinjG.

The first result we are aiming for is a direct analogue of a well-known property for the
reduced group C∗-algebra of a discrete group [7, Corollary 4.1.2], and provides some
evidence that we might have C∗inj(G)= C∗r (G) in general; it does at least show that
C∗inj(G) 6= C∗max(G) for a general discrete non-amenable group (and hence that oinj 6=

omax if G is not amenable).
To state the result, we recall one of the definitions of an amenable trace [7, Theorem

3.1.6].

Definition 5.1. Let τ : A→ C be a tracial state on a unital C∗-algebra, let πτ : A→
B(L2(A, τ )) be the associated GNS representation, and let πτ (A)′′ be the von Neumann
algebra generated by the image of A in this representation. Then τ is amenable if for
any faithful representation A ⊆ B(H) there is a unital completely positive (ucp) map
φ : B(H)→ πτ (A)′′ such that φ(a)= πτ (a) for all a ∈ A.

We say that a tracial state on a non-unital C∗-algebra is amenable if its canonical
extension to a tracial state on the unitization is amenable†.

In other words, the trace τ is amenable if its GNS representation πτ is an injective
ccp map (in the sense of our Definition 2.1 for the trivial group) when viewed as a map
A→ πτ (A)′′. In particular, τ is amenable if πτ (A)′′ is an injective von Neumann algebra
(e.g. if πτ (A) is a nuclear C∗-algebra).

† We are not sure if there is a standard definition of amenability of a trace on a non-unital C∗-algebra; this ad
hoc one is convenient for our purposes.
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Example 5.2. Let A be a C∗-algebra, let π : A→ Mn(C) be a finite-dimensional
representation, and let tr : Mn(C)→ C be the canonical tracial state. Then the pull-back of
tr to (the unitization of) A is amenable. Indeed, in this case, L2(A, τ ) is finite-dimensional
by uniqueness of GNS representations, and hence πτ (A)′′ is finite-dimensional, so in
particular injective. The existence of an appropriate φ thus follows, as πτ (A)′′ is injective.

PROPOSITION 5.3. The group algebra C∗inj(G) has an amenable trace if and only if G
is amenable†. In particular, if G is non-amenable then C∗inj(G) has no finite-dimensional
representations, and is therefore not equal to C∗max(G).

Proof. If G is amenable, then C∗max(G)= C∗r (G), which forces C∗max(G)= C∗inj(G). In
particular, the trivial representation extends to C∗inj(G), and this gives an amenable trace
by (a very simple case of) Example 5.2. Hence, in this case, C∗inj(G) has an amenable trace.

Conversely, let τ : C∗inj(G)→ C be an amenable trace. Let A = C̃∗inj(G) be the
unitization of C∗inj(G) in the non-unital case, or just A = C∗inj(G) if this is already
unital. Abuse notation by also writing τ : A→ C for the canonical extension. Fix a non-
degenerate embedding Cub(G)omax G ⊆ B(H) and note that Lemmas 2.2 and 3.2 give us
an embedding

C∗inj(G)⊆ Cub(G)omax G ⊆ B(H),

and thus also a unital embedding of A into B(H). Let φ : B(H)→ πτ (A)′′ be the ucp map
given by the definition of an amenable trace, and let τ : πτ (A)′′→ C be the tracial state
induced by τ . We thus get a state

m̃ : B(H)→ C, m̃ := τ ◦ φ.

We claim that the restriction m : Cub(G)→ C of m̃ to Cub(G) is an invariant mean. Indeed,
let a ∈ Cub(G), write α for the translation action of G on Cub(G), let g ∈ G, and let ( fi )i∈I

be an approximate unit in Cc(G)⊆ C∗inj(G). For each i , let δg ∗ fi ∈ Cc(G) denote the
convolution of the Dirac mass at g with fi . Then we have that the net

((δg ∗ fi )a(δg ∗ fi )
∗)i∈I

converges in the norm of Cub(G)omax G to αg(a). On the other hand, each δg ∗ fi is in
the multiplicative domain of φ, and hence

m(αg(a))= lim
i
τ(φ((δg ∗ fi )a(δg ∗ fi )

∗))= lim
i
τ(πτ (δg ∗ fi )φ(a)πτ (δg ∗ fi )

∗).

