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The Mod Two Cohomology of the Moduli
Space of Rank Two Stable Bundles on a
Surface and Skew Schur Polynomials

Christopher W. Scaduto and Matthew Stoffregen

Abstract. We compute cup-product pairings in the integral cohomology ring of the moduli space
of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier.
The resulting formula is related to a generating function for certain skew Schur polynomials. As an
application, we compute the nilpotency degree of a distinguished degree two generator in the mod
two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus,
and describe the subrings invariant under the mapping-class group action.

1 Introduction

Let X, be a closed, oriented surface of genus g, and let N, be the moduli space of flat
SU(2) connections on X, having holonomy -1 around a single puncture. The space
Ny is a smooth symplectic manifold of dimension 6g — 6, and twice the class of its
symplectic form, denoted a, is a generator of H*(Ng;Z). If 2, is given a complex
structure, then N, can be identified with the moduli space of stable holomorphic
bundles of rank two with fixed odd determinant.

The betti numbers of N, were first computed by Newstead [New67]; Atiyah and
Bott [AB83] later showed that H*(N;Z) is torsion free. Newstead [New72] also
showed that the cohomology ring is generated by integral classes «, B, ¥1, . . ., Y24 over
the rationals. Here f3 is degree 4, and each y; is degree 3. Newstead conjectured the
relation 3¢ = 0, which Thaddeus [Tha92] and Kirwan [Kir92] proved . A beautiful
presentation for the rational cohomology ring of N, was established by several au-
thors [Bar94, KN98,ST95, Zag95] following the work of Thaddeus [Tha92].

The nilpotency degree of an element x in a ring is the smallest # > 1 such that x” = 0.
In the integral cohomology ring, the nilpotency degree of f is equal to g, while that
of a is equal to 3g — 4 = 5 dim N, +1, since « is proportional to the symplectic form
class. The situation is quite different with Z,-coefficients. First, the mod 2 reduction
of & can be realized as w,(E) of an SO(3)-bundle E over N, for which = p,(E).
By the general relation w,(E)? = p;(E) mod 2, «* = B mod 2. In particular, f3 is a
redundant generator over Z,. Indeed, Atiyah and Bott [AB83] told us that to generate

the cohomology ring over the integers, we need the classes «, i((x2 =B V15 Yo
and additional classes di, ..., 82¢-1. Here §; has degree 2i. We will see that we only
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need the mod 2 reductions of &, y1,..., ¥, and 8, for 2 < 2 < 2¢ - 1 in order to
generate H*(Ng; Z,).

The moduli space N, embeds into the moduli space M, of projectively flat U(2)
connections on X, of fixed odd degree without fixed determinant. This is again a
smooth symplectic manifold, now of dimension 8¢ — 6. It has a corresponding degree
two class a; € H*(M,; Z) that restricts to a. The nilpotency degrees of & and a; with
Z,-coefficients are as follows.

Theorem 1.1  The nilpotency degree of a as viewed in H*(Ny; Zs) is equal to g:
a8=0 (mod2), a®'#0 (mod?2).

On the other hand, the nilpotency degree of ay as viewed in H*(Mg; Z5) is equal to 2g:
al¥=0 (mod2), a*'#0 (mod?2).

To establish that a® is zero mod 2, we consider its cup product pairings with mono-
mials in the generators listed above. The pairing formula will be expressed as the ex-
traction of a coefficient from a formal power series whose coefficients are symmetric
functions. To state the result, it is convenient to introduce the rational cohomology
classes &; on N, that satisfy

d 2g—1—j) ay i d (Zg—l—j) ayiti
11 i = -—) &, 6= - .
& Jgo(i_j (5) o a=n ()5 s
More precisely, the left-hand formula in (1.1) may be taken as the definition of §;, and
the right-hand formula is the induced inverse relation between the §; and &; genera-
tors. Note that 2°¢; is an integral cohomology class for N, of degree 2i. Next, we let
e; denote the i-th elementary symmetric function, and m, the monomial symmetric
function associated with a partition A. Define U(T) = 3,59 m(2n)(=T)" as a power
series with coefficients in the ring of symmetric functions. Here, the notation (2"1)
stands for the partition with 1 one and » two’s. Also define
Q(T)=er+esT+esT>+e; T+ = Y erut T

nz0
We write x[ N, ] for the evaluation of a top-degree integral cohomology class x against
the fundamental class of N,. The following, along with (1.1), computes the pairings
01,0, --- 61, [ Ng], and is the main technical result of the paper.

Theorem 1.2 Suppose A = (A1, Ay, ..., A,) is a partition of 3g — 3. Then we have

E,860, 6, [Ng] = % : r(nloTegffl[U(T)g/Q(T)].

We obtain a similar formula for pairings on M,. Since J; is a non-zero multiple
of &, Theorem 1.2 can be used to compute pairings involving both powers of a and
0; classes. In the sequel, we will also write down pairing formulas involving the y;
classes. The proofs of these pairing formulas follow the computational framework
of Zagier [Zag95], whose starting point was Thaddeus’s formula for the intersection
pairings involving the Newstead classes a, 8, y1, . .., ¥ag.
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A(n,3)/A(n,0) — A(n,2)/A(n,0)

Figure I. 'The skew tableaux defining the skew Schur functions in 1/Q(T) and 1/E(T),
where n = 6.

As pointed out to the authors by Ira Gessel, up to some renormalizing, the recipro-
cal power series 1/Q(T) is a generating function for the skew Schur functions associ-
ated with a particular family of skew partitions. We briefly explain this. Let A(n, m)
be the partition (n,...,n,n—1,n-2,...,2,1), where n appears m times. Note that
A(n,0) =(n-1,n-2,...,2,1). In general, if A and y are paritions, the skew partition
A/u is pictorially the result of drawing the Young tableau for A and deleting the part
of the tableau given by u. See Figure 1. To any skew tableau A/yu there is defined a
skew Schur-symmetric function s, /,. In Section 4.3 we will explain the identity

(12) 1/Q(T) = Y e " Msagnay/a(moy (= T)"
n=0

As the power series U(T) is comparatively simple, we see that the complexity of
the cup-product pairings among the §; classes comes from the skew Schur functions
SA(n,3)/A(n,0)-

Theorem 1.2 allows us to explicitly describe the ring H* (N,; Z, ) for low genus, and
we do this in Section 6. Ideally, we would like to find presentations for these rings that
are as nice as the recursive presentations for H*(Ng; Q) as found by [Bar94, KN98,
ST95, Zag95]. However, as our computations suggest, the situation for non-rational
coefficients seems more complicated.

The manifold N, may be given a complex structure, and is in fact an example of a
smooth Fano variety. In particular, in place of the §; above, we can consider the prod-
ucts of its Chern classes. Here another power series E( T') with coefficients symmetric
functions appears:

E(T)=1+e;T+esT? +egT> +--= ) ey, T".

n=0

The analogue of (1.2) is the relation 1/E(T) = ¥,,50 S1(n,2)/A(n,0) (=T)". We then have
the following, whose proof is very similar to the proof of Theorem 1.2.
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Theorem 1.3 Suppose A = (M, Az, ..., Ay) is a partition of 3g — 3. Set ¢; = ¢;(TNy).
Then

encny e er, [Ngl = (<2)%7 - nggﬁ[U(T)g/Q(T)E(T)]-

This theorem has the following application. From [New?72, §4], we know that the
total Pontryagin class of Ny is equal to (1+ $)*¢~2. The relation f¢ = 0 mentioned
above then implies that all Pontryagin numbers of N, vanish. It is easy to see from
Theorem 1.3 that the Chern numbers of N are all even, and hence all Stiefel-Whitney
numbers of N, vanish. A theorem of Wall [Wal60] says that two closed, oriented
manifolds are oriented-cobordant if and only if they have the same Pontryagin and
Stiefel-Whitney numbers. We then deduce the following, which we suspect was al-
ready known, but for which we could not find a reference.

Corollary 1.4  The manifold Ny is oriented null-cobordant.

We make a few historical remarks. The classes §; are Chern classes of the direct im-
age of a universal rank-two complex bundle over the moduli space N. The Riemann-
Roch formula gives expressions for its Chern classes in terms of the more basic classes
«, B, ¥;. The direct image bundle has rank 2¢ — 1, and so the expressions one obtains
for Chern classes in degrees higher than 2g — 1 are relations in the cohomology ring.
Mumford is usually credited with conjecturing that these expressions, at least in the
case of M, form a complete set of relations [AB83, p. 582]. This was proved by Kirwan
[Kir92]. The beautiful recursive presentation for the rational cohomology ring found
later by [Bar94, KN98, ST95, Zag95] uses relations that are most naturally viewed as
Chern classes of a bundle over N, induced by an embedding into a Grassmannian
[ST95, §1]. However, Zagier showed [Zag95, §6] that they can also be recovered from
the Chern classes of the direct image bundle. We mention that the relation a$ = 0
(mod 2) of Theorem 1.1 can actually be recovered from this recursive presentation,
but the authors did not see how a8~ # 0 (mod 2) and the other results presented here
follow from it.

