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1. INTRODUCTION AND BACKGROUND 

The ability to make reliable maps of radio sources at any available 
frequency and on all feasible angular scales is obviously a fundamental 
goal of observational radio astronomy. Unfortunately, until very 
recently, our map-making capability has been extremely restricted, 
limited in fact to those physical baselines and frequencies where phase-
stable interferometers could be operated. However it is now becoming 
increasingly clear that phase stability is not an essential prerequisite 
for reliable mapping. The basic point is that whereas in principle 
there are an infinite number of brightness distributions which could 
give rise to the observed amplitudes of a set of Fourier components 
whose phases are unknown, in practice the a priori information that the 
required distribution is real and positive severely constrains the 
range of possibilities. Both Bates and his co-workers (e.g. Bates and 
Napier 1974) and Ross et al. (1978) have pointed out that the brightness 
distributions we are seeking are examples of 'entire1 functions. In 
particular it is known that the real and imaginary parts of such functions 
are not independent (see references in Ross et al.) and that by study­
ing the positions of their complex zeroes one may well be able to deduce 
the brightness distribution from knowing only the modulus of its Fourier 
transform. Unfortunately such a rigorous approach appears to be rather 
difficult to implement in practice. However the results of Napier and 
Bates (1974) have confirmed that in two dimensions reliable structure 
determinations can be made without phase information. 

Based on this knowledge one can have some confidence in the 
various pragmatic approaches to the problem which have been developed. 
Of course the best known method of analysing fringe amplitude data is 
that of model fitting. In our opinion this method has obtained an 
unduly bad reputation for producing ambiguous results when in fact the 
ambiguity really arises because of the paucity of the observational 
data. When more extensive data have been collected, for example by 
Purcell on 3C147 (see Wilkinson et al.1977) a careful model fitting 
analysis assuming Gaussian components produced what has subsequently 
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been confirmed to be a good representation of the source structure. In 
fact the basic precepts of model fitting are sensible. If, for 
example,gaussian components are used they are: (i) assume that the sky 
is basically smooth and non-negative (i.e. blank) (ii) assume that the 
source is basically smooth (Gaussians are infinitely differentiable) 
(iii) use the minimum number of components to fit the data within the 
noise (i.e. extract the least amount of information while remaining 
consistent with the data). These are just the ideas underlying the 
maximum entropy method'. The major problem with model-fitting - like 
all non-linear approaches - is that it can take extravagant amounts of 
computer time to arrive at an acceptable solution for all but the 
simplest sources. However for simple sources it remains a convenient 
way of parametrising the visibility data. Baldwin and Warner (1978) 
have demonstrated another approach which seems to work well for complex 
sources - at least if they contain several well separated compact 
regions or one dominant compact feature. This method may run into dif­
ficulties if the emission is smoothly distributed however and Baldwin 
and Warner give little indication of the computing effort required to 
reach an acceptable solution. The method applied by Conway and Stannard 
(1975) to map the 3C273 jet also depends critically on the presence of 
a strong compact feature in the source. 

In many cases of practical interest some phase information is 
always available no matter how badly disturbed are the individual 
phases in an interferometer network. The 'closure' phase (Jennison 
1958; Rogers et al. 1974) is a linear combination of observed phases 
around closed loops of baselines and contains no systematic errors. 
The only restriction its use implies is that the fringe amplitude must 
always be above the noise on all baselines in the loop. For N tele­
scopes there are at most (N-l)(N-2)/2 independent closure phase 
relationships; one may in fact include all baselines with fewer than 
this but this is not desirable. Each closure phase tells us as much 
about the shape of the source as does each fringe amplitude and thus 
it is clearly logical to include this phase information in the recon­
struction. By this means one expects to reduce the residual uncertain­
ties in amplitude only reconstructions. Chief among these uncertainties 
is the _+ 180 position angle ambiguity and this is resolved by the 
closure phase. Still however the absolute position of the source on 
the sky is lost. Three methods of using this information have been 
published (Fort and Yee 1976; Wittels et al. 1977; Readhead and 
Wilkinson 1978) and the results confirm that with the extra, and 
extremely strong, constraints on the visibility phase imposed by the 
closure phase one may anticipate being able to reconstruct arbitrary 
brightness distributions with high reliability. 

A way of obtaining relative position information and of ensuring 
that at least the relative phases of the Fourier components are correct 
is to calibrate the interferometer phase with a nearby point source 
(e.g. Peckham 1973). Clearly then a map can be made using conventional 
techniques for the analysis of synthesis data. The success of this 
method depends entirely on the presence of a sufficiently strong, 
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compact, reference object close enough to the source of interest and 
this angular distance is a function of interferometer baseline and 
observing frequency. Phase-referencing has been successfully employed 
at 408 and 1660 MHz on the MK IA-MK III and MK IA-Defford baselines 
(24 km and 127 km) using reference sources of *100 mJy. If the 
switching period is <10 mins relative phase deviations $0.2 rad can be 
achieved on arbitrary sources. At 408 MHz the reference source is 
usually in the same beam whereas at 1660 MHz angular throws of up to 
"v-2 have been used. At lower and higher frequencies, especially on 
longer baselines, little work has yet been done but it is to be 
expected in the near future. However if phase-referencing does prove 
to be difficult, at metre and short centimetre wavelengths on VLBI 
baselines, the closure phase will always be available and we shall now 
discuss our method of using it. 

