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1. Definitions and notations

Let {p,} be a given sequence of constants, real or complex, such that
P, =potpi+ - +p, #0,P_; =p_; =0, then

(11) tn = z Pkan—k/Pna
k=0

defines the sequence {t,} of (N, p,) means of ) , a,. The series ) , g, is said to be
summable |N, p,|, if {t,} € BV, i.e., Y ,|t,—t,—4] < o0.
In the special case in which

_(n+dé-1\  TI(n+d) . _
(12 p"_( o—1 )_r(n+1)r(5)’ 0> -1,

the (N, p,) mean reduces to the familiar (C, §) mean. Thus |N, p,| summability is
the same as |C, 8} summability, if {p,} is defined by (1.2).

Let f(¢) be a periodic function with period 27, integrable (L) over (—m, m)
and

() ~ 1a +"2 (a, cos nt+b, sin n) = :ZOA,,(t).
Then the allied series is
"il(b,, cos nt—a, sin nf) = 213"(1).
We use the following notations:
$() = H{f(x+1)+ f(x=1)}, $*(1) = ¢()— (+0);
W) = 1S+~ F=0)s PF = 3 ol

$ P g 1§ A
" |P,| k=0 k+1
7
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If Pf = O(|P,)), {R,} = {(n+ 1)p,/P,} € BV and for some real 6,

| kIZ e "I X S KK, k=1,2,-"+;
then we write {p,} € °.

We put 13(¢) = n’ sin nt; 2%(t) = n® cos nt; 1 = [n/t], the greatest integer not
greater than n/t.

By ‘F(t) € BV(a, by, we mean that F(t) is a function of bounded variation in
(a, b) and “‘{u,} € B’ means that {u,} is a bounded sequence. Ay, = f,— ity +,-

K denotes a positive constant, not necessarily the same at each occurrence.

2. Introduction

Concerning the |C|-summability of 3, n* 4,(t) and Y, n* B,(t), we have the
following results due to Mohanty [5].1

THEOREM A. If
(2.1) O<a<l andf tde(e)l =

then Y, n* A,(x) is summable |C, B| for every B > a.
THEOREM B. If
(2.2) O<a<l, Yy(+0)=0 andf Ay (D) =

then Y, n° B,(x) is summable |C, | for every f > a.
The case « = 0 of Theorem A corresponds to an earlier result of Bosanquet
[1], which follows as a special case of the following.

THEOREM C. If ¢(t)e BV (0, n) and {p,} € 6€°, then ), A,(x) is summable
|V, pal.

As pointed out in section 7 of the present paper, Theorem C is obtained by a
slight modification in the proof of one of our main results given in this paper.
Incidently, this provides a much shorter proof of a result due to Si-Lei ([9],
Theorem 1), which is a generalisation of some of the earlier results due to Pati
[6], [7], Varshney [10} and Dikshit {2}, when we demonstrate in section 7 that the
hypotheses used by Si-Lei imply that {p,} € ¢°.

In view of Theorem C and the corresponding result for |C|-summability due
to Bosanquet [1}, it is natural to expect from Theorem A and Theorem B that the
hypotheses (2.1) and (2.2) may lead to |, p,| summability of ), n* 4,(r) and

. L2 .
1 We write for lim
e +0VE
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Y. n* B,(t), respectively, if {p,} € €* and that such results may include as a
special case Theorem A or Theorem B. The object of the present paper is to show
that this is indeed true. That Theorem A and Theorem B are special cases of our
Theorem 1 and Theorem 2, respactively follows when we observe that

_ J(n+B-1
e = ("]

and |N, p,| for such a {p,} is the same as [C, f].

)}e%",ﬂ>a>o,

3. The main results

We prove the following.
THEOREM 1. If (2.1) holds and {p,} € €* then ) , n* A,(x) is summable |N, p,|.
THEOREM 2. If (2.2) holds and {p,} € €° then Y, n* B,(x) is summable |N, p,|.

