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ABSTRACT. Recent discoveries have shown that magnetic activity is 
typical of cool stars with deep convective zones and magnetic cycles 
are found in slowly rotating stars like the sun. The current state of 
hydromagnetic dynamo theory is reviewed, and simplified models are used 
in an attempt to isolate the dominant nonlinear processes in stellar 
dynamos. 

1. INTRODUCTION 

It is just ten years since Olin Wilson's observations of activity 
cycles in stars were presented at an IAU Symposium in Prague. In that 
interval a new link between solar and stellar physics has developed. 
This solar-stellar connection relates magnetic activity in the sun, 
where detailed spatial structures can be resolved, to that in other 
late-type stars, where the effects of changing the rotation rate, or 
the depth of the convection zone, can be discovered. The results of 
this synthesis are of interest to a wide range of astronomers, as shown 
by the number of Commissions that have sponsored this Discussion. 

The two requirements for dynamo action are rotation and the 
presence of a deep convective zone. Hence we are concerned with stars 
of spectral type mid-F or later, which are relatively slow rotators. 
As we shall see, the most active stars are those that rotate most 
rapidly; in particular, starspots and flares occur on RS CVn stars 
(which are close binaries that have evolved off the main sequence) and 
BY Dra variables (which are rapidly rotating dMe stars). Moreover, we 
can follow the evolution of main sequence stars as they age, spin down 
and become magnetically less active. All these properties are reviewed 
by Baliunas § Vaughan (1985). 

In what follows I shall first summarize the observations and then 
survey the present state of dynamo theory as applied to stars. Finally, 
I shall indicate how simplified dynamo models can be used to isolate 
those nonlinear processes that are consistent with the observations. 
I shall also try to distinguish between what we know, what we don't 
know and what we can plausibly conjecture. 
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2. THE SOLAR-STELLAR CONNECTION 

The principal features of the solar cycle are well known. Magnetic 
activity, as measured, for instance, by a sunspot number, varies 
aperiodically with a well-defined mean period of about 11 years. At 
the beginning of each cycle sunspots appear at moderate latitudes and 
the zones of activity migrate like waves towards the equator, where 
they disappear as the next cycle begins. The magnetic fields associated 
with sunspot pairs are predominantly azimuthal, with opposite directions 
in the two hemispheres, and these directions reverse after each cycle. 
Hence the magnetic cycle has a period of 22 years. Magnetic activity 
is also modulated on a longer time scale: for an interval of 70 years 
in the 17th century sunspots almost disappeared (SpOrer 1889; Eddy 
1976) and earlier grand minima can be detected from anomalies in *-^Q 
dating (Stuiver § Quay 1980). Apparently the amplitude of the activity 
cycle has been modulated irregularly, for at least the last 7000 years, 
with successive grand minima several centuries apart. 

Stellar magnetic fields can be detected by the Zeeman broadening 
of spectral lines (Robinson et al. 1980; Marcy 1984; Gray 1984) which 
implies that kilogauss fields may cover about half the surface of an 
active star, with flux emerging in many isolated patches (Borra et al. 
1984). By analogy with the sun we might expect a similar amount of 
flux in spots, which scarcely contribute to the average profile of a 
line. Starspots do, however, lead to variations in luminosity, which 
can be used to determine the rotation rates of stars. Other indirect 
evidence for magnetic activity comes from coronal X-ray emission, 
caused by magnetic heating and correlated with rotation (Vaiana et al. 
1981; Pallavicini et al. 1981), and from X-ray and radio observations 
of flares in active stars. 

Most of our information on stellar activity derives from 
measurements of chromospheric Ca+ H and K emission (known to be 
correlated with magnetic fields on the sun) at Mt Wilson . Observations 
of about 200 stars in the solar neighbourhood show that magnetic 
activity declines with age and that the sun is relatively feeble 
(Vaughan § Preston 1980; Soderblom 1985). Ca+ emission is modulated as 
the star rotates and the rotation period can therefore be determined 
(Vaughan et al. 1981; Noyes et al. 1984a). Indeed, there is also 
evidence of differential rotation (Baliunas et al. 1985). For a star 
of given mass, magnetic activity increases with increasing angular 
velocity; moreover, cyclic activity is apparent in a number of 
relatively slow rotators, like the sun (Wilson 1978; Noyes et al. 
1984b; Baliunas § Vaughan 1985). 