Using that τ is a trace, this equals limi τ(πτ ( f ∗i fi )φ(a)). As πτ : A→ B(L2(A, τ ))
restricts to a non-degenerate representation of C∗inj(G), and as ( fi ) is an approximate unit
for C∗inj(G), we have that τ( f ∗i fi ) converges strongly to the identity operator on L2(A, τ );
moreover, the canonical extension τ : πτ (A)′′→ C is normal, and hence in particular
strongly continuous on bounded sets. Thus, the net limi τ(πτ ( f ∗i fi )φ(a)) converges to
τ(φ(a))= m(a), completing the proof of invariance of m, and thus m is indeed an invariant
mean and G is amenable.

† The same property holds for C∗r (G) in place of C∗inj(G), with essentially the same proof; this is well known, at
least when G is discrete [7, Corollary 4.1.2].
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The remaining comments about non-amenable G follow from Example 5.2 and the
fact that C∗max(G) always has at least one finite-dimensional representation (the trivial
representation). �

Notice that the amenability condition on a trace τ : A→ C has some similarity with the
WEP, which we briefly discussed at the end of §3. Recall that a C∗-algebra A has the WEP
if every embedding A ↪→ B admits a ccp map B→ A∗∗ which restricts to the identity
on A. By [9, Proposition 3.6.8], this is equivalent to the property that every embedding
A ↪→ B induces an embedding A ⊗max D ↪→ B ⊗max D for every C∗-algebra D. The
archetypal example of a C∗-algebra with the WEP is the algebra B(H) of bounded
operators on a Hilbert space H . On the other hand, the reduced group C∗-algebra C∗r (G)
of a discrete group G has the WEP if and only if G is amenable, see [9, Proposition 3.6.9].
We want to arrive at a similar result for C∗inj(G) which gives another hint that C∗inj(G)
might be equal to C∗r (G). Indeed, we can prove the following general result.

PROPOSITION 5.4. Let G be a discrete group. If A is a G-algebra for which A oinj G has
the WEP, then A oinj G = A omax G.

Proof. As in the proof of Proposition 4.4, we choose a faithful non-degenerate
representation π : A ↪→ B(H) and embed A oinj G into B(H ⊗ `2(G))⊗max C∗max(G)
via the diagonal homomorphism aδg 7→ π̃(a)(1⊗ λg)⊗ δg . Since A oinj G is assumed
to have the WEP, we get an embedding

A oinj G ⊗max C∗max(G) ↪→ B(H ⊗ `2(G))⊗max C∗max(G)⊗max C∗max(G).

Now we consider the embedding (the comultiplication)

1 : C∗max(G) ↪→ C∗max(G)⊗max C∗max(G)

sending δg 7→ δg ⊗ δg . We then get a map

id⊗max1 : B(H ⊗ `2(G))⊗max C∗max(G)

→ B(H ⊗ `2(G))⊗max C∗max(G)⊗max C∗max(G).

This map sends the image of A oinj G in B(H ⊗ `2(G))⊗max C∗max(G) into the image of
A oinj G ⊗max C∗max(G) in B(H ⊗ `2(G))⊗max C∗max(G)⊗max C∗max(G). We therefore
get a map

A oinj G ↪→ A oinj G ⊗max C∗max(G)

sending aδg 7→ aδg ⊗ δg . Since the composition of this map with idAoinjG ⊗1G gives the
identity on A oinj G, this map is injective. It follows from [10, Theorem 5.1] that the
dual coaction α̂ from Proposition 3.8 is maximal, which means A oinj G = A omax G, as
desired. �

COROLLARY 5.5. For a discrete group G, its injective group algebra C∗inj(G) := Coinj G
has the WEP if and only if G is amenable.

Proof. This follows directly from Propositions 5.3 and 5.4. �

Remark 5.6. Asking a crossed product to have the WEP is probably a strong restriction.
In the above situation, it seems to be related to the amenability of the underlying action.
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For example, if G is exact, we know that A oinj G = A or G, so the assumption that
A oinj G has the WEP implies that A omax G = A or G. If this holds and the crossed
product C∗-algebra has the WEP, then so does the algebra A, as remarked in [4, §4].
Moreover, the main result of [4] asserts that, assuming the G-action on a unital A to be
amenable (as defined in [9]), the crossed product A omax G = A or G has the WEP if and
only if A has the WEP.