4. Lemmas

LeMMA 1. If 0 < m £ n,and 0 < o < 1, then uniformly in0 <t < =,

IS k*"'exp (ikt)] < Kt~

k=m

PrOOF. The lemma follows, when we observe that

| Y k*texp (ikt)) £ Y k* '+ Kt* 'max | Y exp (ikt)|
=m k=m t<vEn k=t+1
< K71*.

LEMMA 2. If P} = O(|P,}), then uniformly in0 < t £ m,
|y Pdn—k)*"'expi(n—k)t| £ Kt™*|P,|,
k=0

where 0 S v<nand0 < o < 1.

PrOOF. We have by Abel’s transformation and Lemma 1,

|Y P(n—k)* ! exp i(n—k)t|
K=o
v—1

k v
< ; ka+1|| Y gn—u)"‘ exp i(n—p)t|+1PI| Y, (()n—u)“‘“1 exp i(n— p)t|
= u= n=
< Kt~°p*.

The lemma now follows when we appeal to the hypothesis: P}’ = O(|P,|).
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LemMA 3. If {p,} is any sequence such that Py = O(|P,|), then uniformly in
O0<t=Em
| Y. Pyexp i(n—k)i| < Ki™'IP),
k=0
where 0 £ v and n is any integer.

The proof of Lemma 3 is similar to that of Lemma 2.

LEMMA 4. For any sequence {p,} such that P,} = O(|P,|), the statement {S,} € BV
implies {Sy} € B.
Lemma 4 is the same as Lemma 2 in [3].

LeMMA 5. If o > 0, n > O, then necessary and sufficient conditions that

['7a1 5 Kk and y(+0) =,
0

are that (i) t*y/(t) € BV(0, n),% and (it) t >~ |y(¢)| should be integrable in (0, n).
Lemma 5 is given in [S].

5. Proof of Theorem 1

We have
n—1
P, Pk—l)
t,—t,_, = — = a,_
"t k;o (P,, P,_, gy
1 n—1
= n 'lP a'l
PP,.1Z:( Pr—D k) -k

Integrating by parts, we have
n"4,(x) = if d(t)n” cos nt dt
T Jo
2 T
= — —f n*~ ' sin nt dé(t).
TJo
Thus for the series Z,, n* A,(x),

Z ltn_tn—ll = — Z
n

{P Py ¥ Z(P Pe— PnPk)i:‘k(t)}dqs(t)l

Z(P Pe—Pa P23 Zi(1)

ld(o)l.

P,P,_

Since [5¢7*|d ¢(¢)] = K, in order to prove Theorem 1 it is sufficient to show that
uniformly in0 <t = n

2 That is, in the interval 0 < ¢ < 7.
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G r=ry

nPPnl

Z (P ox— 0. P2kt £ K.

Now (cf. [2], p. 168)

2]

t“n lle PR —R,)A (1)l

T

+1°), 4‘421’:: ()]

n=1 (n+1)|Pn 1|

o«

(5.2) +t°"l ;_1 (m | z P fn-i(D)]

+t Y ——
ne gl(nﬂ)lp,, | #
= 21+22+23+24,

z

IIA

I Z Piln-s(1)]

say. By a change of order of summation, we have

L bl a—l
P T (n +1)|P,. i IvzoAR ZP" )
(5.3) <K 3 ;"fIARVIIPvI

n=1(n+1)|P,_4| v=o

1
KZMR 2> 1 (n+1)|P,_y]
n=v+ n—1

=K Z [4R,| £ K
v=0
by virtue of Lemma 2 and the hypothesis that {p,} € €*.

