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THE RANGE OF THE HELGASON-FOURIER
TRANSFORMATION ON HOMOGENEOUS TREES

MICHAEL COWLING AND ALBERTO G. SETTI

Let X be a homogeneous tree, o be a fixed reference point in X, and 23 N be the
closed ball of radius N in X centred at o. In this paper we characterise the image
under the Helgason-Fourier transformation K of CN(X), the space of functions
supported in 25 N , and of S(X), the space of rapidly decreasing functions onX. In
both cases our results are counterparts of known results for the Helgason-Fourier
transformation on noncompact symmetric spaces.

Let X be a homogeneous tree of degree q + 1, that is, a connected graph with no
loops in which every vertex is adjacent to q + 1 other vertices. We denote by o a fixed
reference point in X, by |x| the distance of x from o, that is, the number of edges
between o and i , by G the automorphism group of X, and by K the stabiliser of o
in G. The boundary Q of X may be identified with the set of infinite geodesic rays
issuing from o. We write <B^ and &N for the closed ball {x e X : \x\ < N} and the
sphere {x e X : \x\ — N}. By 23_i we mean the empty subset of X.

If x and y are in X and w is in fi, we define c(x,ui) to be the confluence point
of x and ui, that is, the last point lying on u) in the geodesic path {o,xi,X2,.. .,x}
joining o to x, and define similarly the confluence point c(x, y). The height hu{x) of x
in X with respect to w is defined by the formula

hu(x) = 2\c{x,uj)\-\x\.

Clearly, hu(x) < \x\. On the boundary Q there is a natural K-invariant, G-quasi-
invariant probability measure v, and the Poisson kernel p(go,uj) is defined to be the
Radon-Nikodym derivative dv^g~1ui)/dv{u}). Then

p(x, UJ) = qhu(-x^ Vx£X Vw€fi;

see, for example, [4, Chapter 2], or [3, Section 2]. We define Ei{x) to be the set of
{u)' 6 Q : \c(x,u')\ = i}\ then v(Ei{x)) < q~\ and
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238 M. Cowling and A.G. Setti [2]

see [7, (2.3)] or [5, Proposition 2.5]. We write E(x) for E\x\(x), and define the averaging
operators £n on C(Cl) by the formulae £_i = 0 and, when n > 0,

£nr)(cj) = u{E{x))~1 I r](u>)dv{u) \/x € 6 n Vw € E[x).
JB(x)

We define, for z in C, representations TTZ of G on C(fi) by the formula

[nz(g)v](v)=p1/2+iz(9O,u)r1(g-1o) V5 € G Vw G fi.

It is clear that irz — irz+T, where r = 27r/logg. We write T for the torus R / r Z , which
we usually identify with the interval [-r/2, T / 2 ) . The Poisson transformation T5* :

»• C(3C) is given by the formula

in

The spherical function (j>z on X is defined to be Vzl. It is known that

'q-1• / g - 1 , • |

i | + l)g- | a i l / 2(-l) | x |
 V Z G T / 2 + TZ

• + 1

•z)9(t*-l/2)|x| + c(_zJ9(-ix-l/2)|x| Vz € C \ (T/2)Z,

where c is the meromorphic function given by

_l/2 ol/2+iz _ .-l/2-iz

Now

(x)= [p1'2(x,u)dv(w)= J2 f qh»W2dv(u>),
Jn _ « JE(X)

whence

(1) J2 qhul{x)/2 <2{n+l)q~n/2 VneN.

It should perhaps be remarked that we use a different parametrisation of the represen-
tations and spherical functions from Figa-Talamanca and his collaborators (for exam-
ple, [5] and [4]): our <f>z corresponds to their <f>i/2+iz, and nz and c(z) are similarly
reparametrised. Similar comments apply to the intertwining operators considered be-
low. Our parametrisation makes the analogy with the semisimple Lie group case more
transparent.
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[3] The Helgason-Fourier transformation on trees 239

The Helgason-Fourier transform / of a finitely supported function / on X is the
function on T x Q defined by the formula

The Helgason-Fourier transformation % is the linear operator that maps / to / . The
following inversion and Plancherel formulae hold (see [5, Chapter 3 Section IV and
Chapter 5 Section IV], or [4, Chapter II Section 6]). If / is finitely supported on X,
then

f(x)= f f v1/2-is(x.uj)f(s.w)du(uj)du(s) V i e X .

