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The Weyl Problem With Nonnegative
Gauss Curvature In Hyperbolic Space

Jui-En Chang and Ling Xiao

Abstract. In this paper, we discuss the isometric embedding problem in hyperbolic space with non-
negative extrinsic curvature. We prove a priori bounds for the trace of the second fundamental form H
and extend the result to n-dimensions. We also obtain an estimate for the gradient of the smaller prin-
cipal curvature in 2 dimensions.

1 Introduction

In 1916, H. Weyl posed the following problem: Consider a two-sphere S? and sup-
pose g is a Riemannian metric on $?> whose Gauss curvature is everywhere positive.
Does there exist a global C? isometric embedding X: (S%,¢) — (R?, o), where o is
the standard flat metric in R*?

The first attempt to solve the problem was made by Weyl himself. He used the
continuity method to obtain a priori estimates up to the second derivatives. Later,
H. Lewy [Le35] solved the problem in the case when g is analytic. In 1953, L. Niren-
berg [Ni53] gave a complete solution under the very mild hypothesis that the metric g
has continuous fourth derivative.

In 1964, A. V. Pogorelov [Po64] obtained several important refinements to the dif-
ferential geometry of 2-dimensional submanifolds F of smooth 3-dimensional Rie-
mannian manifolds R. The proof is based on derivative estimates that refine and
complete his earlier work with A. D. Aleksandrov [AP50].

The Weyl estimate was later generalized to the case of nonnegative curvature in
Euclidean space by J. A. Iaia [[a92] and P. Guan, Y. Li in [GL94]. They obtained a C'!
embedding result for metrics of nonnegative Gauss curvature; see also [HZ95] for a
different approach to the C!'! embedding result. Later in 1999, Y. Li and G. Weinstein
[LW99] extended the estimates obtained in [GL94] to n-dimensions.

In this paper, we discuss the isometric embedding problem in hyperbolic space
with nonnegative extrinsic Gauss curvature. As in the Euclidian case, the image of
such an embedding, if it exists, bounds a convex body. However, the loss of strict
positivity of K leads to degenerate Monge—Ampere equations which cause difficulties.

By combining A. V. Pogorelov’s method with the results obtained by B. Guan,
J. Spruck and M. Szapiel [GSS09] and [GS11], we can also obtain a priori bounds for
principal curvatures of any strictly convex closed hypersurface with positive sectional
curvature in H""!. Moreover, we proved that when the sectional curvature is equal
to —1 at finitely many points, the above statement is still true.
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For the case of strictly positive Gauss curvature, it is well known that the regularity
exists, because the corresponding PDE is uniformly elliptic. Thus, if the given metric
is C*°, then the resulting embedding is C>°. However, this does not hold in the
case under consideration. So, another natural question to ask is the regularity of the
embedding.

In this paper, we will denote the intrinsic Gauss curvature by K and extrinsic
Gauss curvature by K. The main theorems of this paper are the following.

Theorem 1.1 Let g € C* be a Riemannian metric on S* with Gauss curvature satis-
fying

i) KP)=-L1<i<m

(i) K(Q) > —1 forany Q # P;, where {P;} € S* are finite isolated points.

Then there exists a C"! isometric embedding X: (S?,g) — (H?, h) where

h (dxi + dx3 + dx3).

B 4
(1 [x?)?
By studying the regularity of the embedding, we also prove the following theorem.

Theorem 1.2 Ifg € C°, under the hypothesis of Theorem 1.1 and also assume that
liminfo_,p. H(Q) = ¢ > 0, then k; € C%! in B,(P;), where k, is the smaller of the two
principal curvatures and r > 0 sufficiently small.

We extend the results of Theorem 1.1 to higher dimensions by bounding the mean
curvature H in terms of the scalar curvature and its Laplacian. This is a direct gener-
alization of the Weyl estimate.

Theorem 1.3 Let ¢ be a C* metric with sectional curvature > —1 and let
X: (S",g) — M be a C* isometric embedding. Suppose the sectional curvature S

of g satisfies

(i)  S(P;,x) = —1 forsome x € /\2 TpM;1<i<m

(i) S(Q) > —1, forany Q # P;, where {P;} € S" are finite isolated points.

Let H be the trace of the second fundamental form of X, and let R be the extrinsic scalar
curvature of g. Then the following inequality holds:

(1.1) H? < C1|AR| + C,(R* + R)

where Cy, C, depends only on the metric g and dimension n.

An outline of the contents of the paper is as follows. Section 2 contains the esti-
mate of mean curvature and proves Theorem 1.1. Section 3 introduces the relations
between different models of hyperbolic space, and also states how to transform the
coordinates of a small neighborhood to simplify the calculations that will be used in
Section 4 to prove Theorem 1.2 and also in Section 5 to prove Theorem 1.3. The
use of the transform map between two different models is unusual, but seems to be
necessary in proving the partial third derivative estimates.
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2 A Mean Curvature Estimate

Theorem 2.1 Letg € C* be a Riemannian metric on S? with Gauss curvature satis-
fying

(i) KP)=-1,1<i<m

(i) K(Q) > —1 forany Q # P;, where {P;} € S* are finite isolated points.

Then there exists a C'! isometric embedding X: (S*,g) — (H?, h) where

4
h= m(dxf +dx; + dx3).

Proof Following [GL94] we first approximate g° in C* by a sequence of C> met-
rics g¢ with corresponding intrinsic Gauss curvature {K°}, such that K¢ > —1 ev-
erywhere. Then we can apply the result from [Po64] to ¢g¢ and therefore obtain a
sequence of C*° isometric embeddings

X¢: (8%,8°) — (W, h).

It is not difficult to see that there exists constants «, 5 > 0 (independent of €), such
that -1 < K¢ < a and diam(X®) < f for all ¢ > 0. We immediately have that
Xl < C.

In local coordinates,

¢’ = E'dv? + 2Fdudv + G°dv?,
¢ = E‘du’® + 2F°dudv + G“dv*.
We already know that X¢: (S, ¢°) — (H?, h) is an isometric embedding, so we have
(X, X = E, (X, X =F, (X}, X)) =G

It follows easily that ||V X||co < C, where C is independent of e.