From all these results it appears that magnetic activity in a main 
sequence star is controlled by its mass, composition and rotation rate. 
We can distinguish different types of behaviour in F stars (with 
shallow convective zones), in G and K stars, in active dMe stars 
and in fully convective late M stars. Observations of G stars in 
a Per (Stauffer et al. 1985), the Pleiades (Stauffer et al. 1985) and 
the Hyades (Lockwood et al. 1984) allow us to describe the rotational 
and magnetic history of a star of solar mass (Rosner § Weiss 1985). 
It arrives on the main sequence with a rotation period, Prot , of about 
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0.5d and is extremely active; within 30 million years magnetic braking 
increases Prot to 3d but thereafter the star evolves more gradually, 
losing angular momentum and becoming less active. For Prot ~ 20d 
activity is cyclic and the cycle period apparently increases as the 
star spins down (Noyes et al. 1984b). 

3. THE CURRENT STATE OF DYNAMO THEORY 

The task for theoreticians is to explain how stellar magnetic fields 
are generated, to show how magnetic activity depends on the rotation 
rate and then to describe the evolution of a star as it spins down 
through magnetic braking. Despite claims that magnetic cycles are 
caused by Alfven waves or torsional oscillations, there is no viable 
alternative to a dynamo (Cowling 1981). In what follows I shall 
confine myself to dynamo theory, as applied to stars like the sun. 
The basic concepts are well-known: differential rotation creates 
toroidal fields from poloidal fields, while cyclonic eddies regenerate 
poloidal flux from the toroidal field (e.g. Parker 1979; Zel'dovich et 
al. 1983; Weiss 1983; Schllssler 1983). The latter process can be 
described by a parameter a = -1/3TCH , which depends on the helicity 
H = <y.curlu>, where u is the local velocity and Tc is a 
characteristic convective turnover time. 

The hydrodynamics of the convection zone has been clarified 
through numerical simulations using the Boussinesq (Gilman 1979) and 
anelastic (Glatzmaier 1985a) approximations. These computations predict 
that the angular velocity, Q, , decreases inwards, as indicated by 
frequency splitting of 5 minute oscillations (Duvall et al. 1984). 

The response of the magnetic field, B, to the velocity is governed 
by the induction equation 

32 2 
-r- = curl (u x B) + nV B , (1) 
dt ~ ~ ~ 

where n is the (turbulent) magnetic diffusivity. Numerical experiments, 
with convection in a rotating fluid contained between two concentric 
spheres, have shown that the dynamo process works (Gilman 1983; 
Glatzmaier 1985a): the field oscillates but dynamo waves progress 
towards the pole instead of towards the equator. Most dynamo 
calculations are concerned with mean field (or a£l) dynamos. In these 
models the azimuthally averaged field is split into poloidal and 
toroidal parts: 

B = B + Bm , B = curl (A0) , B^ = B,<j> , (2) 
~p ~x ' ~p v XJ ' ~T ~(\>~ 

where <$> is a unit vector in the azimuthal direction. Then, from (1) 
and (2)~ 

9A 0 ,n2 1 
_ = a B + n ( V --2—2 

T r sin 
(3) 
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-gf =rsin6 B .V« + n(V2 - -^l ) B , (4) 
r r sin 6 r 

referred to spherical polar co-ordinates (r,6,<j>). The poloidal field 
is regenerated owing to the effects of helicity (represented by the 
parameter a), while toroidal fields are produced by differential 
rotation. For a given geometry, the system (3) and (4) depends on a 
single stability parameter, the dynamo number D = afi'L̂ /rî , where L 
is a characteristic length scale and fi' a measure of the angular 
velocity gradient. The trivial solution B = 0 undergoes an oscillatory 
(Hopf) bifurcation when D = Dcrj^ and is unstable for D > Dcr^t. 
Solutions to the linear (kinematic) problem then give dynamo waves, 
which propagate towards the equator if aft' < 0 in the northern 
hemisphere. Now helicity results from the expansion of rising gas in 
a stratified rotating atmosphere, so a > 0 in the northern hemisphere, 
and equatorward propagation then requires that ft increases inwards. 
Once again, the process works but the details are wrong. 