6. Passing to subgroups
Since the construction of oinj gives a canonical way to associate a crossed product functor
to any group G, it is interesting to see how it behaves with respect to passing to subgroups.
Recall from [11, §6] that given a crossed product functor oµ, its restriction oµ|M to a
closed subgroup M is linked to oµ via Green’s imprimitivity theorem. To be more precise,
let (A, α) be an M-algebra. Then, the induced G-algebra (IndG

M A, Indα) is defined as

IndG
M A :=

{
F ∈ Cb(G, A) :

αh(F(sh))= F(s) ∀s ∈ G, h ∈ M,
and (s M 7→ ‖F(s)‖) ∈ C0(G/M)

}
and (Indαs(F))(t)= F(s−1t) for F ∈ IndG

H A and s, t ∈ G. Green’s imprimitivity theorem
then provides a canonical IndG

M A omax G − A omax M Morita equivalence X G
M (A) which

is functorial in A (see, e.g., [14, ch. 2] for a detailed discussion of this theory). Now,
given any crossed product functor oµ for G, the crossed product IndG

M A oµ G is a
quotient of IndG

M A omax G by some ideal Iµ ⊆ IndG
M A omax G which corresponds to

a unique ideal Jµ ⊆ A omax M via the Rieffel correspondence such that the quotient
X G

M (A)µ := X G
M (A)/(X

G
M (A) · Iµ) becomes an

IndG
M A oµ G − A oµ|M M := (A omax M)/Jµ

equivalence bimodule. We show in [11, §6] that (A, α) 7→ A oµ|M G is indeed a crossed
product functor for M which inherits many important properties from the given functor
oµ for G. We want to show the following proposition.

PROPOSITION 6.1. Let M be a closed subgroup of the locally compact group G. Then the
restriction oinj(G)|M to M of the maximal injective crossed product functor oinj(G) for G
coincides with the maximal injective crossed product oinj(M) of M.

For the proof we need the following lemma, which is a variant of Proposition 2.2.

LEMMA 6.2. Suppose that M is a closed subgroup of G, and let (B, β) be an M-injective
M-algebra. Let

I G
M (B) := {F ∈ Cub(G, A) : βh(F(sh))= F(s) ∀s ∈ G, h ∈ M},

equipped with G-action
(
I (β)s(F)

)
(t)= F(s−1t). Then, (I G

M (B), I (β)) is G-injective.

Proof. The proof is almost identical to the proof of Proposition 2.2 and is left to the
reader. �

Proof of Proposition 6.1. Let A be any M-algebra, and let ϕ : A ↪→ B be an M-
equivariant embedding of A into the M-injective algebra B. By functoriality of Green’s
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imprimitivity bimodule, we obtain a morphism of imprimitivity bimodules 9 : X G
M (A)→

X G
M (B) which is compatible with the ∗-homomorphisms A omax M→ B omax M and

IndG
M A omax G→ IndG

M B omax G induced from the equivariant morphism ϕ : A ↪→ B
and its induced form Indϕ : IndG

M A ↪→ IndG
M B. It follows that the kernel

Jα := ker(ϕ omax M)

is matched to the kernel Iα := ker(Indϕ omax G) via the Rieffel correspondence with
respect to X G

M (A). Since B is M-injective, the quotient (A omax M)/Jα coincides with
A oinj(M) M . On the other side, we observe that IndG

M B naturally embeds as a G-invariant
ideal into I G

M (B), and therefore IndG
M A embeds into the G-injective algebra I G

M (B) via the
composition

IndG
M A

Indϕ
↪→ IndG

M B ↪→ I G
M (B).

Therefore, the injective crossed product IndG
M A oinj(G) G is equal to the quotient

(IndG
M A omax G)/Iinj(G), where Iinj(G) is the kernel of the composition

IndG
M A omax G→ IndG

M B omax G→ I G
M (B)omax G.

But, since omax enjoys the ideal property, we see that the second map in this composition
is faithful. Therefore, I coincides with the kernel of the first map, which is Iα . It follows
that A oinj(M) M is linked to IndG

M A oinj(G) G via the Rieffel correspondence for X G
M (A),

which proves that oinj(M) =oinj(G)|M . �

Remark 6.3. Let M be an open subgroup of the locally compact group G, and let H be a
Hilbert space. Since B(H) is an injective C∗-algebra, it follows from Proposition 2.2 that
Cub(G, B(H)) is an injective G-algebra. We claim that Cub(G, B(H)) is also M-injective
with respect to the restriction of the translation action to M . To see this, we choose a
section s : M\G→ G for the space of left M-cosets in G. Since M is open in G, the
quotient M\G is a discrete space, and we obtain an M-equivariant isomorphism

9 : Cub(G, B(H))→ Cub(M, `∞(M\G, B(H)));9( f )(m, ġ)= f (m · s(ġ)).