The following will be devoted to establishing a bound on HV;OX‘HCo, which is
independent of e. Once we obtain such a bound, the limit of X¢ as ¢ — 0 will be
a C!! isometric embedding of ¢°. For convenience, in the following we drop the
dependence on € in our notation.

Next we will prove maxs: H < C, where C is a constant independent of €.

In hyperbolic space we have

4

(2.1) m<xu,xu>]ms = <Xu,Xu>]HI3 =FE= glla
4

(2.2) mo(uaxvﬂks = <Xu7X1/>][][3 =F = g3,
4

(2.3) m<XV’XV>R3 = <X1/7XV>]HI3 =G= 822-

Let the orientation be chosen so that the inner unit normal is given by
Xy x X, 2 -

= )(7
VEG—F 1-xp°F

(2.4) X =
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where Xz is the Euclidean unit normal. The second fundamental form is then given

b
’ Il = Ldu® + 2Mdudv + Ndv*

where
(2.5) L= —(Xu,Xu)w = (Vx,Xu, X)pp,
(2.6) M = —(Xy, Xu)iws = (Vx, X, X)1p,
(2.7) N=—(X, X\)wr = (Vx, X, X)pe-
Hence the intrinsic Gauss and mean curvature are
(2.8) K=-1+ M

EG— F?
and
(2.9) o %GL EéFiVIF-ZI- EN
The Gauss equation takes the form
(2.10) VX, =X, +T1 X, + LX,
(2.11) VX, = T,X, + TLX, + MX,
(2.12) Vi, X, = I5,X, +T5,X, + NX,

where I‘ff]- = %gkl(a,-gjl + 0,81 — 0igij) with 0, = 0, and 0, = 0,. The Weingarten
equations take the form

(2.13) —X, = LiX, + %X,
(2.14) —X, = LiX, + [2X,,

where {L’J} are expressions involving L, M, N and E, F, G. The Mainardi-Codazzi
equations take the form

(2.15) L,— M, = LT}, + M(T%, - T},) — NI?,,
(2.16) M, — N, = LT5, + M(I'5, — T'},) — NT'},.

Letp = 172|X|2. We consider the function

f=eH

on $%, with a > 0 to be determined later. Without loss of generality, we assume
there is only one singular point Py € S? such that lim,_,o K°(Py) = —1. Let § =
infe /g (p,) K > —1 and be independent of €. Then, by a theorem in [Po64, p. 216],
we have
(2.17) H < C,, forVP e S*\B.(Py),

where Cy depends only upon the metric of $*\B,(P,) and the metric of the space.
Next we will focus on estimating the curvature inside B, (Py). Since we use the ball

model for hyperbolic space, we can always choose our origin very close to X(Py) such

that for any point P € X(B,(Py) N'S?) we have [P, = p + p3 + p3 < 5. (We
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always assume r is small.) Restricting the function f on X (B,(Po) N 82) , We can see
that if M = maxpex(p,(p,)ns2) f Were achieved on the boundary, then we would have

¢’H < e°Cy forVP € X(B,(Pp) N S?).

Therefore, we assume M is achieved at an interior point Q. Let us write the metric
g = ¢° near Q in conformal coordinates:

g = Mdu? + dv?),
where (u,v) = (0,0) corresponds to Q and
h=0h=0,h=0 at(0,0).

The intrinsic Gauss and mean curvatures become

LN — M?
(2.18) K=—-1+—p—,
(4
L+N
_ Ah
(2.20) K = —

where A = 011 + Oy, also, the Mainardi—-Codazzi equations are

(2.21) L, — My = hy(L+N) = 2He*h,,
(2.22) M, — N; = —hy(L+ N) = —2He*"h,.

Clearly AK = e ' AK. Differentiating (2.18), we have

1
(2.23) Ky = — (LiN + LNy — 2MM,) — 4hy (K + 1),
(4
1
(2.24) Ky = W(LHN + LNy, + 2N\ Ly — 2M? — 2MM,,))
(2.25) — 8Ky — 4hy (K + 1) — 16K (K + 1),
1
(226) K, = W(LZN + LN, — ZMMz) — 4h2(K+ 1)
(4
1
(2.27) Ky = — (LN + LNy + 2N, Ly — 2Mj — 2M M)
(4
(2.28) — 8hyKy — 4hyy(K +1) — 16K5(K +1).

Applying 0, to (2.21), 0; to (2.22), and adding, we have
(2.29) (=L, + 2Hé*hy), = (—Ny + 2He* hy),
which yields

(230) Nll = L22 + 2H1h1€2h - 2H2h2€2h + 2(]’111 - h22)H€2h + 4(}’1% - h%)HeZh.
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Differentiating (2.19) gives

Li+N
(2.31) 2H, = 5~ — 4l H,
e
Ly +N
(2.32) 2H,, = % — 8h Hy — 8W2H — 4hy H,
L+ N
(2.33) 2H, = 22 — 4uH,
e
Lo+ N
(2.34) 2H), = % — 4h,H, — 4hy,H — 4hH, — 8hyh,H,
In+N
(2.35) 2Hy, = % — 8hyH, — 8h2H — 4hy,H.