2. A PRACTICAL RECONSTRUCTION METHOD USING CLOSURE PHASE 

Readhead and Wilkinson (1978) have demonstrated a linear approach 
to the use of closure phase which can best be understood with an example. 
From a four telescope six baseline interferometer network one can 
obtain three independent closure phase relations, C, Thus: 

c 1 2 3 = <f>l + <t>2 ~ ^3 

C 
2U5 = $2

 + <l\ " <f>5 

c 3 4 6 " *3 + <l\ ~ <t>6 

where the § . are the six unknown visibility phases. If we have a priori 
knowledge which enables us to establish three of the phases indepen­
dently then the other three can be calculated from these closure phase 
relations. This a priori information exists in the form of the fringe 
amplitudes for, as we have discussed above, much can be said about the 
visibility phases from the amplitudes alone. In practice simple models 
have proved quite adequate for providing such starting phases. The 
flow diagram for the iterative procedure we have adopted is shown in 
Fig. 1. Note that after the initial use of the closure phases the 
method uses exactly the same software as is contained in any standard 
CLEAN (Hogbom 1974) package. 

Tig. 2 shows the method at work on a simple source and enables 
us to understand why convergence to a stable solution takes place. 
The source in the top left hand corner is a point double with 2:1 flux 
ratio as would be mapped with a four telescope, phase-stable, network 
using CLEAN. Below it we show the first iteration obtained using the 
three closure phases and assuming that three of the visibility phases 
are zero. Obviously as all the phases are incorrect the resulting map 
contains spurious features and the essence of the method lies in its 
use of CLEAN to remove these errors. The fundamental point is that 
if we subtracted sources over a large area of sky we should, on Fourier 
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Fig. 2. I l lus t ra t ion of method on 2:1 point double source 
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transformation, reproduce the input phases exactly since CLEAN is a 
linear process; in this case no convergence would occur. However in 
line with the original philosophy behind CLEAN we assume that most of 
the sky is empty and restrict our search to a 'window' around where we 
suspect that the source lies. We thereby systematically reject spurious 
components and the map therefore tends towards the true distribution 
as the iterations proceed. In Fig. 2 the CLEAN window is the whole 
area of each map and the iteration number is indicated in the bottom 
left hand corner. The effect of the window size on the rejection and 
hence the speed of convergence can be judged by noting that when we 
only subtracted sources within the area inside the dashed line conver­
gence was twice as fast. More visibility data is obviously helpful 
and with a five telescope network and the smaller window convergence 
was three times as fast. 

Thus for a simple source no initial subjective judgement at all is 
required to arrive at the correct structure. For more complicated 
sources it is sensible to try and start with a plausible model to 
reduce the number of iterations required to arrive at the correct 
solution. In order to convince ourselves of the efficacy of our approach 
on non-trivial sources we performed 'blind' tests on simulated ampli­
tude and closure phase data to reproduce as closely as possible the 
real situation. We regard such tests as vital for any brightness 
reconstruction method where the observer can interact to aid conver­
gence. The results of two such tests are shown in Figs. 3 and 4. In 
each case a) is the test source (not convolved with the restoring 
beam) b) is the CLEAN solution from full amplitude and phase data 
from a four station network and c) is the solution obtained from ampli­
tude and closure phase. In Fig. 4(d) we show the marked improvement 
obtained by adding a fifth station to the array. 

Fig. 3. 'Blind' test of method 

To help the method to converge in these more complicated examples 
we have used three other ways of reducing the spurious features* 
(i) return only positive point sources for use in the initial phase 
calculation (ii) in the first few iterations, when many weak spurious 
features exist, do not clean very deeply - increase the depth as the 
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Fig. 4. 'Blind' test of method 

iterations proceed (iii) starting from a stable map which is suspected 
to be close to the true distribution derive other maps by changing the 
N-l baselines on which the phase is calculated in the initial step. 
If the first map is the true distribution then these subsequent maps 
will all be the same to within the noise. If it contains minor errors 
then the other maps will be different and the error regions tend to 
move to new locations in each map. Thus a better map for use as the 
input to the next iteration can be obtained by adding these trial maps 
together, for the correct areas in them add coherently and are thereby 
enhanced with respect to the spurious ones. 

It is important to give some idea of the speed of this process. 
In the examples shown in Figs. 3 and 4 (array size about 30 x 30) each 
iteration (one job) took typically 1 minute CPU time on an IBM 370/158; 
this involved cleaning and returning <200 point sources per iteration. 
On average we allowed ourselves ^20 jobs, trying various different 
approaches, before comparing our preferred solution with the test source. 