If / i and /2 are finitely supported, then

)/£(*)= / f fJjJn
ten

The Helgason-Fourier transformation extends to an isometric mapping from L2(X)
into L2(T x Cl,fj, x u), so "H is injective on L2(X). Its range is then the subspace
of L2(Y x Cl, fi x u) of the functions F which satisfy the symmetry condition

(2) / p1/2~is{x, u) F(s, u) dv{u)) = / pll2+ia(x, u) F(-s,«) dv(u)
Jn Jn

for every x in X and almost every s in T. Here, n denotes the Plancherel mea-

sure, whose density with respect to Lebesgue measure is given by co|c(s)| (see, for

example, [5] or [4]). We note that c"1 is smooth on T.

The space of functions supported in !8JV is written CN(X). A function / on X is

said to be rapidly decreasing if, for every k in N, there exists a constant Ck such that

(see, for example, [1]). The space of rapidly decreasing functions is denoted by S(X).
The aim of this paper is to characterise the image under % of the spaces CN(X)

and S(X). After a preliminary version of this paper was completed, we learned that
a similar characterisation of the range of CN(X), involving the horocyclical Radon
transformation It on X, was obtained independently by Tarabusi, Cohen, and Colonna
[2]; these authors also describe the the image under TZ of certain spaces of "slowly
vanishing functions" on X. We refer to [3, Section 2] for a discussion of the relationship
between TZ and H.
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1. FUNCTIONS WITH FINITE SUPPORT

It is easy to see that, if / is in Cff(X), then the following conditions hold:

(i) / is continuous on T x fl (indeed, / is in C°°(T x Cl) in the sense of
Theorem 2 below);

(ii) / extends to a r—periodic entire function of exponential type N uni-
formly in ui, that is, there exists C such that

\f(z,u)\ <Cg| I m z | J V Vw€ft V-zeC;

(iii) / satisfies the symmetry condition (2);

(iv) / is N-cylindrical in u>, that is, for s fixed, f(s,ui) is constant on the
sets E(x) for every x in &N-

Conditions (i)-(iii) are the analogues of the conditions that describe the Paley-Wiener
space for the Helgason-Fourier transformation (see [6]). The content of the following
theorem is that (i)-(iii) characterise the image of CN{X) under %.

THEOREM 1 . A function F : T x f l - > C is the Helgason-Fourier transform of a

function f in CN(X) if and only if F satisfies conditions (i)-(iii).

PROOF: Clearly only the "if" implication requires proof. It should be noted that,
contrary to the symmetric space case and to the case of radial functions on X, the proof
is not obtained by contour integration arguments alone, but also involves a counting
argument.

Since H is injective, 'H(CN(X)) has dimension equal to the cardinality |25AH

of 03JV , and it suffices to show that the space of functions on T x Q which satisfy
conditions (i)-(iii) has dimension at most (and therefore exactly) |23^|.

To do this, we recast the symmetry condition (2) in a more suitable form. Using
the representations nz of G defined above, we may rewrite (2) in the form

(n-a{x)l,F(s,-)) = (*.(x)l,F(-8,-)) V*€3- Vs 6 T.