The work presented here is motivated by a problem in instanton homology with
mod two coefficients, and in particular, the analogue of Muiloz’s work [Muii99] in
characteristic two. The mod 2 instanton homology of a surface times a circle with non-
trivial SO(3)-bundle should be a deformation of the ring H* (Ng;Z;,), and should
agree with a version of the quantum cohomology of the symplectic manifold N, with
mod 2 coefficients. We expect the nilpotency degree of « as viewed in this deforma-
tion, perhaps in the ring modulo the y; classes, to be related to homology cobordism
invariants defined in unpublished work by Freyshov using mod 2 instanton homol-
ogy. The analogue in rational coefficients is the nilpotency degree [g/2] of § mod y
that appears in Froyshov’s inequality [Fy04, Theorem 1] for his h-invariant. See also
the related paper [CS]. The authors plan to return to these motivations in forthcoming
work.

In a spin-off article, we will use the computations here to study the mod two betti
numbers of the framed moduli space, which is an SO(3) bundle over N,. These betti
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numbers are determined by the ranks of the maps on H'(N,;Z,) given by cup-pro-
duct with the degree two class a.

1.1 Outline

Background is provided in Section 2, as well as several useful results regarding gener-
ators for the cohomology rings of N, and M, for different coefficient rings. In Section
3 we review Thaddeus’s pairing formula for the Newstead generators. In Section 4 we
prove Theorems 1.2 and 1.3 and discuss some of their implications, as well as the re-
lationship with skew Schur functions. In Section 5 we prove Theorem 1.1. Finally, in
Section 6 we present computations obtained using Theorem 1.2, and describe the mod
two cohomology rings of N, for low genus.

2 Background and Generators

In this section we describe sets of generators for the cohomology rings of N, and M,
for different coefficient rings. We also write down generators for the subring of the
cohomology of N, invariant under the mapping class group action. As we proceed,
we will introduce some necessary background, but see [Tha97] for a more proper
introduction. We take a moment to emphasize here an important point about our
notation regarding the generators §; and d; introduced below. Singling out a handle
of the surface X, induces embeddings of N,_; and M,_; into N, and My, respectively.

Caution. The restriction of 6; € H* (Ng; Z) is not equal to 8; € H*' (Ng_;Z). Simi-
larly, the restriction of d; € H* (Mg; Z) is not equal to d; € H* (My_1; Z).

For this reason, in the sequel we sometimes write d, ; and dg,; for §; and d;, re-
spectively. Finally, we mention that the contents of this section are derived mostly
from Atiyah and Bott [AB83], with the help of some additional observations.

2.1 Integral Generators for the Cohomology of M,

We begin by defining the Atiyah-Bott generators for the ring H* (M_;Z). Central to
the discussion is a universal rank-two holomorphic bundle Uy - M, x X,. There is
an ambiguity in the choice of this bundle: tensoring by any holomorphic line bundle
over M, x X, produces another, possibly non-isomorphic, universal bundle. Atiyah
and Bott fixed their choice of universal bundle by starting with any universal Uy and
defining the following normalized bundle:

Vg = Ug ® f*(det(Ug|a,)®¥ ® det(fiUy)).

Here and throughout, f denotes the projection from Mg x X, onto M. The notation
fiUq denotes the direct image of Uy, which in our situation is a genuine holomor-
phic bundle of rank 2g — 1, with its fiber over y € M, equal to H%(Zg; Ugl, ). We re-
mind the reader of the Grothendieck-Riemann-Roch theorem in this setting: writing
w € H*(Z4;Z) for the orientation class of the surface £, for any holomorphic vector
bundle W lying over M, x X, we have

21) ch(AW) = fu(ch(W)(1 - (g -Dw)).
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From this one can obtain expressions for the Chern classes ¢;(f,V,) in terms of ex-
pressions for the Chern classes ¢; (V). Since Vj itself is rank two, the only non-zero
Chern classes are ¢;( V) and c;(Vy). The first of these can be written as

28
(2.2) a(Ve)=a1®1+) b/ ® fj+ (4g-3) ® w.
j=1

Here we are using the Kiinneth decomposition of H* (M, x X,), and we have fixed a
symplectic basis fi, ..., fo4 of H'(Z4;Z), such that, for 1 < i < g, we have f; fi ;=
and f;f; = 0 for j # i + g. Next, the second Chern class can be written as

2g . g o
3 a()-melr)bef+((g-Da- L6k oo
j=1 j=1

The terms appearing in front of w were computed in [AB83]. Other than these tail
terms, the expressions (2.2) and (2.3) implicitly define the elements

a e HH(MgZ), a,eH'(MgZ), bl eH (MgZ), b)eH (MgZ),

in which 1 < j < 2g. Next, we use the direct image bundle to define the classes d; =
dgi = ci(fiVy) € H¥(Mg; Z), for 1 < i < 2g — 1. We remark that the Riemann-Roch
formula (2.1) implies d; = (g—1)a;, which can be written more explicitly as ¢, (fi V) =
(g = Dar(Vglm, ). This is briefly explained below. As warned in the introduction to

this section, in contrast to the classes ay, a,, b{ , b;, the restriction of dg,; to Mg_ is
not equal to dg_; ;. This is evident for dj, as just seen, and will be clear more generally
from the formulas below. We now state the fundamental result due to Atiyah and Bott.

Theorem 2.1 ([AB83, Theorem 9.11])  The elements a,, a,, b{, bg, d; generate the ring
H*(Mg;Z), where the indices run over 1 < j<2gand2<i<2g-1

Since d; is an integral multiple of ay, it is in fact redundant. We can also show that
the generator a, is redundant for certain coefficient rings, as follows.

In principle, all the classes d; can be computed from the Riemann-Roch formula
(2.1) as rational expressions in the generators ay, a,, b, b}. We will, essentially, ac-
complish this later using a computational framework set up by Zagier. As a basic
example, however, we consider the computation of d,. First, we remind the reader of
the first few terms of the Chern character:

1 1 1 1
ch=rk+c +(fc2—c)+(7c3—fcc +7C)+...
B A A R A
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Here ch is the Chern character of any complex vector bundle, rk is the rank, and ¢;
stands for the i-th Chern class. To begin using Riemann-Roch on our universal bun-
dle Vg, we first note that the powers of ¢;( V) and ¢, (V) are straightforward to com-
pute:

2¢ .
a(Ve)"=al®@1+n) al'b ® fj+ (n(4g-3)ay ' = n(n-1)aj *B;) ® w
=

2¢ .
(V)" =ay®l+ny ay 'b)® f
i1

+(n(2g-D)aay " —nBiay '+ n(n-1)ay ’B;) ® w

Here we have set B; = f=1 b bfg for i = 1,2. As the bundle V, has rank two, we
know that all Chern classes c;(V,) for i > 3 are zero. It is then a routine matter to
write out the first few terms of ch(V,) — (¢ — 1) ch(V;) - 1® w, and then apply f.,
which simply picks out the terms in this expression that factor out an w. Setting this
equal to ch(fiVy) = tk(fiVg) +di+ 2df —dy +- -, as (2.1) dictates, yields the equalities
tk(fiVy) = 2g —1and d; = (g —1)a,, which were mentioned above, and also

(24) d2:%((g—l)(g—2)a12+(2g—1)a2+alBl—B12),

where By, = Zf.:l b{ bfg - b{+g bé. From this equation we see that a,, multiplied by
the number 2¢—1is equal to an integral expression in the generators aj, b}, b3, and d,.

Corollary 2.2 If m and 2g — 1 are coprime, then the residue classes of the elements
a, b}, b3, d; generate the ring H* (Mg; Zy, ), where the indices run over 1< j < 2g and
2<i<2g-1

Finally, we take a moment to mention an elementary, but important, point. Recall
that the cohomology ring of any space is a graded commutative ring. This means that
ab = (-1)!*I¥1pa for any two homogeneously graded elements a, b in the ring, where
|a| denotes the grading of a. When we take the tensor product of two such rings, the
product is the graded commutative product, given by

(a®@b)-(ced)=(-1)llgc & bd.

This is relevant in the above computations, all done in the context of a Kiinneth de-
composition, and the reader should be aware of this for the computations below.
When all elements involved are of even gradings, as is often the case, there is, of course,
no difference between this product and the ordinary product induced by tensor prod-
uct.

2.2 The Redundancy of Some Generators Over Z,,

Here we explain why some of the d; are redundant generators when working over
the field Z,, for p prime. We begin by recalling where the Atiyah-Bott generators for
H*(Myg;Z) come from.
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Recall that M, can be identified with the moduli space of projectively flat connec-
tions on a U(2)- bundle P over X, with odd first Chern class. Let & be the gauge
group consisting of bundle automorphisms of P, and write & for the quotient of 4 by
its constant central U(1)-subgroup. Further, write € for the affine space of connec-
tions on P, and % for stratum of projectively flat connections. From the holomorphic
viewpoint, this is the semi-stable stratum. Atiyah and Bott showed that there is an in-
duced surjection in equivariant cohomology HZ (3 Z) - HZ(%s; Z). Indeed, they
showed that the Yang-Mills functional on ¢ is equivariantly perfect Morse-Bott, and
s is the manifold of absolute minima. The domain of this map can be identified with
the ordinary cohomology of the classifying space B¥ and the codomain with that of
M. They then obtain the generators for the cohomology of M, from generators for
that of BY. The generators for the cohomology of BY are obtained via the homolog-
ical triviality of the following three fibrations:

QU(2) BT# BY* IT BU(1) —— BT
U(2)% BU(2) BY

We have written ¥* for the based gauge group and QU (2) for the identity component
of the based loop space of U(2). The classes a; and a, come from generators for the
cohomology of BU(2), while b{ and bé correspond to generators of the j-th factor
of U(2) inside the product U(2)?¢. The generators d; are replaceable by generators
e; that can be traced back to generators for the cohomology of QU(2). See [AB83,
Proposition 2.20] for more details.