A particularly neat application of this method arises when the 
source contains a bright compact region which can be used as a phase 
reference. In this case convergence is extremely rapid (e.g. Wilkinson 
etal. 1977). Fig. 5 shows a test on simulated four station data on 
Purcell's model of 3C147. Here again a) is the model b) is the CLEAN 
solution and c) is the solution using closure phase. Two things are 
noteworthy: first the good agreement between the full and the closure 
phase solutions and second the fact that one can clearly reproduce most 
of the features in such an extended source out to ̂ 20 beam diameters. 
This test gives us confidence that our actual maps of 3C147 (Wilkinson 
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Fig. 5. Test on Purcell's model of 3C147 

etal.1977) accurately represent the compact features in the source. 

3. CONCLUSIONS 

The obvious way to achieve a degree of phase stability in an inter­
ferometer network is to employ phase-referencing techniques. Not only 
is positional information collected but the ability to make long coherent 
integrations means that weak sources can be studied. However even if 
this is not possible it is clear that one can still obtain data which 
are sufficient for determining the structures of the stronger sources. 
The closure phase is particularly easy and error-free data to collect 
and indeed there may well be cases where individual relative phases can 
only be determined to say _+ 30 r.m.s. while the more restricted but 
more accurate closure phase (say _+ 5° r.m.s. on a strong source) can 
lead to a more reliable map. 
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DISCUSSION 

Comment T.A. CLARK 
I concur with Wilkinson's comments that model-fitting has been given 
"bad press". When the model fitting is approached with statistical 
procedures, either as described by Cotton or below, they can be 
considered quite similar to maximum likelihood estimation. 
An additional comment on phase closure analysis. A slightly different 
approach taken by L.K. Hutton and me was to form a two dimensional "bed-
of-nails" delta-function representation of the source. By direct Fourier 
Transform, the entire source was simultaneously adjusted in a weighted 
non-linear least squares analysis to minimize the differences between 
the actual amplitude and closure phase data and that predicted by the 
model. An efficient gradient-search least-squares algorithm made this 
quite computationally efficient. Initial constraints consisted of a 
maximum window size determined by the shortest baselines and/or a priori 
source knowledge, source grid spacing determined by maximum resolution, 
and a positive flux constraint on each grid point. A starting point 
that was found necessary was to begin with one point non zero to "nail 
down" the final map. Generally the final map "grew" with the strongest 
component at the position of this "nail". The final delta-function map 
was convolved with a gaussian beam similar to the point source response 
determined from the U-V coverage. 

After the presentation by Wilkinson and Readhead a general discussion 
developed on the subjects of closure phase and positivity. Several of 
the previous speakers answered questions and comments. 

Comment G. P00LEY 
Several people have mentioned using a constraint that the data are 
positive; in measuring polarization data you cannot use this constraint. 
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Question B.C. CLARK 
In the case where one is approaching the signal-to-noise limit, one 
presumably wishes to prevent, or at least discourage, the phases 
measured on the baselines where the amplitudes are low, and signal-to-
noise ratios bad, from entering into the closure phases, and hence 
affecting the solved phases on other baselines. Is there a systematic 
procedure for handling this? 
Reply J.E. BALDWIN 
Our analysis of 5C7 does not bear on the closure phase problem but we 
did indeed find it was essential to remove amplitude data where it fell 
below 2a. Otherwise, this noisy data combined with the phase of the 
trial conspired to put extra flux density into the trial source in the 
next hybrid map. The 2a limit was an arbitrary decision and there may 
be some more proper procedure. 

Comment by D.B. SHAFFER to J.P. HAMAKER 
If you are willing to give up all positional information, phase closure 
will give you the correct shape map (but not its position). 
Reply J.P. HAMAKER 
Let me answer your remark in terms of an array which produces not only 
closure phase observations but also contains enough redundancy to solve 
for all instrumental phase errors. What we can obtain then are one-
dimensional strip scans of perfect shape but unknown position, as you 
suggest. To align these in a two-dimensional map, however, one does need 
the relative position of these scans, if one wants to avoid the radial 
streaks which I showed before. These relative positions are not provided 
by the closure phase or redundancy information and one must make an 
educated guess of one sort of another. Part of my short paper (J.P. 
Hamaker: "Kneading", this volume) has to do with precisely this point. 
I shall try to think your remark over and presently make some additional 
comments. 

Comment R. SRAMEK 
When discussing closure phase, it is best to think of the phase of a 
single baseline interferometer to consist of 1) a baseline dependent 
part <j>.~ resulting from e.g. source structure, correlator problems, etc. 
and 2) an antenna dependent part <t>\-<j>2 which is due to e.g. front-end 
problems, the atmosphere, etc. The closure phase is independent of the 
antenna dependent phase, no matter what the antenna geometry, VLBI or 
connected antennas, or the origin of ^, and <t>i' 
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