Applying 0 to (2.21) and 0, to (2.22), we obtain

(236) M11 = L12 — 2H162hh2 — 2H€2hh12 — 4Hh1h2€2h,
(237) Mzz = N12 — 2H2€2hh1 — 2H€2hh12 — 4Hh1h282h.
So we have

(2.38)

PAK = e AK
= N(Ly1 + Ly2) + L(N11 + Npz) — 2M (M1 + M)
+2(LiN;y + LN, — My — M3)
- e4h[8h1K1 + 8Ky + 4(hyy + hy) (K +1) + 16(h] + B3)(K +1)] .
Substituting (2.30), (2.36), and (2.37) into (2.38) we get

(2.39)
eéhAgK = N[L11 + N — 2H1]’l1€2h + Zthzezh — 2(’111 — hzz)H@Zh

— 4(h? — h})He
+ L[Ly, + Ny + 2H 1y &' — 2Hyhae® + 2(hy, — hyy)He
+4(h — h2)He*)
— 2M([Ly, + Ny» — 2(Hihy + Hohy )e?' — 4He? hy, — 8Hhyhye?')
+2(LiNy + LN, — M7 — M3)
— e [8h K, + 8Ky + 4(hyy + hyy) (K + 1) + 16(K2 + h2)(K +1)].
Plugging in (2.32), (2.34), and (2.35) we obtain

(2.40)
" NK = N[2¢""Hy, + 6H hye™ + 2Hyhpe® + 2(hyy + hyp) He™™ + 4(h3 + ) He™"]

+ L[2¢*"Hy, + 6hyHye® + 2H hye® + 2(hyy + hyy)He™"
+4(h? + h2)He™)
— 2M[2¢*"Hy, + 2(Hyhy + Hyhy )]
— " [8h K, + 8h, Ky + 4(hyy + hyy)(K + 1) + 16(h2 + h2)(K +1)].
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Regrouping the terms and using (2.20), we get
(2.41)
M AK = 2¢"(NHy, — 2MH,, + LHy,) + 2(LiNy + LN, — M3 — M3)

+ N[6H he®" + 2Hyhye® + 2(hyy + hyy ) He?" + 4(h? + h2)He?"]

+ L[6Hyhye® + 2H hye® + 2(hyy + hyp)He*™ + 4(h? + h2)He?)

— 4M(H,hy + Hyhy )™

— &"[8h K, + 8h,K, — 4K(K + 1)e™ " + 16(h? + h3)(K + 1)].
From (2.31) and (2.33) we derive that

1
(2.42) LN, < Z(L1 +Ny)? = " (H, + 2l H)?,

(2.43) LN, < i(L2 +N,)? = e"(H, + 2h,H).

By (2.19), (2.20), (2.42), and (2.43) and noting that h = h; = h, = 0 at point Q, we
have

(244)  AgK < 2(NHy — 2MHy, + LHy,) + 2(H; + Hy) — 4KH? + 4K(K + 1).
By assumption, we have f;(Q) = 0,i = 1,2. Thus f; = ae“”’Hp; + ¢*’H; = 0 and

(2.45) fij = e“"(aszipj +aH;p; + aHjp; + aHp;; + H;;),
where i, j = 1, 2. Therefore, the following hold at Q,

(2.46) H, = —apH, H,; =—-ap,H,

(2.47) Hy, = —aHpy + ozzp%H+ fiie”

(2.48) Hy, = —aHpp + &’ pipH + fize™ 7,

(2.49) Hy, = —aHpy + & piH + fre .

Since f achieves a local maximum at Q, we also have

{fi@Q}y<o0, 1<ij<2

Thus
(2.50) NHy, — 2MHj; + LHy,
< H[L(—apn + a*p3) — 2M(—api, + &’ pips)
+ N(—api1 +a?p)]
and
(2.51) (H + H3) = H o’ (p} + p3).
Combining (2.44), (2.50), and (2.51) we obtain
(2.52)

AGK < —2aH(Lpy, — 2Mp1p + Npiy) + 20°H(L + N)(pi + p3)
+2H*?(p? + p3) + 4H? + 4K (K + 1)
= —2aH(Lpy — 2Mp1, + Npiy) + 6H>a*(p} + p3) + 4H* + 4K(K + 1).
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Now let 7 = xla% +x20%2 + x3a%3. Then we have
(2.53) pu = F X, pv=(FX)w
(2.54) P+ ph < (7P,
1+ |x|? L/ 0 , /0
2.55 S O F< *> + 12 <—*> +L(X,7
2:55) Puw = 1— |x]? NG/ e EAT X, P
1+ |x? L/ 0 , /0
(2.56) b= T F F12<£,r> LI <a— r> + M(X, Pp,
and
1+ |x|? o _, /0 -
(2.57) Pw =1 x |2G I‘22< R r> i, + I‘22< %,r> o + N(X, P)yp.

Therefore, at point Q we have

(2.58) AgK < —2aH(Lpy + Npn) + 6H*a*(p; + p3) + 4H* + 4K(K + 1)

1+ |x|? 1+ |x]?
<2 H[L( G+N(X, )+N< T p X7 )}
S L T (X, P D (X, e
+ 6’ H (7, ) + 4H? + 4K (K + 1)
< —4a H2 + 5 + 6a2H2‘7‘2 +4H? + 4K(K + 1)
- 1 — |x|? (1 —|x]?)?
1+ |xf? o?|xf? 2
- 4(1 —a )H +C(K).
= * =)
Now choose o = 2; by our assumption, at Q, |x|* < ;. Hence, we get
(2.59) AK < —H* +C(K),
which implies H* < C(K) — A,K. Therefore,
(2.60) max  f < #QH(Q) <C,
X(B,(Py)NS?)
from which we conclude
maxH < C,
S2
where C is independent of €. This completes the proof. ]

Remark 2.2 From equation (2.58), we can see that if |x|? < for some

6a2 +a 1

a > 1 (ie, diam(X) is small in the hyperbolic space), then the existence of a C!'!
embedding is true as long as K > —1 on S°.

3 Different Models of Hyperbolic Space
3.1 Ball Model and Upper Half-space Model

Some times it is easier to do calculations in the upper half-space model instead of the
ball model. Therefore, we can use the following transformation function between the
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coordinates:
z
__ ¢ o
¢71
x?y
P(x,y,2) = %(Zx 29, + 2+ 28— 1)
o 2+ (z+1)2
_ 1
(b l(x,y,z) = m(zx, 2)/, 1— (x2 +}/2 +22)) .

In the next section, we are going to get estimates around singular points. So it will
be helpful if we can transform coordinates of a neighborhood of the singular point
such that it can be represented as a graph in the upper half-space model.

For any point P belonging to our submanifold, we want to force a neighborhood
of P to be graphical over the xy-plane in the upper half-space model. We can achieve
this by the following procedure.

Step 1. Using the inward normal vector N of P, we can get a geodesic ~y(t) starting
from P with tangent N.