Let Iz denote the normalised intertwining operators between the representations nz

and TT_2; see [4] or [7]. Then 7s7rs/_s = 7r_s, SO

(w.{x)l, F(-s, •)) = (I.n.(x)l-.l, F(s, •))

The set of functions {TTS(X)1 : x G X) span a dense subspace of L2{Q), because 7rs is
irreducible, and /* = / 7 1 = 7_s, so we conclude that

(3) F(-s, u) = rsF(s, w) = I.,F{s, w).
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[5] The Helgason-Fourier transformation on trees 241

Next we use the fact that F(-,u>) is entire of exponential type N, and the Paley-Wiener
theorem on Z (which involves contour integration), to write

where F(k,u) = 0 unless —N < k < N, so that (3) becomes

X 1 ^ v X T » 7

sides of this equation: setting Fn(k,uj) — VnF(k,cj), so that Fn(k,u) — 0 unless
-N <k<N,wesee that

(4) ^Fn(k^)q-^ =
fcgz fcez

If VnF = F then IZF = c(n,z)F, where

1 if n = 0

c(n, -s) =

(see [7, p. 383]). A straightforward computation shows that

/=o

(=0

when n > 1. Inserting these expressions for c(n,z) in (4) we obtain, when n = 0, that
FQ(k, Lj) = Fo(—A;, LJ) , and when n > 1,

] n(fc, a,).

Taking the Fourier coefficients of both sides, we obtain

(5) F0(k,u) =-F0(-k,u)
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and, when n > 1,
oo

(6) Fn(k,u) = -q^Fni^n - k + 2,w) + (l - <T2) ^ < r ' F n ( - 2 n - A: - 21, w),
1=0

for every k in Z and u in fi.

For fixed u>, we consider the identities (5) and (6) as a system of equations in the

unknowns Fn(k,u>). It is easily verified that

(a) if n > N, Fn(/c,w) = 0 for every k (so that the function F is in fact
TV-cylindrical, and (iv) is a consequence of (i)-(iii));

(b) if 0 <n< N, Fn(k,L>) = 0 when A; > JV + 2 - 2 n ;
(c) forgiven n and N, the functions Fn(k,uj), where 1—ra < k < N+2-2n,

are determined in terms of the functions Fn(j,u), where —TV < j < —n.

Set bn = N + 1 — n when 0 < n < N. Then, for fixed n and w, there are at most
bn independent Fn(k,ui)'s, and the remaining Fn(k,ui)'s are determined by these.

Now for any given k and n , PnFn(fc,w) = Fn(k,w), so the independent Fn(k,w)'s

can be chosen in at most dn independent ways, where dn is the dimension of the
space {77 S C(f2) : T>nrj = 77}. We therefore conclude that the dimension of the space
of functions F satisfying (i)-(iii) is at most

N

n=0

But, when n > 1, T>nr\ — 77 if and only if 77 is constant on the sets E(x) for every
x in &n and 77 has zero average on the sets E(y) for every y in S n _ i , while, when
n = 0, VQT] = 77 if and only if 77 is constant on Cl. Thus dn = en - e n _ i , where
en = \&n\ when n > 0 and e_i = 0 , and therefore

iV N k N

J2 (N + 1 - n)d« - 5Z E d » = Y^e" = dim ^(C^(^))'
n=0 k=On=0 fc=0

as required. D

2. RAPIDLY DECREASING FUNCTIONS

We now describe the image of the space S(X) under H. We say that a function
F : T x Q -> C is in the space C°°(T x to) if the function d^F(s: u) is in C(T x Jl) for
every i in N, and for every I and fc in N there exists a constant Cfc,; such that

^ ( F - f n i O l L <<?*,«(»+1)"' Vn€Nu{-l}.

The symbol C°°(T x n) b denotes the subspace of C°°(T x Q) of functions which satisfy
the symmetry condition (2).
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[7] The Helgason-Fourier transformation on trees 243

THEOREM 2 . The Helgason-Fourier transformation is an isomorphism from the

space S{X) onto the space C°°(T x fi)b.

PROOF: We show first that if / is in S(X), then / is in C°°(T x fi).

For any n in N, define the averaging operator en • C(X) —> C{X) by the formula

!/€3(n,x)

where

3(
f {x} if \x\

:\x\ = \y\, \c(x,y)\ £ n | n n.