Where then is the dynamo? A number of arguments point towards the 
existence of a magnetic layer just below the base of the convective 
zone (e.g. Spiegel § Weiss 1980; van Ballegooijen 1982) where 3fi/9r 
remains positive but the helicity reverses sign (Glatzmaier 1985b; 
Rosner § Weiss 1985). Instabilities driven by magnetic buoyancy 
disrupt this layer and bring stitches of magnetic flux to the surface, 
where it erupts in active regions (Parker 1979; Schmitt $ Rosner 1983; 
Hughes 1985a,b). A shell dynamo of this type can only operate if the 
convection zone is neither too shallow nor too deep and it is significant 
that F stars, with shallow convection zones, and late M stars, which 
are almost fully convective, seem to show different patterns of 
behaviour (Giampapa 1983; Giampapa § Rosner 1984). 

To go further we must study nonlinear dynamos. We expect that the 
degree of magnetic activity should depend on the dynamo number D. Now 
the helicity H « fiL/xc, so that a = £2L, while ft' ~ D./L and n ~ L2/TC; 

hence D ~ a2, where the inverse Rossby number a = fixc. Noyes et al. 
(1984a) find that chromospheric activity is apparently a function of o 
only, which argues for the presence of a dynamo. Magnetic activity is 
limited by nonlinear effects, produced by the action of the magnetic 
field on the motion. There are various possibilities: the Lorentz 
force may quench the a-effect or suppress differential rotation; or it 
may generate fluctuations in angular velocity (torsional waves) with 
twice the frequency of the magnetic cycle, since i x B is quadratic in 
B. There is some evidence that solar differential rotation varies 
during the activity cycle (Gilman £ Howard 1984; Snodgrass § Howard 
1985), and observations of torsional waves are consistent with 
predictions based on dynamo models (LaBonte £ Howard 1982; Schttssler 
1981; Yoshimura 1981). 

Nonlinear dynamo models fall into three classes. First, there are 
direct simulations, like those of Gilman (1983) and Glatzmaier (1985a). 
Next come parametrized models based on mean field electrodynamics, with 
suitably chosen nonlinear cut-offs (e.g. Ivanova fi Ruzmaikin 1977; 
Yoshimura 1978). Finally, there are highly simplified and truncated 
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models which allow us to explore different qualitative effects and to 
see whether they are compatible with observations (Zel'dovich et al. 
1983; Ruzmaikin 1984). 

4. NONLINEAR DYNAMO WAVES 

In this section I shall discuss a crude nonlinear dynamo model that 
reproduces some essential features of stellar magnetic cycles. We 
suppose that dynamo action is confined to a thin spherical shell, 
which can be "flattened out" by adopting local cartesian co-ordinates 
with the z-axis in the radial direction and the x-axis_pointing 
northwards. Then we set u = (0,v(z),0) and B = (0,B,8A/9x), where 

A(x,t) = A(t)exp(ikx) , B(x,t) = B(t)exp(ikx) , (5) 

so that the poloidal and toroidal fields are described by the complex 
amplitudes A and B. The linear dynamo equations (3) and (4) can 
then be reduced to the dimensionless system 

A = 2DB - A , (6) 

B = iA - B , (7) 

which describes plane dynamo waves whose behaviour depends on the 
dynamo number D = av' / (2r\^k^). There is a Hopf bifurcation at D = 1 
and for D > 1 equations (6) and (7) yield exponentially growing dynamo 
waves, propagating in the direction of decreasing x (Parker 1979). 