Step 2.  Rotate P such that N is parallel to the a% direction. Then choose some
d > 0, such that y(d) is the origin, and ([0, d]) lies on the z-axis in the unit ball
coordinates.

Step 3.  Use the transformation ¢! above to get P on the z-axis in the upper
half-space coordinates, with the normal N parallel to %. Therefore, there is a neigh-
borhood of P that can be written as the graph of a function z = u(x, y) over the
xy-plane. Moreover, Vz = 0 at (0, 0).

Note that the above procedure is valid for n-dimensions.

3.2 Vertical Graph in Upper Half-space Model
We will use the half-space model
H™ = {(x, x41) € R 2 x4 > 0}
equipped with the hyperbolic metric
ds* = 72?: dxf.

2
xn+1

(3.1)

If 3 is the graph of a function u(x) and x € 2 C R" x {0},
Y= {(xa xn+l) X E Q7xn+1 = u(x)},
then the coordinate vector fields and downward unit normal are given by

uiei — eny1
X =e tuje,;, N=uUv=u——m,
w
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where w = /1 + |Vu|? and v is the Euclidean downward unit normal to X. The first
fundamental form g;; is then given by

1 8
(3.2) 8ij = <X,‘,Xj>[H[n+1 = ﬁ((s,‘j + uiuj) = #
To compute the second fundamental form ;;, we use

1

(3.3) It = (=0ik0int1 — dikdjns1 + 6;j0kni1)
/ Xn+1

to obtain

dij Uil uje; + uje;
(3.4) VxX; = ( 2 #) e, — G T HE

Xn+1 Xn+1 Xn+1
Then

—1

(3.5) hij = <inXj, MV>]H[n+1 = m(éi]‘ +uiuj + uuij).

4 Proof of Theorem 1.2

Partial Third Derivative Estimates

In this subsection, we will establish the following lemma. The argument is based on
the argument originally given by E. Calabi [Ca58], see also [CNS84] and [Ia92].

Lemma 4.1 In a neighborhood of (0, 0),

2
C
(4.1) Lo>2 =
2 K*
holds, where
414,'0','

4.2 Lo = ij PP S
( ) g P 0ij (1+|v1/l|2)1/l’

kl
a = p" pPp" prprpigs,
K+ u?
-2

p:

and C is a constant depending on the maximum of - near (0, 0), the maximum of IK|c2,

the maximum of K'/*|V?K|, the maximum of |VK|*/K, and the maximum of mean
curvature H.

Remark 4.2 The reason for the presence of the term |VK|?/K instead of 1/K is that
for a large class of functions satisfying K(0,0) = 0 and K(Q) # 0 when Q # (0,0),
the quantity |VK|?/K is bounded while 1/K is not.

Proof In the followinglet p = — # By (3.5), we have

(4.3) uzwhij = pij, wherew = /1+|Vul%
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Hence,
(4.4) detpij _ utw? deth;; _ AR
' detg detg '
Since 8ij = %(5,‘]' + Lliu]‘),
1 1+ u% Uiy w?
detg = ut | w1+ ud| T A
(4.5) det p;j = w'K = K(1 + |Vu|*)?,
Let m = K(1 + |Vu|?)?, then we have
log(det p;;) = log m.
Differentiating three times gives
(4.6) p'pijk = (logm)y,
(4.7) P pijky = P Pabpp” pij + (log m)gp,
(4.8) P pijipr = 0" Pabrp” ijkp + P Pabpr” pijic + 0 pabpp” pijr
(4.9) — 20 pearp™ pavpp piji + (log m)ipyr
Next, consider
(4.10) g = pklppqprspkprplqy
Differentiating this with respect to x; we get
411) i = (=p"pair” pPp" = pM 0P parin® 0" — M 0P " Pabip7°) Pipr Pigs

+ 208 pP1 0" prpripigs-

Now fix a point P and rotate about P so that {p;;} is diagonal at P. Thus, in these
coordinates at the point P, we have

2
(4.12) pijo_ﬂzz PkprPkprii 4 Prpri _3 Pkii Plpr Pkpri
T DiipkkPepPr  PiiPkkPppPr PiiPKkPIPppPrr
_4 Prsi PkpsPkpri _9 PkprPlprPklii . PkprPkpsPrsii

Pii PkkPpp PrrPss Pii PkPuPppPrr  Pii PkkPppPrrPss
Pali Pkai PkprPlpr 12 Prai Pasi Pkpr Pkps

PaaPii PkkPUPpp Prr PaaPii PikPpp PrrPss
PKiPpgiPkprPlar _ \ PHiPrsiPkprPlps

Pii PkkPUPppPLagPrr PiiPkkPUL ppPrrPss

+4

+2

Consider the first term in (4.12) and use (4.8) to get

PkprPkprii 5 Pkpr  Piikpr — >y Pkpr
Pii PkkPpp Prr PkkPppPrr  Pii PkkPppPrr
% |:pahrpubkp PabprPabk n Pabp Pabkr _ 2pcdrpdbppchk
PaaPbb PaaPbb PaaPbb PccPddPbb

(4.13) 2

+ (log m)kp,} .
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Thus,
PkprPabrPabkp +2 PabkPkprPabpr +2 Pabp PkprPabkr
PaaPbbPkkPppPrr PaaPbbPkkPppPrr PaaPbbPkkPppPrr

(4.14) p”U,'j =2

4 Pedr Pdbp PebkPkpr 2 plchri _g Pkl Plpr Pkpri
PbbPecPddPikPpp Prr Pii PkkPpp Prr Pii Pkk PP pp Prr
4 Prsi PkpsPkpri ) PkprPlprPkiii  PkprPkpsPrsii

Pii PkkPpp PrrPss Pii Pkk Pl Ppp Prr Pii PkkPpp PrrPss
pulipkaipkprplpr ) pmipusipkprpkps

paupiipkkpllpppprr paupiipkkpppprrpss
PKiPpgiPhprPlar  ,  PHiPrsiPhprPips 2pkpr(10g ) kpr
Pii PkkPULpp PgqPrr Pii PkkPULpp PrrPss PkkPppPrr

+4

+2

Let

A= ) ’
PiiPkkPppPaqPrrPil PaapiiPrkPUPpp Pre

We have

PkprPabrPabkp _3 PKli Plpr Pkpri >+2 pipri
PaaPbbPkkPppLPrr Pii PkkPUL pp Prr Pii PkkPpp Prr
Prprlogm)ipr 5 PhorPlpr

PikkPppPrr PuPKkPppPrr

(4.15) ploi; = (2

+3B+2A+2 (log m).