Recalling that the loop space of a circle is homotopy equivalent to a countable set
of points, and that U(2) is topologically a circle times a 3-sphere, we conclude that
the based loop space of U(2) is homotopy equivalent to Z x QS?, and in particular
QU (2) can be identified with the loop space of the 3-sphere. Now, the cohomology
ring of QS? is well known to be isomorphic to a divided polynomial algebra. Recall
[Hat02] that the divided polynomial algebra I';[ x ] at level n, for some even integer n =
deg(x;), is a ring with generators x;, for i > 1 with deg(x;) = ni, such that x¥ = k!x;.
Consequently, x;x; = (i:fj )x,ur j- Note that as a rational algebra, I'[x] ® Q is generated
by x;. The cohomology ring of QOS> is isomorphic to I'z[x] with deg(x;) = 2.

For a prime number p, the divided polynomial algebra Iz, [x] over the field Z,
does not need nearly as many generators. In fact, see for example [AB83, Proposi-
tion 2.20], we have an isomorphism Iz, [x] = ®;s0 Z) [xpi]/(xﬁ,. ). Since the lifts of
the generators d; in the cohomology of BY as in [AB83] come from generators for
the cohomology of QU(2) via the homological triviality of the above fibrations, over
Z, one only needs the mod p residue classes of the generators d:.

Corollary 2.3  If p is prime, then the residue classes of the elements a,, a,, b{, bé, dyi
generate the ring H* (My; ., ), where the indices run over1 < j < 2gand2 < p' <2g-1.
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2.3 Integral Generators for the Cohomology of N,

We now proceed to the generators of the fixed determinant moduli space N,. Using
the Kiinneth decomposition of H* (N, x Z), we implicitly define

ae H*(NgZ), y;je H'(NgZ), PeH*(NgZ),
in which 1 < j < 2g, by the following Chern class expression, with constants arranged

to follow the standard conventions in the literature:

28
(2.5) c2(End(Vy)|nyxz,) = —B®1+4Y y;® fi +2a ® w.

=1
We will shortly relate these classes to the generators of M, mentioned thus far. For
this we will use the embedding 1: Ny — M. It will be useful for the sequel to consider
how the intersection pairings for N, and M, are related, and for this we make use of
a 48-fold covering map

(2.6) PN x Jg 25 My,
in which J, is the Jacobian torus of X,. More precisely, M, is the quotient of Ng x J,
by a free Z;g -action. The Jacobian is the moduli space of the flat U(1) connection on
2, and this covering is defined by tensoring the connection classes in N, and J,.
The map p induces an isomorphism in rational cohomology [AB83, §9]. This can
be deduced from the fact that the relevant Z;g -action on H* (Ng x J¢; Q) is trivial. We
now write down the effect of p* on some of the generators that we have introduced
thus far. Let 0; € H'(J,; Z) be the generator corresponding to fj € H' (24 Z).

Proposition 2.4  The homomorphism p*: H*(Mg;Z) — H*(Ng; Z) ® H* (Jg; Z) is
given by

1
p(a) =a®1+1040, p*(az):i(p*(al)z—ﬂ@)l),

p*(b{)=1®291~, P*(bé)=1l/j®1+P*(a1)'(1®9j)’
in which ® = 13, 0;0..

Proof The proof of this proposition is more or less implicit [AB83, p. 585]; we briefly
sketch the argument. We first recall the identity ¢, (End(W)) = 4c2(W) — ¢;(W)?
for any rank two bundle W. Letting 1: N, — M, denote the inclusion map, we then
equate the terms of (2.5) with 1* applied to the expression 4¢,(Vy) — ¢1(V,)? formed
by (2.2) and (2.3) to obtain

(2.7) t*(a; - By) = a, l*(bé - alb{/Z) =y, z’*(al2 —4a;) =p.

Next, observe that the endomorphism bundle of V, is acted on trivially by J,, and
that the restriction of p to Ny is equal to 1. These observations imply the equations
obtained from (2.7) by replacing each (* with p*, and replacing & with & ® 1, and
similarly for y; and 8. Otherwise stated, the pullback of V, via the map p factors
through 1. The relations of the resulting equations determine the proposition, except
for the fact that p* (b7 ) = 1®26);. This last point has only to do with how the 1-skeleton
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of N x J is mapped to Mg under p, which, at least up to sign, is transparent from the
covering structure: each loop upstairs double covers a loop downstairs. To be more
precise, we note that Vg pulls back and restricts over JgxX, to the bundle U]‘X’2 in which
Uy is a universal bundle over J x Z,. One can then compute that ¢,(Uy) = ¥, 0, ® f;,
see for example [FLO1, Lemma 2.23], which in turn implies p*(b]) = 1® 26;. [ |

Observe that this proposition completely determines the map p*, since the gener-
ators under consideration rationally generate the cohomology ring of M. From the
above computation, we gather that the homomorphism *: H*(Mg; Z) — H*(Ng; Z)
is determined as follows:

Cla) =@ F(ag) = (2= B)/4, (b)) =0, (b)) =y

Now, with an eye towards producing generators for the integral cohomology ring of
N,, we define the §; from the introduction to be the restrictions of the classes d; from
Mg so that §; = 84 :=1*(d;) = ¢;(f; Vg\Ng).

Proposition 2.5  The elements a, 3 (a®—P), v}, 8; generate the ring H* (Ng; Z), where
the indices run over 1< j<2gand2<i<2g-1

Proof Since these classes are the images of the generators for M, under :*, it suffices
to show that (* is onto. For this we consider the map M, — ], that sends a connection
class to its determinant connection class. This is a fibration with fibers homeomorphic
to N,. The Leray-Serre spectral sequence for this fibration collapses at the E,-page,
since any non-trivial differentials, or non-trivial local-coefficient systems, are ruled
out by the fact that the cohomologies of M, and N, x ], are torsion-free and of the
same rank. The collapsing at E, then implies that the restriction map from the coho-
mology of My to that of Ny is surjective. ]

Corollary 2.6 If p is prime, then the residue classes of the elements «, % (a* — ),
yj, and 8, generate the ring H*(Ng; Z,), where 1 < j < 2gand 2 < p' < 2g -1 If
p +2g -1, then {(a® - B) is redundant.

2.4 Twisting by a Line Bundle to Define z; and ¢;

We now describe how the generators d; and §; can be replaced with generators ob-
tained from twisting by a line bundle, and then we define the classes z; and &;.

The elements d; were defined as the Chern classes c¢; (fi V) in which the universal
bundle Vg is normalized such that ¢;(fiVy) = (g — 1)c1(Vg|nm, ), ice., di = (g - Dar.
However, Theorem 2.1 as stated by Atiyah and Bott holds for any normalization of V.
In particular, if we consider the universal bundle, which is V; twisted by a power of
the pull-back of det(Vg|a, ), i.e., the bundle

(2.8) Ve ® f* det(Vglp,)®",

then the Chern classes of its direct image will, along with a;, a,, b{ , bé, still generate
the integral cohomology ring of M. When we consider the direct image of (2.8) un-
der the projection f, it is useful to mention that in general f,( W ® f*L) is isomorphic
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to /W ® L. Here we recall the Chern class formula for tensoring a vector bundle W
of rank r by a line bundle L:

Ci = i r=j a(L) e, .
(29) (WelL) ,-Zo(i—j) (L) ey (W)

This tells us how the generators d; transform after twisting by a line bundle: upon
setting W = f, Vg and L = det( V|, ), the above formula has r = 2g — 1, ¢;(W) = d;,
and ¢;(L) = (2n — 1)a;. Although setting n = —1/2 does not transform the d; to
integral generators, it is a case of particular computational interest to us, and so we
define the transformed generators

Zi = Ci(f! Vg ® det(Vg|Mg)’1/2), f,‘ = C,’(f! Vg ® det(Vg|Mg)71/2).

Of course, the bundles here are not actual vector bundles, but z; and £; can be defined
in terms of d; and §; using (2.9). Alternatively, one can think of the bundles that
appear in the setting of rational K-theory. The class 2iz; (resp. 2'&;) is in the integral
cohomology of M, (resp. N). The formula (2.9) relating §; with &; is what appears
in the introduction as (1.1), and a similar formula holds replacing &; with z;, §; with
d;, and a with a,. Note & = —a/2 and z; = —a;/2. For the same reason as for d; and
d;, the classes z; and &; may sometimes be written z, ; and &, ;.

Finally, we mention that if we are working over the coefficient ring Z,, with m odd,
then &; can be defined as an honest class in H*(Ny;Z,,) by interpreting 1/2 in the
above formulas as the mod m inverse of 2. A similar remark holds for the classes z;.

Proposition 2.7 If m is odd, to generate the ring H*(Ng; Z,, ), we can replace the §;
generators by the &; classes as interpreted above. Similarly, to generate H* (Mg; Zy, ),
we can replace d; by z;.

2.5 Generators for the Invariant Subring of N,

The mapping class group of X, acts on the moduli space N, in a natural way. The sub-
group of the mapping class group that acts trivially on the homology of X, called the
Torelli group, acts trivially on H*(N,; Z). Thus the action of the mapping class group
on H*(Ng; Z) descends to an action of the quotient group, which is Sp(H' (24 Z)).
Having previously chosen a symplectic basis for the first cohomology group of X4, we
can identify this as an action of Sp(2¢,Z).