Nonlinear dynamo waves can be represented by adding terms that 
describe different physical effects (Weiss et al. 1984; Jones 1984; 
Weiss 1985). For instance, the a-effect in (6) may be quenched as the 
magnetic field increases, or the ̂ -effect in (7) may be similarly 
reduced. Enhanced dissipation through magnetic buoyancy can be 
modelled by including a loss term proportional to |B|^B in (7) and 
fluctuations in angular velocity can be described with an augmented 
system of equations. The modified systems still possess periodic 
solutions and we can discover how the amplitude and period of the 
cycles depend on the dynamo number D. Comparison with observations 
may then guide us towards the physical processes that limit dynamo 
action in a star. 

Consider first the amplitude of the cycle: observations show that 
magnetic activity increases with increasing a (Noyes et al. 1984a) so 
we expect |B| to increase with increasing D. This is the case for 
most of the mechanisms listed above but if the principal nonlinear 
effect is a reduction of differential rotation by the Lorentz force 
the model system has oscillatory solutions with |B| decreasing 
monotonically for D > 2 (Weiss et al. 1984). Physically, nonlinear 
quenching of differential rotation leads to fields that are predominantly 
poloidal and unlikely to correspond to activity of the type observed 
in the sun. Hence this mechanism can be eliminated. 

The variation of the cycle period, Pcyc > with rotation rate offers 
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a better means of discriminating between different processes. Noyes 
et al. (1984b) considered a sample of 13 slowly rotating stars 
(including the sun) that showed cyclic activity with periods of 7-13 
years. (The sample is limited by the available data and the selection 
has been criticized by Baliunas § Vaughan (1985).) This sample shows 
that PCyC depends both on fi and on the spectral type, and suggests 
that Pcyc decreases with increasing Q and for later spectral types; 
for a star of fixed mass the data are consistent with a power law of 
the form Pcyc * Prot with n = 1.25 + O.5., Linear solutions of (6) 
and (7) have frequencies proportional to D2 , which corresponds to 
n = 1, though this result is sensitive to z-dependent spatial structure 
(Zel'dovich et al. 1983; Kleeorin et al. 1983). If we suppose that 
the nonlinear solutions have essentially the same spatial structure as 
the linear solutions, then nonlinear quenching of the a-effect (or of 
differential rotation) leads to cycle periods that are independent of 
D. Such a result seems incompatible with the observations. Thus we 
should look for limitation owing to losses through magnetic buoyancy 
or fluctuations in differential rotation (Noyes et al. 1984b). 

The truncated models also shed light on the nature of grand minima 
and the aperiodicity of the solar cycle. Recent advances in the study 
of dynamical systems have demonstrated that deterministic chaos is 
common in nonlinear systems and that the behaviour of the solar cycle 
can be explained without invoking stochastic processes (Weiss et al. 
1984; Jones 1984; Weiss 1985). In certain doubly-periodic systems 
the amplitude of oscillations is regularly modulated; the corresponding 
trajectories in phase space wind around the surface of a 2-torus 
shaped like a pinecone with a hole along its axis (Langford 1983). 
When the torus is destroyed trajectories may become chaotic, and a 
sixth order truncated model yields solutions that mimic the behaviour 
of the solar cycle. Moreover, Stuiver (1980) found that the envelope 
of activity showed a recurrent pattern near grand minima that is 
consistent with the presence of a vestigial "ghost attractor" 
resembling the 2-torus described above. 

5. SUMMARY 

The procedure followed in the previous section illustrates how simple 
models can be used to isolate the dominant physical processes in 
stellar dynamos. Clearly there is a need for more reliable and more 
elaborate calculations but our limited understanding makes it difficult 
to formulate such problems. First of all, we need more detailed 
observations of stellar magnetic activity, extended over a longer 
interval of time, in order to constrain our models. Secondly, we must 
improve the theory. This requires a phenomenological description of 
stellar dynamos that is qualitatively correct, followed by computation 
of more sophisticated models. When we have an adequate theory of 
cyclic behaviour in stars like the sun, we can go on to study more 
active, rapidly rotating G and K stars and to explore the effects of 
shallower or deeper convective zones. Finally, we can combine these 
results with a quantitative theory of magnetic braking by a stellar 
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wind in order to describe the magnetic evolution of lower main sequence 
stars. 
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