Thus,

y 2 , ,
(416) oy = 7(pim —3W) +3B+24
Pii PkkPpp Prr P
) Prpr(logm)ipr N PrprPipr(logm)y
PkkPpp Prr PUPKKPpp Prr
_ 2 [Pkpri B Z (Puii Prpr + Ppli Prir + prliplpk)} 2
Pii PikPppPrr ; 2pn

B 1 [ (puii Prpr + Ppli Prir + Prliplpk)] 2
20ii PrkPppPre L5 pu

+3B 424 + 2pkpr(10g Mpr 3pkprplpr(10g mu

PkkPppPrr PuPkkPppPrr
logm logm

> 2B+ (B— A) +2pkpr( g§Mkpr 3pkprplpr( g )kl.
PkkPppPrr PiPkkPppPrr

1/2
Now let vipr = prpr/ (PkkPppPrr) /2. Thus, B = Vi ViprViaiViai and A = VipVig ViaiV pgi-
Observe that

(4.17) %az - %(Zvipr) "< Z(wapr) 2
p

kpr k
2
< Z(Z Vkpﬂ’lpr) = VikprViprVkaiViai = B.
kl pr
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Next consider B — A,

2
(4.18) 0< (Z ViriVekl + VikVril — 2eran'1<)
r

= (erinkl + VirkVril — ZerlVrik) (quivqkz + VigkVgil — Zququik)
=B - A
Therefore,
2,5 Prpr(log m)ip, 3 PrprPipr(log m)y _
PkkPppPrr PkkPppPrrPll
Recall that m = K(1 + |Vu|?)2. We have

ploi; >0

(419) ploy; > o+ 2—LX [log K +2log(1 + |[Vu2)]jpr
PikkPppPrr
— 3 PPl 60 R 4 210g(1 + [Vul?)
PkkPppPrrPll
=g+ ZL(logf)kW + 4L[log(l + |Vu|2)]kp,
PkkPppPrr PkkPppPrr
_ 3%(1%1%)“ _ 6M[log(l +|Vu)]k
PkkPppPrrPll PkkPpp PrrPll
— 249 Pkpr ( K@r B Kka, + Kk:/Kp + Kerk + szISpKr)
pkkpppprr K K2 K3
_ 3 PrerPipr (@ _ KEKI> N PhprUillikpr s,
PrkPppPrrpl N K K2 PikPppPre(1+ [ Vul?)
where
(420) S, —4 Prpr { (tiprtbix + UipUigr + Uirlhixp)
PikPppPrr 1+ |Vul?
 Uqugr (gt + witkixp) iy (igthig + Uitligr)
(1 +|Vul?)? (1 +|Vul?)?
uiuir (et + tilgpy) N uikulpuqruiuluq}
(14 |Vul?)? (1+|Vul?)?
_6 PkprPlpr { Uilhik + Uitligg — Uilliklqlgl }
PkkPppPrePll 1+ |Vu|? (14 |Vul?)?
Note that at the point P we have
(4.21) o, =2 PikprPkpr 3 PKli PkprPlpr ,
PikkPppPrr PkkPppPrrPll
(4.22) ppr = —(uttp, + tptty + 0py),
(4.23) Prpr = —(Ulipy + Uliipr + Upplhy + UpUigr),
(4.24) Pikpr = —(Uikthpr + tgdipr + Uillkpr + Ullikpr + UikpUy
(4.25) + tgpUir + Uip Uiy + UpUir),
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and
U;oj UiUikpr Pkpr
(4.26) 4——— = — 5
1+ |Vul>)u (1 + |Vul®) pppppre
where
(4.27)
Uo; Uilikpr Pkpr
S, =4 +
: (1+|Vul?)u PrkPppPrr(1+[Vul?)
=4 o {—2 Ppr [Uikthpy + Upllipy + Uillgpr + Upllikp + Ukpll;
(1 T |vu|2)u PkkPppPrr ikUpr kWipr ilkpr rlikp kpUir
+ uiplige + Upllity] — 3@} .
PkkapPrrPll
Therefore,
.. u;0;
428) Lo=plojj+4———
( ) g P 0Oij (1+|vu|2)u
pkpr < I%kpr Izkplzr + Ekrﬁp + Ekfpr Ekﬁpﬁr)
> g2 4P (2P0 b i Yy
PrkPppPrr N K K2 K3
Ky KiK
3 PherPler (# Lo l) +81+S,.
PkkPppPrrPl N K K2

Recall that a point P near (0, 0, u(0, 0)) has been fixed, and a rotation of coordinates
has been performed about P so that {p;;} is diagonal at P. Consequently, {h;;} is
diagonal at P as well. Thus,

(4.29)
and

(4.30)

P11P22 = W4I% = Iz(l + |Vu|2)2,

pi + pa = wrwhy +hy) = 2wH.

Welet H = “ (hyy + hay).

Since

(4.31)

we see that
(4.32)

We have
(4.33)

2H = guhn +g22h22

2 2
:M2<1—%)h11+uz<1—%)h22
w w

u? 12
2 1.2 2.2
=u"(hi + hyp) — ﬁu hiy — ﬁu hy

< 2H,
2 ~
2H > —2H.
w
0<pn, pn<2wH<2wH.
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Thus,

1 i 2wPH 2H
(4.34) 0« — = Pismi W2
Pii PiiP3—iz—i wiK KW

Also, by assumption, |Vu|(0,0) = 0, so |[Vu| < 1 near (0,0). In the above coordi-
nates at P,

|Vul>(P) = uf + u5.