The classes « and 3 are invariant under this action, while the classes y; behave un-
der the action as does a standard symplectic basis. It is conventional to define the de-
gree 6 element y := -2 Z}‘.’zl yj € H*(Ng; Z), where y; := Yy, for then a, 8, y gen-
erate the invariant ring over the rationals. This is a basic exercise in Sp(2g, Z)-repre-
sentation theory: the free graded-commutative algebra generated by the y; has its
invariant ring over the rationals generated by y. Over the integers, however, the in-
variant ring is a divided polynomial algebra I';[v], in which we define vy for k > 1

as

)’k

Uk = Z YivVig = kKl

i <-e<ig
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We learned earlier that when working over the field Z, for p prime, one only needs
the generators v,,i. Note that vy = 0 for k > g for degree reasons. The classes §; as well
as &; are invariant under the action for the same reasons as are « and f; alternatively,
we will later see explicit expressions for these classes as rational polynomials in «, 3, y.

Proposition 2.8 (i)  TheSp(2g,Z)-invariant subring of H* (Ng; Z) is generated by
a, 3(a® = B), 8, vk, where the indices run over 2< i <2g —land1< k < g.

(ii) For p prime, the Sp(2g, Z)-invariant subring of H*(Ng; Z,) is generated by a,
1(a% = B), 81, v i, where the indices run over 2 < p' <2g —land 1< pk<g.

As seen earlier, if in (i) we have p + 2¢ — 1, then (a® — 8)/4 is redundant. Fur-
thermore, if p is odd, then the §; generators can be replaced by the &; just as in the
previous subsection. A similar proposition may be crafted for the invariant subring
of My, for which one has the classes bJ and b] instead of just the v;, but we will not
pursue this.

3 The Intersection Pairings for Newstead Classes

The computational framework of Zagier [Zag95] that we use to prove Theorem 1.2
is derived from intersection pairing formulas of Thaddeus [Tha92] for monomials in
«, B, v;. We will not work directly with these formulas, but will need some of their
properties for later.

Recall that dim N, = 6¢g — 6 and deg((x) =2 and deg(f) = 4. Thaddeus computed

(1) a' B/[Ng] = (- )g( +1)

whenever i +2j = 3g — 3, where B, is the n-th Bernoulli number, and should not be
confused with the elements B; and B, defined earlier. This formula is the most fun-
damental; the inclusion of the y/; terms is handled with the following genus recursive
property. For any subset K c {1,..., g} with cardinality |K| = k, and any j > 0 such
that i + 3k + 2j = 3g — 3, we have

22g 2(21 g+l Z)Bl -

(3.2) o' B TT weerg[Ng] = =a’p/[Ng-i].

€eK
The sign, which is (-1)/X], is not important for us. To prove (3.2), Thaddeus showed
that y;yj, ¢ is Poincaré-dual to the homology class of an appropriately embedded N,
inside N,. Thaddeus further showed that if a subset K c {1,...,2¢} is such that
K # K + g, then any pairing o’/ [Tycx Ye[N] vanishes. Here K + g is the set of
elements k + g, where k € K in which addition is understood mod 2g.

We now derive some similar properties for the intersection pairings of the larger
moduli space M,. The pairings in H*(My; Z) can be understood in terms of those in
N, using the covering (2.6) from N, x J, down to M: if x € H3 6(Mg;Z) is a top
degree element, then

63) x[My] = 2 (7" (/)N )

https://doi.org/10.4153/CJM-2017-050-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-050-7

Mod Two Cohomology of the Moduli Space of Rank Two Stable Bundles 695

where we have taken the slant-product with Q, € H*¢(J,;Z), the orientation class
of the Jacobian J,. The factor of 5; appears because p is a 4¢-fold covering. From
Proposition 2.4 and (3.1) we compute

_ (4g-3)!
- (2g-2)
Indeed, this is the result of expanding (a ® 1+4 ® ®)*67% /48, taking the slant product
with Qg, which picks out the term in front of ®¢ /¢!, and evaluating against [ N, ]. One
can similarly use Proposition 2.4 and (3.1) to compute intersection pairings in M, for
monomials in aj, a;. Next, we have the following analogue for M, of the vanishing
property for the y; classes.

4g-3

(3.4) a, % [M,] 2%872(2%67% —2)|Byg-a-

Proposition 3.1  Suppose ], and ], are subsets of {1,...,2g}, and that x € H*(Mg;Z)
is an element invariant under the Sp(2g, Z)-action. Then with I; = J; 0 (J; + g) for
i=1,2we have

hnh#(aNh)+g = xl—} b{ I_]I bé[Mg]
J1€h J€)2

0.

Proof We adapt Thaddeus’s argument [Tha92], and use that Sp(2g,7Z) acts in the
same standard way on {b{ } and {bé} First, suppose k € J; \ I; and either k, k + g are
both in ], or both are not contained in J,. Take an orientation-preserving diffeomor-
phism f of 3, such that the induced action f* on H* (M,; Z) fixes b{ forj¢ {k,k+g}
while *b¥ = —b¥ and f*b"¢ = —b*2. Then
x 1 by II by[Mg] = x I1 frb] I1 o[ M),
jeh jel jeh Jjela

where we have used invariance of the pairing. The right side, by our choice of f* and
our hypothesis on k € ]y, is equal to minus the left side, forcing the pairing to be zero.
The remaining case is when k € (J; \ I;) n (J, \ I,). Note p*(b¥b%) = 2y} ® 0.
The vanishing then follows via (3.3) from the vanishing condition for the vy, since

the only way to produce ., via p* is to include blzc e ]

We can also derive an analogue of (3.2) for M, using Proposition 2.4 and formula
(3.3):

(3.5) xbIbI* EbIbI (M, ] = +i*x[ Mg ]

Here x is any element of H* (Mg;Z), and i is the embedding of M,_, into M, corre-
sponding to collapsing the j-th handle of Z,.

4 The Computation of Integral Intersection Pairings

Here we present the main computation of the paper: we prove a generalization of
Theorem 1.2 and its analogue for M,. The proofs rely on the work of Zagier [Zag95].
We will use very basic symmetric function theory, background for which can be found
in Appendix A.

First, some convenient notation. Let E be a complex vector bundle over an ori-
ented, closed manifold M with dim M even. For later use, we define the Chern class
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polynomial c(E), to be ¢(E)y = Y50 ¢i(E)x' € H*(M;Z)[x]. For a partition A =
(A1 .. .>Ak), we write ¢y (E) for the product ¢, (E) --- ¢y, (E). We define the Chern
number polynomial of the vector bundle E, written CN(E), by the formula CN(E) =
>y cA(E)[M]-m) in which the sum is over all partitions A. Here m, is the monomial
symmetric function associated with A. The only partitions A contributing nonzero
terms are those with |A| = dim(M)/2. Thus the Chern number polynomial is a sym-
metric function in the variables x1, x5, . . . that is homogeneous of degree dim(M)/2.
It records all of the Chern numbers of the bundle E over M.

In addition to Q(T) and U(T) from the introduction, define the following for-
mal power series in the variable T whose coefficients are in the ring A of symmetric
functions with integer coefficients:

i i i ; 2 i
R(T) = Z(—l) m(zi)T 5 P(T) = Z(—l) (ZWZ(zilz) + (l + 1) m(2i+1))T .
i>0 i20
Now, recall that for k < g, we have an embedding of the lower genus moduli space
M into My, and similarly of Ny into N,. The particular choice of embedding is not
important.

Theorem 4.1 Let Z, = fiV, ® det( Vg|Mg)_1/2 be the virtual bundle with ¢;(Z,) = z;.
Forg>k>1,
(-»*

S Coeft[P(T)*R(T)¢Q(T) ],

(4.) CN(Zgla,) = 5

(42) CN(Zglw,) = 3o - Coeff[U(T) R(T)*Q(T) )

Recall from the introduction that 1/Q(T) does not quite have coefficients in the
ring A of symmetric functions: its coefficient in front of T’ has a factor of 1/ej*™.
However, since the constant coefficients of R(T) and P(T) are, respectively, 1 and eZ,
the formal power series inside the brackets of (4.1) has A coefficients in front of T?
for 0 < i < k —1. A similar remark holds for (4.2).

Before proceeding to the proof, we explain how this theorem completely deter-
mines all of the integral intersection pairings in the cohomology ring of N, and most
of the pairings for that of M,. First of all, from the definitions, the left-hand side of
(4.2) is equal to

(4.3) Y Eanbens £ r, [Nk] - ma,
1

and so when g = k, we obtain Theorem 1.2. In this expression, we conflate & 0
with its restriction to Ni. On the other hand, as explained in Section 3, the pair-
ing Z;‘g,/h e fg,/\n [Nk] is equal to Eg,ll Tt gg,l,, ng] I//]'V/j+g|:Ng] for any subset J c
{L,..., g} with |J| = g—k. With (1.1), this determines all pairings on N, for monomials
involving the classes &; and y/;. Since a = &;/(g - 1) and (a® — 8)/4 can be written in
terms of a and &, by restricting (2.4) to N, we get all pairings in monomials involving
all the integral generators for the cohomology of N, in Proposition 2.5.

The situation for M is quite similar, except certain pairings, such as

bib}¥z), -+ 2, [ M),
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are not covered by (3.5) in conjunction with (4.1), and are not shown to vanish by
(3.1). For the proof of Theorem 1.1 later, we will handle these pairings in a less direct
way.