Since [sin (n—k)t| < n t for relevant k, we have

T n¢+1

(54) zZ, 2! Py, £K,
n=1 nIPn— ll
by virtue of the hypothesis that {p,} € €*.
Next, we observe that
(5.5) L,<KPPF Y — 1 <K,

a=t+1 n“'llP,,_ll

by virtue of the hypothesis that {p,} € €=
Since p; = (k+1)"'R,P,, we have by Abel’s transformation
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IkZ j ]

T4 () 2

Knat--ln I{IARkI " IRk+1|
k+1  (k+1)(k+2)

IIA

} P+ Kn*~ 't |P,_ |

by Abel’s Lemma, Lemma 3 and the hypothesis that {p,} € €*.
Thus, finally

4 2 1 |Pk|{ 1}
r, S Kt —_— R+
+= ,.=;,1n“"|P,, 1|k2, AR
+Kmt Y Zl_a
n=t+1 N
S Pl & 1
5.6 < Kt :AR+ }'* T
(56) . §=: 4R k n;-%l n' %P,
< K~ 12 {lARkI+ k}k“ '+K
< KY |[ARj+K £ K,
k=1

by virtue of the hypothesis that {p,} € €*

Combining (5.2)—(5.6), we prove (5.1), which completes the proof of
Theorem 1.

6. Proof of Theorem 2

Integrating by parts and observing that y(+0) = 0, we have [5]
n°B,(x) = —ZJ y(t)n* sin nt dt
nJo
2 ! a—1 2 * a=—1
= — = yY(mn® "t cosnn+ = | n*"' cos ntdy(t).
T T Jyo
As in the proof of Theorem 1, for the series ) , n* B,(x), we have

Z]t — b, ll

Z(P Pe— P P4 Z4(m)

Pnl

Z(P Pe—Pa POZ i (1)| [dY(D)1.
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Since [t ~*|dy(t)l £ K, in order to prove Theorem 2, it is sufficient to show that
uniformlyin0 <t <=
1 n—1

(6.1) ¥ Y (Pape—Pa PO (1) < K.
n | P,P,_ k=0

The proof of (6.1) follows from the preceeding section, when one observes
that the proof of (5.1) with a slight modification remains valid even if 2225 (¢) is
replaced by 127%(2).

This completes the proof of Theorem 2.

7.

In view of Lemma 5, our Theorem 1 and Theorem 2 are equivalent to the
following, respectively (cf. Theorem la and Theorem 2a due to Mohanty [5] and
Theorem IV and Theorem III due to Salem and Zygmund [8]).

THeoreM 1. If {p,} € €* and
.1y 0<a<l1,t™*¢*t)e BV(0, n) and fﬂ t7* " op*(e)|dt £ K,
then Y, n* A,(x) is summable |N, p,|. ’

THeorReM 2'. If {p,}€€* and
2.2y 0<a<1,t™*y(t)e BV(0,n) and f:t"“llu//(t)ldt <K

then Y, n* B,(x) is summable |N, p,|.

Under a condition similar to the last condition of (2.1)’ with & = 0, recently
the present author has deduced from the proof given in [2], a result concerning
[N, p,| summability of a series associated with Y, 4,(¢) in [4].

1t follows from the proof of Theorem 1 that in order to prove Theorem C, it
is sufficient to prove (5.1) uniformly in 0 < ¢ £ n, when a = 0. Using the tech-
nique of proof of Lemma 2, we observe that if {p,} € €* and 0 < v < n, then

| ¥ Pudi20)l = KIP),

since Y-l ()] £ K for any b = a > 0. Therefore Y ; < K in the case « =0
also. The proofs of ), < K, >3 < K and )4 < K, when « = 0, run exactly
parallel to those given in (5.4)—(5.6).

This completes the proof of Theorem C.

Finally, to demonstrate that the hypotheses used by Si-Lei for the proof of
his Theorem 1 in [9], imply that {p,} € €*, we have the following.

If {p,} is any sequence such that P} = O(|P,|), then {S,} € BV implies that

Py —

<K, k=0,1,2,-"-.
n=k+1 n|P,_,|
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Since Py = O(|P,|),

M M
Pl S s kipl 3 Pl )
k = k -1
a=k+1 n|P,_,| n=k+1

= KIPy =Z—l {(P,’,“_l)"z—(P,’j‘)‘Z}g [Py-il

KXPl e P Zva_ll

Pk v=1 v (PM 1)2 v=1
M
SKIBI Y, e I T O
n=k+ n-—l

< o (.1 1
<K Y —~ | +K <K, M- o,

n=k+1 \P*_,  PF

since by Lemma 4, {S)'} € B.
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