So, we have |u;| < 1, |uz| < 1. We may also assume u > 1 near (0,0). Moreover,
at P,

.S Pipr

o PRkDppPrr '
Thus for each fixed k, p, r, we have
2
A <o
PkkPppPrr
and
| pipr| < o',
\/ PkkPpp Prr
Now, at P,

VK| = K2 + K2,
|V2K|> = K} +2K%, + K2,
|V3I(|2 Z kpr*
kpr

Therefore, from (4.28),

(4.35) ’Z _2Pkr (Kﬁ (KK, + KKy + K Ky) 2Kk1<p1<,> ’

o PRkDppPrr K K2 K3
1 3K| 3|V2K||VK| 2|VK]?
<ZZ |Prpr] (\V~|+ v ~||V|+ \V~|)
or \/PkPppPrr A/PkkPppPrr N K K2 K3
K| 3|V2K||VK| 2|VKP 1
< 201 ( VKL IVRIVR]  209RPY 5~
K K2 K e [0y
12 (IVPK|  3|V2K||VK]|  2|VKP 222
20 — + = + —= =
( K K2 K3 ) - K3/2w3/2
_ 21232 E1/2|V3E|+3|VZK|\VK| +2|VKP ol/?
3/2 e 1% K
w K1/2 K3/2 K3
< £ 1/2
— E:ﬁ )
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where C is a constant depending on the maximum of L near (0, 0), |K|c:, K'/2|V*K],
|VK|/K"/2, and the maximum of H. Next, still from (4.28),

3 Ky KK
(4.36) ‘— PPl (8 2 l)‘
PkkPppPuPrr N K K2
- <\v21<\ ) |VK|2> > 31prpr |pipr 1
< T e it N/PRDppPrr/PrrDpp P VPP
2K K2 H
§3o(|v~ | +&) X 2% =—
K K2 Kw
C
< —o.
<%

Finally, estimates are to be obtained for |S; | and |S,|. From (4.22), (4.23), (4.24), and
the assumption that u > 1 near (0, 0), we know at P that

|utipr| < [pprl +2,

(4.37) [upr| < |ppr| +2 < 2w’ H + 2,
and
Ulkpr = —Pkpr — UkUpr — Urlkp — Up Uk,
(4.38) |tk | < utipe| < |piprl + 3> (Ipprl +2)
pr

< |pkpr| + 24w’ H + 24

< o'\ /pBpprr + 24W° + 24
< o2 x 2222 4 24w H + 24.

Now for |S;| we have,

8| ptor 1
(4.39) 18;] < [P
\/pkkpppprr \/pkkpppprr

48|pkpr‘ 1
\/PkPpp Pl A/ PikPpp Prr

32|pkpr| 1
\/PkkPppPrr v/ PkkPppPrr

> uiprtsix] + |ttiptsie| + [tirtinp )
ikpr

Z |ttguige|(|tipuir| + |uivinp|)
ikpqr

E |iktap tgr ity
iklpgr

12‘pkprplpf| 1 Z(|u-lu-k‘ + |M'U'kl‘)
/PP ppPre~/PrePppPil N/ PikPll < o h

bl LS gy
/PPy Prr/PrrPop il /PRIl St e

=I1+1I+II+1IV +V.
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23/2H3/2

= X

K3/2w3/2

x 32w’ H +2) (Z |pipr| + 24w H + 24)

(4.40) C C
= 12 . o~ 1)2
= 123/2(7 Z |pipe| + 123/20
ipr

1< 802 x 2% x

C C 1

23/2H3/2
K3/213/2
(4.41) x 222w’ H +2)% + Qw’H + 2)(c'/22°Pw?PH>/? 4 24w H + 24)]
< —NC R
K3/2 K3/2
23/2H3/2

K3/243/2

IT < 4807 x 23 x

)

11 < 320"/ x 2% x x 202w’ H +2)
(4.42)

01/2’

< =
— K3/2

H
1V <120 X 8 —
Kw

(4.43) x 22[2w’H +2)* + 222w PH?2 62 4 24w’ H + 24)

< =0+ 203/27
K K

8H C
(4.44) V <240 x — x 2*2w’H +2)* < =o0.
Kw K

Combining equations (4.39)—(4.44), we get

C

Similarly, we have

8 pxpr| 1
N/ PkkPppPrr \/PkkPppPrr

(4.46) || < > " Bluikttpe| + 4| ugtsipe|]

ikpr
N Z 12| prti Prpr Pipr| o
ipr V/ PkkPii Pii\/PkkPpp Prr/PrrPpp Pl "
23/2H3/2
<80 x 2P x ——
K3/23/2

x 2*[32wPH +2)% + 4(0'/22°Pw?PH? 4 24w H + 24)]
+ 12077 x 2° x 21232 H'/?

< =02+ NLU +Co’/2.
K3/2 K3/2
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Therefore,
C
(4.47) Lo>0*— =0
K3
— Co2.

Moreover,

=l Q

al/? o 1
B2~" K K
3/2
7 <sot+ 2.
K o0K?
Therefore, choosing § > 0 small, we have
o? C
(4.48) Lo > — — —. |
2 K

Following the idea of [[a92], we obtain an estimate for K?cand K |VH| near (0, 0)
and finally prove Theorem 1.2.

Lemma 4.3 Let X: (S*,g) — (H°,h) be a C* isometric embedding, and g € C° a
metric with positive Gauss curvature K. Then

K*s <C, K|VH|<C,

where C is a constant depending only on the maximum ofi near (0, 0), the maximum
of |K|c2, the maximum of K'/?|V>K|, the maximum of |V*K|/K, and the maximum
of mean curvature H.