The operators en were introduced in [7], where it was shown that the Poisson trans-
formation intertwines £n and en, that is, for every 77 in C(fi) we have

enV
z{rj) = Vz{enr)) Vn G N V z e C .

The identity clearly holds when 77 is replaced by a function F in C(T x Cl), so

H~l\£nl) = ^n / by Fourier inversion, and, equivalently,

(7) EnHf = 7ienf.

Assume now that / is in S(X) so that, for every I in N, there exists a constant C;

such that

(8) |/(i)|<C«(N + i)-Vw/2 Vxex

Using (7) and the expression of the Poisson kernel in terms of the height function /iw,

for all k and / in N we may write

-eNf)(x)j

ikhM)kq(1/2+is)h»{x)(f-eNf)(x),

since f(x) = CNf{x) when x is in 05N. Because hu(x) < \x\, and (8) also holds when
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/ is replaced by £jv/, we find from (1) that

<2Ck+l+3

n=N+l

<4Ck+l+3(N+iyl;

see also [1] where an analogous result for the Radon transformation is proved.
To prove the reverse inclusion, take F in C°° (T x Q) which satisfies the symmetry

condition (2), so that F is the Helgason-Fourier transform of a function / in L2(X)
by the Plancherel theorem. We shall show that / is in S(X). Take x in X, and choose
N to be the integer part of \x\ / 3 . Then

Write

say. We consider 'H~lFN and 'H~1GN separately.

First we estimate H~1FN- By assumption, if k is in N, then

\\FN\\oo<Ak+1(N + 2yk-\

so
N

H~lFN(x)\ <

3=0

from the inversion formula, the normalisation of the Plancherel measure, and (9).

Now we estimate 'H~1GN- Since £# commutes with differentiation with respect
to s we have

\d*GN{s,cj)\ < Bk VseT Vwefl.
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Recalling that the function GN(S, •) is constant on the sets E(y) for all y in &N , we
denote by XN the point in 6N on the geodesic path [o, x], by Gjv(s, XAT) the value that
Gpf(s, •) takes on the set E{XN) , and by HN(S,W) the difference Gjv(s, w) — Gpf(s, XN) .
Note that E(xw) = \J Ej{x), and that HN(S, W) = 0 when w is in E{xN). Therefore,

using the explicit formula for the Poisson kernel, and the integral representation of the
spherical functions, we deduce from the inversion formula that

1GN(x) = f i >
JT JSI

w r r

= Y.f f,
p1/2~t3(x, LJ) GN(S, XN) dv{u) dn{s)

JT Jn
J V - l

• / (p-a{x)GN{s,xN)dn(s)
JT

N

j=0

where

if 0 < j < N - 1 and

IN,N(X) = / (p-s{x)GN(s,xN)d(j.(s).
JT

We claim that for every I in N there exists a constant C;, which depends on I, q
and 5/t (where 0 < k < I +1), but not on / , x, or iV, such that

| W * ) | < C, (|x| + I)" '"1?- '1!/2 Vi € {0,1, . . . , N}.

Assuming our claim, the estimate required to finish the proof of the theorem follows
immediately: indeed, from (8) we conclude that

\%-rGN{x)\ < (N+1)C, (|*| + l ) - ' - 1 ^ / 2 < C, (|*| + l)-'g-lx|/2

To finish, we must prove our claim. We estimate J ĵv where 0 < j < N - 1.
To deal with /JVIW one argues similarly, using the explicit expression of the spherical
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functions <j>s. Recalling that d(i(s) — cG|c(s)| ds, and noting that all the functions

involved are smooth in s, we integrate by parts and find that /^AT is equal to

cG-

By Leibniz's rule, this is a linear combination with coefficients CQ^1) of I + 2 terms
of the form

^-1*1/2 jl + l

Using the estimate v(Ej(x)) < q~i, it is easily shown that the absolute value of each
term is bounded above by

J\d?1-k{\c(8)\-2)\2BkV(Ei(x))d8

and the required estimate for Ijtrt follows. D
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