Proof of Theorem 4.1 We first prove (4.1). We will perform the computation by
passing from M to the covering space Ny x Ji via (2.6). Define the product of Chern
polynomials F(x1, X2, ...) = [1ps1 p*c(Zg)-2x,» Where p* Zg is the pulled back bun-
dle over Ny x Ji. From the pairing formula (3.3), and keeping note of the factors of
-2 in the variables of the Chern polynomials, we have

(F (31,22, )/ Q) [Nk] = (=2)*72 - CN(p* (Zglm,)) = (-2)*724% - CN(Zg |y )-

As usual, the factor 4F accounts for the number of sheets of the covering p. On the
other hand, we can give an explicit formula for the product of Chern polynomials.
Henceforth, we will write 3 instead of 8 ® 1, and so on, omitting the tensor nota-
tion from elements in the Kiinneth decomposed cohomology H* (N x J;; Q). Then,
according to Zagier [Zag95, Equation 29],

(4.4)

P eze) - -

1+\/ﬁx)y*/2ﬁ\/ﬁ (4®x+4Ex2—2yx/ﬁ)
—_— exp 5 ,
1-/Bx 1-Bx

in which E = Z§=0 Vi®0j g~ Vg ®0jand y* = 2y + aff. Zagier actually considered
the direct image of a universal bundle over N x Ji, rather than taking the direct image

on My and then pulling back. This is why (4.4) has 4 in front of ® and E. We then
compute the product to be

(4.5) F(x1,%3,...) = ué’*l/z exp( (us —u)y"[B + uyo + 41,0 + 4qu) ,

with the terms u,, = u,(f) for 0 < m < 3, which are formal power series in f§ with
coefficients that are symmetric polynomials in the variables x,, defined as follows:

uo = [1(1- x2), e

1 11— Bxg ,
2
P = Y tant™ (xes/B) VB
11— Bx; e1

To take the slant product of F(xy, X2, . . .) with 4, we use the following fact, which is
provided by a slight restatement of [Zag95, Corollary to Lemma 3]:

exp(@x + Ev)/Qy = k¥ exp(vy/2k).

Applying this to the expression 4.5, we obtain the expression
(4.6)

F(x1,%x5,...)/Q = 4ku{‘u§_1/2 exp( ((us — ) /B + u5/ur)y* + (u —ﬁu%/ul)a).

We are now in a position to use the following result of Zagier.
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Lemma 4.2 ([Zag95, Proposition 3]) Let f, h, u, w be power series in one variable,

h(0)u(0) # 0. Then

@7) Y(fB)h(B) e B B [N;](-1T)

i>1

i-1

__ VBF(BM(T)
sinh(\/B(u(B) + pw(B)) | pora(ry
where M(T) is the power series defined by M~ (B) = B/u(B)h(B).

We apply this in such a way as to avoid taking any functional inverses, i.e., such
that M(T) = T. This is equivalent to choosing & = 1/u. With this in mind, apply the
lemma to (4.6) with

w=(us—w)/B+usfuy, u=u—-Pusluy, f= 4ku{‘u§71/2uk, h=1/u.

Now note that u + fw = u3. Henceforth § = T. Thus the denominator in (4.7) is equal
to

. 1 (1ex/T\ 1 (1-xVT\"
8 sinh( Y tanh ™ (xeV'T) ) = 5 ; ) 2 (6) ‘
(4.8) sin (;tan (xe\/_)) ZI;I(I—xg\/_ 2€1;[1 1+ xeV/T

After taking common denominators, with a bit of manipulation we see that (4.8) is

equal to
u(TY 2. S VT xe = R(T) VAT Q(T),
Je{1,2,...} ee]
/| odd

where Q(T) is defined above, and we have observed that R(T) = uo(T). Thus the
right-hand side of (4.7) can be identified as the power series in T with coeflicients in
A given by 4*RE(u? — Tu3)*/Q, where R = R(T), and so forth. The remaining step
is to show that R(u? — Tu3) = P. Indeed, this implies that the above expression is
equal to 4¥ P¥R&=*/Q, from which the proposition is proved by taking the coefficient
of T*~! on both sides of (4.7). To show R(u? — Tu2) = P, we first observe that
2
MRV R S ESAL S

s 1-Tx; £>113F\/Txe.

Now, set ug = [Tps1 (12 v/ Txe), so that ug = ug uy. Then ug(u? — Tu?) is the prod-
uct of uf (u; — /Tuy) and ug (uy + V/Tu,), and treating these two factors separately
leads to the expression

uo(uf—Tug):(ng I1 (1+ﬁxk))(2xm I1 (1—\/Tx,,)).

e>1 C#k>1 m>1 m#n1

We can then multiply the two terms on the right to get the following, noting along the
way that the coefficients in front of odd powers of \/T are zero, as expected:

(4.9) uog(ui—Tuz) =Y. x; TI (I-Txp)+2 Y, xexm(1-Txexn) H (1- sz)
ex1 Gkl >m>1 #
jFm, Z
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Now we identify the monomials in the variables x, that appear in (4.9), in order the
rewrite it in terms of monomial symmetric functions. In the first sum on the right side
of (4.9), the only monomials are of the form x7 x7, ---x7.. These are the monomials
that appear in m, for which A = (2) is the partition with i parts all equal to 2. For each

set of distinct indices ry, .. ., r;, there are i instances of the monomial x7 x7 --- x7 in
the sum under consideration, one for each time £ = r;, where j = 1,...,i. In other

words, taking into account the signs, and keeping track of powers of T, we deduce

that . ‘
S a2 T (1= Tx2) = S (1) (i + )mn T

ex1 b#k>1 i>0
Now we consider the second sum on the right side of (4.9), in which we can count two
kinds of monomials: those of the form x¢x,,x2 - -- x7,, which belong to the partition
(2'1?), and those of the form x7 x7, - x7 , which belong, as before, to the partition
(2"). The first kind are easy to count; apart from signs, there is exactly one. For
the second kind, ignoring signs and powers of T, note that, after expanding for any

distinct indices 1y, . .., 1;, we get (;) many instances of the monomial x7 x7, --- xZ for

nTr
the different possibilities of choosing which indices among the r; are £ and m. Thus

: i+1 :
2 Z xgxm(l - Txgxm) 111 (1 - ijz) = 22(—1)1(7}1(2112) + ( ) )m(2i+1)) TI,
jz i20

>m>1
j#m.e

in which we interpret (;) = 0. Now, adding these two expressions involving monomial
symmetric functions as in the right side of (4.9) easily leads to the expression that
defines P(T). This completes the proof of (4.1).

The computation of (4.2) is quite similar. First, CN(Z,|y, ) is the restriction of (4.5)
from Ny x Ji to the factor Ny, which simply sets ©® and £ to zero, evaluated against
[Ni]. We then apply (4.7) to compute this evaluation by setting w = (u3 — uy)/f,
u=u,f = uﬁfl/zuk, and h = 1/u. The computation proceeds just as above, but
is simpler. We obtain that CN(Z,|y,) is 1/287" times the coefficient of T*™! of the

expression ug uf /Q, and it is straightforward to identify uou; = U. ]

We showed in the proof that in expression (4.1), P*RS7%/Q = 4*uf (u? - Tu3)*/Q,
and similarly, in expression (4.2), UkRs* /Q = ug u{‘ /Q. Note from the definitions
that uy(T) = Y150 p2in TP and ua(T) = 350 p2i+2T" in which p,, is the n-th power
sum symmetric function. We also mention that an expression for P(T) in terms of
elementary symmetric polynomial is

n-1
P(T) = ()" (@1 =2 X () ComiBreaes) T,
n>0 i=0

where we have defined ;. = ke,. We will not use this, and we leave its verification to
the reader. _

We also mention a generalization of (4.1) that incorporates the classes b{ into the
pairings. The proof is a modification of the proof for Theorem 4.1, and so we only
briefly sketch it. The goal is to find a formula for a power series in T whose coef-
ficients are in A[t], and such that the coefficient of 1t/ T*! is the pairing of the

monomial z, ), ---zg,,\"B{ against [ My ]. To achieve this, since p*(B;) = 40, within
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the exponential of (4.5) we add the term 4®t. We then proceed with the compu-
tation as before, and at the end, the extraction of the coefficient in front of +/T*~!
suitably normalized gives the pairings we want. Next, we observe that B] is the sum
of [1;¢; b bf+g with |J| = j. The pairing for each term in this product with zg 3, -~ z,,1,,
against [ My ] is the same, by Sp(2g, Z)-invariance. This allows us to write the result
in terms of the classes b{ .

Proposition 4.3 For g > k > 1, ] c {L,...,g}, j = |Jl, and A a partition with
|A| = 4k — 3 + j, we have

igitg
Zg,/h"'zg,)tmglblb1 [My]
1

~ (—l)k(i)'Coeﬁ:[R(T)g+k—2jU(T)jp(T)j—kQ(T)—l].

22k-1 my Tk-1

We can go further and try to incorporate the classes b}. For this we can use the
same method sketched above, but instead of only adding one formal variable ¢ to keep
track of the powers of B; in the pairings, we add three variables to record separately the
powers of By, By, and By,. However, it is not clear that pairings between z, 3, *+- zg1,

and a general monomial in the classes b{ and bé can be extracted from this data.

4.1 Extracting Pairings via Specializations

Before proving Theorem 1.3, we digress and show how to recover formula (3.4) from
Theorem 4.1. We then compute some other pairings in a similar way.