Proof Recall that

detHessp

(4.49) u*w?K.

detg
Without loss of generality, it is assumed that [Vu|(0,0) = 0 and that the inner
normal of embedding is chosen so that the mean curvature H is positive. Now let
0 < f = K?0. If f has its maximum away from (0, 0), then the estimate follows
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since the equation (4.49) is uniformly elliptic there. So assume f achieves its maxi-
mum at Q, where Q is in some small ball centered at (0, 0). Then

filQ =0, {fijQ}<o0
holds at Q. Since {p'/} > 0, pijfij(Q) < 0. Computing, we have

(4.50) fi = 2KK;o + K203,
(4.51) fij = 2KiK;o + 2KK;jo + 2KK;0; + 2KK;0; + K*0;.
Combining (4.50) and (4.51) we get
(4.52) fii = 2KK;j0 — 6K:Kjo + K*0;;.
Therefore,
(4.53) 0> p'lfi; = 2pK;;Ko — 6p''KiK;o + K*pli o,
and
(4.54) Iz4pijaij < 6pij1?ilzjf — 2p"11?,-,-1?f.
Next, (4.1) can be rewritten as
4
(4.55) K'Lo = K*plio; + (Iﬁ% > %ﬁ —C.
Thus,
R4y o
(4.56) f2 <20+ 2K oy + u?ﬁ%
< 2C + 12pKK; f — 4p"K; ;K f — m.

Since |Vu| < 1 near (0, 0), we have |uif,-| < |VE| Moreover, at Q,
(4.57) 0< p"jI?iIZj = p“IZf + p”[@z
K} K} 2H -, -~
=1+ 2 < (K1+K3)
P11 P22 Kw

_ 2H|VKP
= T
Similarly,
.~ -~ KuK KnpkK
(4.58) PR K| = 1= 4 =2
P11 P22
2H ~
< —|VK|.
w

So, we have 2(Q) < C + Cf(Q). This shows that K2 is bounded.
Next, we are going to estimate K|V H|. We know that

1 uju;
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Differentiating and multiplying by K we get

~ ~ 1 s 1 N
(160)  2RVH= Kv( (8, — ) ) i+~ (8= 1) Ry
w w w w
Since the first term is bounded by |X|c2, we only need to find a bound for the second
term. We have

(4.61)
1 Uildj\ ~ 2 1 Uilj 2 = 2
‘;(51‘]‘ ~ 2 )Kpijk’ < Hll’cjlx ;(51‘1‘ T ) (2%|Kpijk|)
ij.
1 uiuj\ |2 ~ 5
<o (5, 2)[5(52000)
i,j,
1 uiuj\ |2 =~ ngjk
= max —(6,7 - ) S(ZK 7Piipjjpkk)
i lw w x PiPiiPk
1 wiui\ |2~
< max| - (6 )| 8K x swH.
ij w

We can see that every term on the right-hand side is bounded. Therefore, we have
K|VH]| is bounded. [ |

4.2 Proof of Theorem 1.2

Now we are ready to prove Theorem 1.2. The proof is the same as in the Euclidean
case (see [1a92]). For completeness, we include it here.

From Theorem 1.1, we know that there exists X, € C!! realizing ¢°. Now choose
a sequence of C* isometric embedding {X.} and corresponding metrics {g°} such
that [|g° — g°csy — 0, [ Xe — Xollcraey — 0, the extrinsic Gauss curvature
K¢ > 0, and H® > 5> where by assumption 0 < ¢ = liminfq_,p, H(Q). Then
from Lemma 4.3,

(4.62) K|V H"

«<C

on B,,(P;) where r; and C are independent of €. Also, on S*\B,,(P;), the {1%6} are
bounded from below. Therefore, by standard elliptic theory, K|V H ;e < C on
S*\B,,(P;) and C is independent of €. Hence,

(4.63) K|V H

¢ <C

on $2.
Now, since H® > ¢/2 > 0, there exists r, > 0 independent of € such that in B,,(P;)

(4.64) (H)?> =K > ¢y > 0.

Fie=H —\/(H)? — K¢

Hence,
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is differentiable, and
KV H L Ve K
1/(I_Ie)Z _Ee(Hé_’_ ,/(Hé)Z _Ee) 21/(He)2 _ﬁe'

From (4.63) and (4.64), it is easy to see that |V, | < C, where C is independent
of e.

ngK/l,e =

5 A Priori Bounds in n-dimensions
5.1 Formulas on Hypersurfaces and Some Basic Identities

In this section we recall some basic identities on a hypersurface that were derived
in [GS11] by comparing the induced hyperbolic and Euclidean metrics. In the fol-
lowing, we identify H"*! with the upper half-space model.

Let X be a hypersurface in H""!. We shall use g and V to denote the induced
hyperbolic metric and Levi—Civita connection on X, respectively. As X is also a sub-
manifold of R"*!, we shall usually distinguish a geometric quantity with respect to
the Euclidean metric by adding a ‘tilde’ over the corresponding hyperbolic quantity.
For instance, g denotes the induced metric on X from R"*!, and V is its Levi—Civita
connection.

Let x be the position vector of 3 in R"*!, and set u = x- e where e is the unit vector
in the positive x,,;; direction in R"*!, and ‘-’ denotes the Euclidean inner product in
R™1, We refer to u as the height function of ¥..

We assume that ¥ is orientable and let n be a (global) unit normal vector field
to X with respect to the hyperbolic metric. This also determines a unit normal v to
3 with respect to the Euclidean metric by the relation

V=—.
u

We denote " = e - v.
Let (zi,...,z,) belocal coordinates and 7; = %, i =1,...,n. The hyperbolic
and Euclidean metrics of X are given by

&= (1i,7j), &j =77 =g
The second fundamental forms are
(5.1) h,‘j = <DT,.T]-,n> = —<D7-,.n,7'j>,

hij=v-D,7j = —7j- DV,

where D and D denote the Levi-Civita connections of H™' and R™*!, respectively.
The following relations are well known (see (3.5)):

1~ l/n+1~
(5.2) hij = ;hi]' + 7142 8ij
and
(5.3) ki =ur; +v", i=1,...,n
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where K1,...,K, and Ky, ..., K, are the hyperbolic and Euclidean principal curva-
tures, respectively. The Christoffel symbols are related by the formula
~ 1 ~
(5.4) Ffj = Fi’{j — ;(uiékj + ujéik — f‘lulg,-j).
It follows that for v € C2(Z),
- 1 _
(5.5) Vi]—v =Vij — Ff]-vk = Vi]-v + ;(uivj tujvi — ?lulvkgi,—),
where
ov v .
V= —, V= , el
Y0z Y Oziz;
In particular,
~ 2u;u; 1 .
(5.6) Viju = Viju+ ; L ;gkluk”lgij
and
1 1 ~ 1 ~

(5.7) Vij; = —Eviju + Egklukulgij-
Moreover,

% 1 1~ 1 ~
(5.8) vij; = Vvi]'; + ;VUV — ;gklukvlg,-j.