Since `∞(M\G, B(H)) is an injective von Neumann algebra (because it is type I), it
follows from Proposition 2.2 that Cub(M, `∞(M\G, B(H))), and hence Cub(G, B(H))
is an injective M-algebra.

The above result does not hold without the assumption that M is open in G. For
instance, it is not true if M is the trivial group and G is not discrete, because the C∗-
algebra Cub(G, B(H)) is not injective if G is not discrete. Indeed, if Cub(G, B(H))
were injective, then it would be an AW ∗-algebra [5, IV.2.1.7], and so would be
its center ZCub(G, B(H))∼= Cub(G) [19, Theorem 2.4]. However, the spectrum of a
commutative AW ∗-algebra is an extremally disconnected space. Since G embeds as a
(dense) open subset of the spectrum of Cub(G), this would imply that G itself is extremally
disconnected. This is impossible, however, if G is not discrete, as it is locally compact,
and compact subsets of extremally disconnected topological groups must be finite, by [2,
Theorem 2.10].

For the maximal and reduced crossed products, it is well known that for any open
subgroup M of a locally compact group G and any G-algebra A, we get an injective
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embedding of the crossed product by M into the crossed product by G extending the
canonical inclusion ι : Cc(M, A)→ Cc(G, A). From Remark 6.3, we immediately obtain
the same property for the injective crossed product.

PROPOSITION 6.4. Suppose that M is an open subgroup of the locally compact group
G. Then, if (A, α) is a G-algebra, the inclusion ι : Cc(M, A) ↪→ Cc(G, A) extends to a
faithful inclusion A oinj M ↪→ A oinj G.

Proof. Let π : A→ B(H) be a faithful representation of A on a Hilbert space. Let
π̃ : A→ B := Cub(G, B(H)) be the map sending a to the function [g 7→ π(αg−1(a))] ∈
B. Then it follows from the above remark together with Lemma 3.2 that we get the
following commutative diagram of maps:

A oinj G �
� // B omax G

A oinj M
?�

OO

� � // B omax M
?�

OO

where the broken arrow exists and extends the inclusion ι : Cc(M, A)→ Cc(G, A)
because of injectivity of all other maps in the diagram and commutativity on the level
of Cc(M, A). �

7. Questions
(1) What is Coinj G? The only information we currently have comes from Proposition

5.3 in general, plus Propositions 4.2 and 4.4 in some special cases. All of these results
provide some evidence that C∗inj(G)might be equal to C∗r (G) in general, but we have
no strong feeling about this.
For a discrete group G, using the representation from the proof of Proposition 4.4,
notice that C∗inj(G) identifies with the C∗-algebra generated by the ‘diagonal’
representation

G→ B(`2(G))⊗max C∗max(G), g 7→ λg ⊗ δg.

It follows that C∗inj(G)= C∗r (G) if and only if this representation factors through
C∗r (G). Is this always true? We know that it is true if G is exact or C∗max(G) has
the LLP. Similarly, we have that for any locally compact G, C∗inj(G) agrees with the
image of the natural map

C∗max(G)→ Cub(G)omax G

induced by the unit inclusion C→ Cub(G), and one can ask if this map always
factors through the reduced group C∗-algebra.

(2) Does the LLP for C∗max(G) imply exactness of G? Evidence for a positive answer
is provided by Remark 4.10, and the fact that Corollary 4.8 shows that the ‘best
understood’ examples of non-exact groups are such that C∗max(G) does not have the
LLP. Note that the converse is false by Remark 4.11.

(3) More generally, is oinj always different from or for non-exact groups? This would
be implied by Cub(G)omax G 6= Cub(G)or G for all non-exact groups, which
matches the (scant) available evidence.
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(4) Is oinj exact? More generally, can a non-exact group admit a crossed product functor
that is both exact and injective? It would also be interesting to compare the injective
crossed product functor oinj with the minimal exact crossed product functor oE of
[13]. Both functors agree for exact groups with the reduced crossed product functor,
and so far we do not know of any example of a group G for which oinj 6=oE .

(5) Is oinj a KLQ-functor? This is related to Proposition 3.8. More precisely, it is
equivalent to the existence of a faithful homomorphism

A oinj G ↪→M(A omax G ⊗ C∗inj(G))

extending the representation aδg 7→ aδg ⊗ δg . Notice that if C∗inj(G)= C∗r (G), then
oinj can only be a KLQ-functor if it equals or .
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