We use the well-known method of specializations in the theory of symmetric func-
tions. There is a ring homomorphism, ex: A - Q from the ring of symmetric func-
tions to the rationals, characterized, for example, by its evaluation on the monomial
symmetric functions: ex(mn)) = 1/n! and ex(m;) = 0if A # (1") for some n. In
particular, if f € A is a homogeneous symmetric function of degree 7, then we have
ex(f) = = - Coeff,x,..x, [ f]. This homomorphism is a version of what is often called
the exponential specialization for symmetric functions. In general, a specialization is
just a homomorphism from A to another ring. The homomorphism ex just defined
extends in the obvious way to a homomorphism ex: A[[T]] - Q[[T]]. We can then

directly apply this homomorphism to our previously defined power series:
ex(R(T)) =1, ex(P(T))=1, ex(Q(T))=sinhV/T/VT.
We can now see that applying ex to the computation (4.1) of Theorem 4.1 with g = k

yields

_1)¢
(-1) Coeff

27 [M] = (4g-3)! - ex(CN(Zg)) = (4g = 3)! 5 5 Coel

[l

At this point we recall an identity for the Bernoulli numbers, which may as well be
taken as a convenient definition of B,, for our purposes, which holds for even indices
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n:

Coeff

T$1

VT | (2%72-2)Byy,
sinh /T (2g-2)!

Finally, the identity a; = —2z; recovers formula (3.4), the expression for the pairing of
the top degree power of the class a;. We can similarly recover the formula (3.1) with
i = 3g — 3 for the pairing a*$~>[ N, ] upon observing ex(U(T)) = L

We can generalize the discussion and perform a similar extraction to obtain a for-
mula for pairings of the form afg_s_kzk [M,]. For this, we consider the specialization
ex: A > Q[x] characterized by sending a homogeneous symmetric function f of de-
gree n to the following:

xk

()= Coeff (/]

k>0 (” - k)' xKxpx30 X ka1

This extends in the obvious way to a homomorphism ex: A[[T]] — Q[x][[T]], and is
equal to the above ex if we set x = 0. From the definition note that for n > 0 we have

ex(memy) = x/(n-=1)!+1/nl, ex(muniyry) = x/(n-k) fork>1

We can apply this homomorphism to our power series just as before, and we get
&X(R(T)) =1, ex(P(T))=1+x)*-xT,
&x(Q(T)) = x cosh /T +sinh VT/V/T.

Then applying the homomorphism eX to the formula in (4.1) with g = k yields
(-1)8 . Coe [ (1+2x +x* - x>T)8 ] .
22871 xite1| xcosh /T + sinh/T/\/T
We also see in this situation that a recursion property holds for lower genus moduli

spaces: for 1 < k < g, we have 23577z, ;[M;] = 2/*7*7'z;[My]. Such a recursion

always holds for any pairings obtained from a specialization that sends R(T) to 1.
Similarly, noting that ex applied to U(T) yields 1+ x — x> T, we obtain the following

formula for N, by applying ex to (4.2) with g = k:

257 2i[Mg] = (4g -3~ D)L

3 - ZT)g
3g-3-ig 1Ny :3—3—'!'L-C 0 (1+x-x .
' “Ngl = Ce 2 2671 igen x cosh /T + sinh/T/\/T

Again, using &; = —a/2 and relation (L.1), this determines the pairings a*¢ >~ §; [N, ].
A recursive property similar to that mentioned above also holds for these pairings.

In a different direction, we can define specializations by setting some of the vari-
ables x1, x7, ... in the definition of the symmetric functions equal to zero. For ex-
ample, setting x; = x, x, = y, and x, = 0 for £ > 3, we obtain a specialization
evy: A[[T]] = Z[x, y][[ T]] which acts as follows:

evo(U(T)) =x(1-y*T) + y(1-x*T), ev,(Q(T)) =x+ y.

We then obtain a formula for the pairings &;§;[ N, ] with i + j = 3g — 3 by applying the
specialization ev, to equation (4.2) with g = k, after some elementary manipulations.
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(-2

S (07 )

(4.10) > &&[Ng]-x'y =g

i+j=3g-3

Recall from Proposition 2.7 that we can view &; as generators of the cohomology of
N, with Z,, coefficients when p is odd. Suppose p = ¢ —1is an odd prime. In (4.10),
the constants in front of the right-hand expression are invertible mod p (interpreting
1/287! as the inverse of 267! mod p), and we conclude that the only pairing of the form
&i&;[N,] that is nonzero mod p is given by g_1&, >[N, ].

4.2 Chern Numbers for the Tangent Bundle

In this subsection we prove Theorem 1.3. The proofis similar to that of Theorem 4.1, so
we only indicate where it differs. We write TN, for the tangent bundle of N, viewed
as complex vector bundle.

Proof of Theorem 1.3  According to Zagier [Zag95, eq. (27)], the Chern class poly-
nomial of N is

2ax tanh_lx\/ﬁ_ x ) yr)
1_/5x2+2( ﬁ\/ﬁ B(1- px?) JaN B

where as before y* = 2y + af. Note the relation ¢(TNy), = (1- fx*)"$c(Zg|n, )54
Proceeding as in the proof of Theorem 4.1, the Chern number polynomial CN(TN,)
is given by Fo(x1, x2,--)[ N, ], where F, is the product of the Chern class polynomials
¢(TNy)x, for € > 0, Fo(x1,%2,-7) = uS " exp(2(us — u1)y* /B + 2uya). Here the
expressions for uy, u;, u3 are defined as before. Now we apply Lemma 4.2 as was done
previously, but with w = 2(us —uwy)/f, u = 2uy, f = u‘g_lug, and h = 1/u. From this
we obtain

¢(TNg)x = (1- Bx*)$! exp(

ﬁ Uy ( T)g_lul(T)g
sinh(2 ¥ tanhfl(xe\/f) ) .
The denominator here is computed as in (4.8), but now the right side of (4.8) loses the

fractional 1/2 exponents due to the presence of the 2 in (4.11). After a short manipu-
lation we instead find

(4.11) CN(TN,) = 28(-4)"!

; -1 1 1+ x,/T 1 1-x/T
sih(2 Zant” (xe/T) ) = (= ) -5 I )
_ 2 Q(ME(NVT

>

uo(T)
where E(T) is defined in the introduction, and is readily identified with

STV T %0,

Ce]

the sum being over finite subsets J ¢ {1,2,...} of even cardinality. Finally, recalling
that uou; = U, we obtain from (4.11) the formula given in Theorem 1.3. [ |
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The specializations of Section 4.1 can, of course, also be applied to this situation.
Asan example, since ex(E(T)) = cosh /T, applying the specialization ex to Theorem
1.3 yields

c1(TNg) [ Ng] = (3g = 3)!(-2)*"° Coeff

sinh /T cosh\/T
Then, using that ¢;(TN,) = 2a, and the hyperbolic-trig identity
sinh(2x) = 2sinh(x) cosh(x),

we once again recover the formula for a’$7>[N,] given in (3.1).

[sivrenvil

4.3 Skew Schur Functions

This section is mostly expositional, and serves to explain how the power series 1/Q(T)
and 1/E(T) are generating functions for certain skew Schur symmetric functions as
mentioned in the introduction. In particular, we explain (1.2). This interpretation
was pointed out to the authors by Ira Gessel, and appears as a particular example in
[GV89, §11]. The reader may consult [Macl5, I.5] for more background on skew Schur
functions.

We begin by defining skew Schur functions. To begin, for any partition A, the Schur
symmetric function s, associated with A is defined as the determinant

det(ha,+j-i)1<i, j<k
in which h, is the complete monomial symmetric function (see Appendix A), and k
is the length of the partition A. One of the Jacobi-Trudi identities says that s, is also
equal to det(ey+j-i )i<i,j<k» Where A" is the partition conjugate to A. More generally,

the skew Schur symmetric function s/, is equal to det(hy, _,,+ji)1<i, j<k- By aJacobi-
Trudi identity, we have the following identity.

(4.12) Sy/u = det(ens s j-i i<, jck-

In this situation, y is always a subpartition of A, and the pair of data (A, i) is often
called a skew partition, and written 1/ .

We turn to some general remarks on generating functions and determinants that
are standard in enumerative combinatorics, see e.g. [Stall]. Suppose that a; with i > 0
are a list of elements in some commutative ring. Then the reciprocal of the generating
function ¥;50 a; T* has coefficients in terms of some determinants formed from the
a; up to some powers of ag:

1 ; 1
det((-1 J"”a; i icn T = - -
’;) ag“ (( ) j 1+1)1<1,]<n Zigo a,-T’

As written, we are assuming the element ay is invertible. More generally, as long as
ag is not a zero-divisor, then the coeflicient of T" on the left-hand side, after mul-
tiplying by a*!, is a well-defined element of the ring with which we started. Now
we set a; = ep;4 so that the right-hand side is equal to 1/Q(T). In this applica-
tion, the commutative ring is the ring of symmetric polynomials, and a¢ = e;. Then,
defining r, to be e/'*! times the coefficient of 7" in 1/Q(T), we obtain that r,, =

det((—1)j_i+1ezj_2i+3)1<,~,j<,,. Upon observing that r, is a homogeneous symmetric

https://doi.org/10.4153/CJM-2017-050-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-050-7

704 C. W. Scaduto and M. Stoftregen

v=1(222) v=(2,211)
1] (1] (1]
112 1]2 1]2
213 213 2|4
3 4 3
v=(21,1,1,1)

(1] (1] (1] (1] (1]
1]2 113 112 113 114
314 204 315 215 215
5 5 4 4 3

v=(1,1,1,1,1,1)

[4] [3] [3] [3] [2] [2] [2]
115 115 14 114 113 14 113
216 2|6 2|6 215 415 315 416
3 4 5 6 6 6 5

(2] (2] (1] (1] (1] (1] (1]
14 115 213 24 213 214 2|5
316 316 415 315 416 316 316
5 4 6 6 5 5 4

Figure 2: Here we list the SSYT of shape 1,/u, with type v for each partition v. Using equation
(4.14) we conclude Shafus = M(2,2,2) T 2M22,11) + 5Mz 1) + 14Ma 11101

polynomial of degree 3n, expanding the determinant allows us to factor out the sign,
and we obtain

(4.13) rn = (=1)" det(e2j-2i+3)1<i, j<n-

Now, A(n,3)' = (n+2,n+1,...,4,3)and A(n,0) = (n—-1,n-2,...,2,1), where
A(n, m) is defined in the introduction. It follows from (4.12) and (4.13) that r,, is equal
to (=1)"$)(n,3)/A(n,0)- This establishes formula (1.2) for 1/Q(T), and

VE(T) = Y si(naya(no) (=T)"
is similarly obtained.