In R"™,
(5.9) Fuay = |Vul> =1 - ("), Viu= Z,y"“.
g j j

Therefore, by (5.3) and (5.7),

1 il 1 -
(510) VU; = 77142 h,] + $(1 — (Vn+1)2)gij

1 n
= (&j—v hij).

We note that (5.8) and (5.10) still hold for general local frames 71, . .., 7,.

5.2 Proof of Theorem 1.3

For simplicity, in this subsection we are going to do calculations in the upper half-
space model.

Let g be a C* metric of nonnegative sectional curvature on $”, and let X: (S",g) —
H"*! be a C* isometric embedding into the hyperbolic space H"*! (we assume that the
critical points are finite and isolated). Then, as in [Po64], for any point P € X(S§") we
can always construct a convex cap w, such that P € w and Jw is a n — 1 dimensional
submanifold with positive curvatures. Using the techniques introduced in Section 3,
we can always assume that w can be represented as a graph over R" x {0} in the
half-space model, and on Ow the height function satisfies u = ¢ > 0.

When w is strictly convex, we can apply results of [GSS09] directly and obtain
a priori bounds for the principal curvatures that only depend on the metric g on
X Yw) C S
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When there exists a critical point, say Py € w. By lifting
w = {(x,u(x)) ’ xEIR{”} to w'= {(x,u(x)+e) ‘ xE]R{”}, €e>0

small, we obtain a sequence of g¢ € C* (X -1 (w)) with positive sectional curvatures
which are isometrically embeddable in H"*!, and g¢ converges to g on X~ (w).

Now we are going to generalize the result we proved in Section 2 to n-dimensions
(n > 3), and in the following, for convenience, we drop the dependence on € in our
notation.

Theorem 5.1 Let g be a C* metric with sectional curvature > —1 and let
X: (8",g) — H"™! be a C* isometric embedding. Suppose the sectional curvature S

of g satisfies
(i) S(P;,x) = —1forsomex € N*TpM, 1 <i<mn;
(i) S(Q) > —1 for any Q # P;, where {P;} € S" are finite isolated points.

Let H be the trace of the second fundamental form of X, and let R be the extrinsic scalar
curvature of g. Then the following inequality holds:

(5.11) H?* < C1|AR| + C5(R* + R),

where Cy, C, only depends on the metric g and dimension n.

Proof Similar to Section 2, we consider a function f = e« H in Br(X (Po)) with
a > 0 to be chosen later. By the procedure introduced in Section 3, we can assume
u(X(PO)) > 1and Vu(X(Po)) = 0 in the upper half-space model. Choosing r > 0
small enough, we have (+"*')> > 1 — (minu/4 maxu)? in B,(X(Pp)). Assume f
achieves its maximum at an interior point Q € B,(X (Po)) . We choose a local or-

thonormal frame 7y,. .., 7, around Q. For convenience we shall write v;; = V;;v,
hijk = th,j, hijkl = V,khi]-, etc. Then at this point we have

(5.12) ﬁ:a(%)iH—i—Hi:O,
(5.13) fij=et (aH(%) - azH(l) (1) +Hy) <o,

ij u’si\u’sj
Since R = H? — tr A2, by (5.12), we have
(5.14) AR =2HAH +2|VH[* — 2|VA|* — 2l Ah;;
1\ |2 y y
< 2HAH + 2042‘ v( 7) ’ H? — 21 Hyj + 20 (R + Ry L),
u

Also,

(5.15)
2(trA?)? —2tr A trA = 2(H> — R)?> —2tr A’ tr A

< 2(H* — R)* —tr A{2(tr A)> — 3[(trA)* — trA*] tr A}
< —H’R+2R?,

where we used 3(3"x) (X x) < (O x)> +2) x, forx; > 0,1 <i<n.
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Letd> = 1 — (v"*!)2. Combining (5.15) and (5.14), we get
(5.16)
a“d

AR < 2HAH — 2h7H;j + 2——H* + 2h"7 [(hjihy — hjchy) — (gjign — gixgi)JH™
u

+ 2hI[(W¥hy — WEhy) — (ghgn — nggli)]hlj

— 2HAH — 2hH;j + 2a:f2 H? +2[(tr A% — tr A® tr A

— 2k gijguh™ + 2hgjuguh™ — 2h' gl guh’; + 2nh'l g
< 2HAH — 2h"H;; + 2a:f2 H? — RH® + 2R* — 2H* + 2n(H* — R)
< 2(Hg' — Wi)H;; + 20‘sz H? — RH? + (2n — 2)H + C5(R® + R),

u
where we used (5.9).

AtQ, o
(Hg” —h")f;; < 0.
We have
(5.17)
L L 1 o1y 1
(Hg'l — Wi)H;; < (Hg — h”)<aH() ta H(f) (7) >
u/sij u’si\u’sj
< —atgT — 1) Loy~ Cn) varrgi(L) (1)
- u u u/i\u/j
< —aH?*(n—1) LOHR L azdzzHZ.
u u u
Therefore,
(5.18) AR < _ZO‘(Z “Dip s Zame Y
2172
+ 4042% — RH? + (2n — 2)H* + C,(R* + R).
By
RHQ2au\/1 — d? — H) < Ra*u*(1 — d*),
we have
(5.19)

W AR < —2au(n— V)H? + 4a*d*H? + 2n — 2)u*H? + *1*(1 — )R+ CL(R* + R).

Choosing o = mig;sln) —(maxxs») u)*, we have
-1
(5.20) AR < 7(n —1)’H?> + CL(R* + R).
Thus
(5.21) H? < C1|AR| + C5(R* + R). ]
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