The skew Schur function s/, admits the following combinatorial interpretation.
Let A/u be any skew partition. Define a semi-standard (skew) Young tableau (SSYT) of
shape A/ u to be a filling of 1/ with positive integers that are non-decreasing from left
to right in each row and strictly increasing from top to bottom in each column. If a
SSYT of shape A/ u has «; instances of i for each positive integer i, we say that the type
of the SSYT is the composition & = (v1, v2, .. .). Then we have the following identity,
in which the sum is over all partitions v, thought of in this context as compositions of
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non-increasing non-negative integers:

(414)  syu =D Kyjuvmys Ky /u,v = #{SSYT of shape A/ and type v}.

The numbers K, are called the (skew) Kostka numbers. The example for s, /,,, is
spelled out in Figure 4.3. These numbers can become large quite fast: the coeficient
in front of m sy within s, /. is equal to 744, and in front of my7,) is equal to 323.

The relationship we have established between the integral pairings on the moduli
spaces and these skew Schur functions will not be exploited in this paper, although
some of the arguments below may have combinatorial interpretations.

5 Mod Two Nilpotency

In this section we prove Theorem 1.1. We first consider the degree 2 class « in the
cohomology of N, and later handle the corresponding class a; in the cohomology of
M,. We begin by showing that af is zero mod 2. In fact, we have more generally the
following.

Proposition 5.1 Forn> g -1, the element a is divisible by 2"~8*1.

Proof From Section 2.3, we gather that the residue classes of &, §;,y; for 2 < i <
2g-land 1< j < 2g generate the mod 2™ cohomology ring of N, for any m > 1, and
in particular m = n — g + 1. It suffices then to show that for every partition A, subset
Jc{l,...,2¢}, and € > 0 we have

a8y, 81, TTy¥;[Ng] =0 mod 2" ",
Jjel

Now recall that @ = -2&;, and from (1.1) that each §; is an integral combination of
terms &/ £;. The above pairing is then an integral combination of pairings of the form

(5.1) 2ME, - E, H]V’][Ng]~
]G

Now either ] is not invariant under the involution j ~ j + g (mod 2g), in which
case (5.1) is zero, or else (5.1) is the coeflicient of m, within 2”+ZCN(Zg|Nk), where
k = g —1J|/2. Tt is apparent from Theorem 4.1 that 2"CN(Z,|y,) has coefficients
divisible by 2"78*!, since the power series inside the brackets of (4.2) has coefficients
that are symmetric functions with integer coefficients. [ |

The nilpotency degree of « mod 2 is then computed by the following lemma, which
implies that a¥~! is nonzero in the cohomology ring H* (Ng; Z5).

Lemma 5.2  The parity of the integer 2g—1£13g—3—j §i[Ng] is determined as follows:

) e g-Lg-2) geven
2gl3g3] AN, =1 d?2 Je{g &
& §[Ng] (mod2) <= je{gg-1} g odd.

Proof By Theorem 1.2, the term 2¢71&7°7/¢ i[Ng] is equal to the coefficient of
m) T within U(T)¢/Q(T), where A = (j,1367377). We use this to reformulate
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the claim of the lemma as follows. Let I c A be the ideal generated by 2 € Z and
the monomial symmetric functions m, with A having at least two parts greater than
1, i.e., A1, A, > 1. Here, as before, A is the ring of symmetric functions with integer
coefficients. Then the lemma is equivalent to the congruence

(52) Coeff T¥'[U(T)$/Q(T)]

= g Mg 12e-3) + M(g112-2) + (g -1)- M(g-2,12-1) (mod I).
Let J c I be the ideal generated only by m, with A having at least two parts greater
than 1, omitting 2 € Z. The following relations are easily verified in the quotient ring
A/],in whichr,s > 1:

+ +q-2
M1pyM(1a) = (pp Q)m(lmq) + (‘D p(zl )m(z,lﬁqu) (mod J),

+ +gq-1
m(r’lp)m(lq) = (pp q)ﬂ’Z(r,lP”) + (p ; )m(r+1’1p+q—l) (mod ]),

+

M (r,10) M (s,10) = (p q)m(r+s,11’+‘1) (mod J).

These follow by simply expanding the monomial symmetric functions as the sums
of monomials that define them, and multiplying. Along the same lines, we leave the
following to the reader:

n

(53) eSS (Z)(pn )PP ey (mod ).

k=1

We list some cases for which (5.3) vanishes modulo I. First, a special case of an
elementary result, often called Lucas’s Theorem, says that a multinomial coeflicient
(a1 + -+ + ag)!/ag!---a,! is even if and only if, in the binary expansions of the
a;, there is some position, i.e., digit location, for which two distinct «; have digit
equal to 1. Next, (pn — k)!p¥p!™" is equal to the multinomial coefficient in which
ap=--=ar=p—land agy =--- = a, = p. If n > 3, then either p or p — 1 appears
at least twice, so by Lucas’s Theorem this number is even. Thus m{,, = 0 (mod I)
ifn > 3. If n = 2, the k = 1 term in (5.3) drops out because of (Z), so we need only
consider n = 2 = k. This case has the term (21‘7”__12), which is even, unless p < 2. Thus
m(yyy =0 (modI)ifp>3andn=2.

As in Section 4.3, define r,, € A to be e]*! times the coefficient of T" of 1/Q(T).
The general formula for the reciprocal of a power series applied to 1/Q(T) yields

Tn = Z (—1)"‘1+"'+""‘oc1+--~+akal,...,(xkel"_z“‘e;’”me
1y 20,k>1
ay+2az+-+kag=n

293
2k+1°

Now, recalling that e, = m(;») and taking our above remarks regarding e}, into con-
sideration, we see that only terms with all «; < 2 can contribute odd coefficients.
Further, by Lucas’s Theorem, if all «; < 2, then the multinomial coefficient appearing
is even unless {a, ..., a } has one of

* some i such that «; = 1and «; = 0, for j # i,
* some i such that a; = 2and «; = 0, for j # i,
* some i, jsuch that a; = 2, a; = 1, and ap = 0, for € # i, j.
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Only the first case actually contributes something nonzero mod 2, since we remarked
above that m?l,,) is even when p > 3. We conclude that r, = ] e;,,41(modI). From
the relations above we easily compute e} ' modulo I. It is congruent to

Mp-2,1) + M(n-1)
if n is even, and simply m,,_yy if # is odd. From this we obtain
(5.4) Tn = Mg pony + 0 My ey (mod T).
Note that r, can be replaced here with the skew Schur function s /,,, and for n = 2
the congruence (5.4) is apparent from Figure 4.3. Next, since U(T) = m(yy — m(1) T
(mod J), the coefficient of T' within U(T)# is congruent to (—l)i(f)ef_iméz,l) mod-
ulo J. We then gather the following:

g-1

(5.5) Coeff[U(T)*/Q(T)] = Z C(%?E[U(T)g]efig”g—i—l

&gy
=> (l.)ml(z,n”g—i—l (mod I).
i=0

A quick check shows that méz,n = 0 (mod I) for i > 2, so the only terms contributing
are at i = 0,1. Thus, the sum is congruent to rg_; + g - m(5,1y7g—2, which with (5.4)
computes (5.2). [ |

Corollary 5.3  The pairing a8 8,4 »[ Ng] is odd.

Proof Using formula (1.1) and & = —2¢;, we extract the relation

2g-1
_ ivg: ~g—1pg-2+i
af 152g—2 = Z (-1)78i-28 lflg HfZg—l—i'
i=1

Noting the coefficient i, we see that exactly one of the terms from Lemma 5.2 con-
tributes an odd number once we pair with [N, ]. ]

This corollary, together with Proposition 5.1, proves that the nilpotency degree of «,
as viewed in H*(Ng;Z,), is equal to g. For the second part of Theorem 1.1, regard-
ing the nilpotency degree of a; in the ring H*(M,;7Z,), we establish an analogue of
Corollary 5.3.

Lemma 5.4  The integer 22g’1z{z4g_3_j[Mg] isodd if and onlyif j € {2g-1,2¢ - 2}.

Proof We sketch the proof, which is similar to that of Lemma 5.2. By (4.1) of The-
orem 4.1, this integer is the coefficient of m, T¢~! within P(T)¢/Q(T) where A =
(4g -3 - j,1/). Since P(T) is congruent modulo J to ef — 2m,,,1) T, the only term
in P(T)® relevant to A/I is the constant term 312 €. Then the coefficient of T¢~! within
P(T)#/Q(T), computed justas in (5.5), is congruent mod I to ef r,_;. From (5.4) this
is then m 341 126-2) + M (243 12¢-1) mod I, proving the claim. [ ]

The same argument as in the proof of Corollary 5.3 then yields the following.

Corollary 5.5  The pairing ;¥ ' dyg_»[M,] is odd.
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To complete the proof of Theorem 1.1, it remains to show that afg is zero mod 2.
For this we will prove an analogue of Proposition 5.1. To this end, we first establish a
few lemmas which take the content of Section 3 a bit further.

We begin by sketching the geometric meaning of Thaddeus’s genus recursive for-
mula (3.2). Recall that N, can be viewed as the space of conjugacy classes of 2g-tuples
(A,-)ff1 in the 2g-fold product of SU(2) such that the product of the commutators
[Ai,Aiyg] for1 < i < gisequal to-1. For I c {1,...,2¢}, let the submanifold
N; c N, consist of conjugacy classes such that A; =1if i € I. If I = I + g, then Ny can
be identified with N,_ in which k = |I|/2. Then Thaddeus showed

+[1y;j = PD[N;] € H* 1N, Z),
jeI
where PD is the Poincaré dual. This immediately establishes (3.2), up to signs. We
now turn back to the moduli space M,, which has the same description as does N,
but with U(2) replacing SU(2). For I,K c {1,...,2g}, embedded in Ny x J, is the
submanifold Ny x Jx, where N7 is as before, and Jx consists of 2g-tuples (zi, ..., Z2g)
in the 2g-fold product of U(1) such that z; = 1if k € K. We write Mk for the
submanifold of M, given by the projection of N x Jx under the covering map p. It is
clear that the homology class of N x Jx inside N x ], is Poincaré dual to + [;.; ; ®

erK 9k~

Lemma 5.6 The class b}, — a\b! /2 is integral, and thus so too is a,b} /2. More specifi-
cally, +PD([T;e; (b} - a1bi/2) [gex bF) = [Mix] € Hygg-3j11-x|(Mgs Z).

Proof As the statement suggests, we will ignore signs throughout. Set
x = T1(b] - ayb/2) TI bF,
iel keK

so that the above discussion implies PD.(p*(x)) = 2/KI. [N} x Jx]. Recall that the
Poincaré dual of a cohomology class is equal to the cap product with the fundamental
homology class. Also recall that the cap product satisfies the functoriality property
x N p.(y) = p«(p*(x) N y), for ahomology class y and a cohomology class x. Then
we compute that PD.(x) is equal to

xn[Mg]=xn2728p, [Ny x Jg] =27 2p, (p*(x) N [Ng x Jp]) = 281728 p [Ny x J].

The final expression obtained on the right-hand side is equal to [ Mk |, because Ny x Jx
is clearly a 228~ 1Kl sheeted covering of Myx. [ |

Note that the submanifold Mk can be described as the subspace of M, consisting
of conjugacy classes of tuples (A; )?fl of matrices in U(2) whose product of commu-
tators is —1, and such that A; € SU(2) if i € K, while A; is in the center of U(2) if
i€l

Lemma 5.7 Ifa{" € H*(Mg_y;Z) is divisible by d € 7, so too is

(b8 — a,bf[2)bi%al" € H* (Mg Z).
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Proof From above, we know that (b3 — a,b%/2)b;* is Poincaré dual to [ M ], where
I={g}and K = {2g}. In this subspace, [A4, As.] = 1, so that always

g-1

[T[As Aivg] = -1.

i
Thus, there is a well-defined map from Mg to Mg_; that forgets A, and A,,. This
is a fibration with fiber SU(2) x S', where S! is identified with the center of U(2).
Because conjugation does not interact with the center of U(2), we can write Mg =
PxS', where P is an SU(2)-fibration over M,_,. The fibration P has a section given by
Azg =1€SU(2) = §°. Thus, just as in [Tha97], the euler class of P vanishes, and the
Gysin exact sequence for a 3-sphere fibration implies the right-hand isomorphism

H*(Mi;Z) = H (P;Z) ® H* (S42), H*(P;Z) = H*(My_;Z) ® H* (8% Z).

While the left-hand isomorphism above is an isomorphism of graded-commutative
rings, we do not know the same for the right-hand isomorphism. However, the Leray-
Hirsch Theorem tells us that this latter isomorphism respects the H* (M,_y; Z)-mod-
ule structures. It is a straightforward matter to verify that a; € H*(Mg;Z) goes to
a1®1¢€ H*(Mg_1;Z) ® H°(S%; Z) under this isomorphism. The lemma then follows
using the H* (M,_y; Z)-module structure. [ |

Proposition 5.8 Forn >2g -1, the element af € H*"(Mg; Z) is divisible by 2" 28*1,

Proof The proof is by induction. We assume the result holds for a; € H*(My;Z)
for k < g — 1. Further, we add the induction hypothesis that a] = 0 (mod 2972¢*"), for
q > n. Note that this is automatically true for g large enough, since a; is nilpotent.

From Section 2.1, we gather that the residue classes of a, d;, b{, bé, for2<i<2g-1
and 1 < j < 2g, generate the mod 2™ cohomology ring of M, for any m > 1, and in
particular m = n — 2¢ + 1. It suffices then to show that for every partition A, subsets
Ji,J2c{1,...,2¢}, and € > 0, we have

(5.6) ay*tdy, - dy, T1 b] I1 bé[Mg] =0 mod 2" %%,
J€h e,

The case in which ], is empty follows the argument of Proposition 5.1, but this time
using Proposition 4.3. We do not use any induction hypothesis here.

By Proposition 3.1, if ], is not empty, then either the left side of (5.6) vanishes, or at
least one of two kinds of terms appears: bé bfg or b{ bfg . Without loss of generality
we will suppose j = g.

First suppose b§ b;g appears in (5.6). Let x denote the monomial in (5.6) omitting
this term and a}. We must show 2"~2¢*! divides a} b¥b3x[ M ¢]. First note that we can
replace b5¢ by b3% — a,b7% /2. Indeed, al*'b¥b7x[M,]/2 is divisible by 2("+)-28+1/3
using the induction hypothesis on #. Finally,

al' (b3 - a;b7%2)x[My] =0 mod 2" %",

using Lemma 5.7 and the induction hypothesis on g. Thus, the case in which b¢ b;g
appears is done.
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Now suppose that b5 b;g appears in (5.6). Just as was done in the previous case, we
can replace each bé here with bé - alb{ /2, and upon pulling back via the covering p,
we get Vg2, and the result follows from induction on g, using (3.3) and Thaddeus’s
genus recursive formula (3.2). This exhausts all cases and completes the proof of the
proposition, as well as the proof of Theorem 1.1. ]

6 Computations

In this section we give some examples of the pairings on N, calculated by Theorem 4.1
and describe the ring structure H*(N; Z,) for low values of g. Much of this discus-
sion can be carried out for the moduli space M, but we will not pursue this.

First, recall that Theorem 4.1 computes the pairings involving the classes &g ;.
The pairings are encoded in the Chern number polynomial CN(Zg|y, ), which is
equal to (4.3). Formula (4.2) easily computes this polynomial using a program such
as Sage, which has symmetric function methods available. For example, we have
CN(ZI|N1) =1, ZCN(22|N2) = —T’H(ls) - 2171(21), and

ZZCN(Z3|N3) = 141’}’[(16) + 1711’1(214) + 26m(2212) + 281’}’1(23)
+9Imapy + 12m(3p1) + 6M(32) + 6M(412) + 3M(42).

These polynomials quickly become quite lengthy. For example, if we compute the
genus 4 polynomial in terms of elementary symmetric functions e, we find

23CN(Z4|N4) = —46(2313) + 186(32212) - 446(3221) + 656(33) + 366(4213)
- 1006(4312) - 446(5212) + 1506(531) - 206(613) + 273(712).

If instead we write this same polynomial in terms of monomial symmetric functions
m,, then it has 26 non-zero terms. Similarly, the corresponding genus 5 polynomial
has 20 non-zero terms when written using the e, and 70 non-zero terms when using
the m,.

Of course, CN(Z,|, ) is of intermediary interest to us: our goal was to compute
CN(fiVg|n, ), the polynomial encoding the pairings involving the Jg ; classes. We
can compute these using the Chern number polynomial for Zg|y, via the transfor-
mations (L.1). These are typically more complicated, however. For example, we have
CN(f"/1|N1) =1
CN(fiValn,) = dm(py +3mayy + m(s),

CN(fiVsln,) = 14336m 16y + 6464m 214y + 2936m 2212y + 1339m(23)
+ 156817’1(313) + 7227’}’[(321) + 182}’}’1(32) + 212}’}’1(412) + 98}71(42) + 141’}’1(51).

For genus 4, there are 28 non-zero coeflicients whether we use the basis e, or m;,,
while for genus 5, there are 73 non-zero coefficients in either basis. In each case,
respectively, 28 and 73 is the number of monomials in the §; classes of top degree, so
every possible pairing is non-zero. We have focused on the cases g = k for simplicity;
when k < g the computations are somewhat similar.

When we consider the pairings only modulo 2, which are relevant for H* (Ng; Z,),
the situation is considerably more manageable. First, we recall from Corollary 2.6 that
the residue classes of a, 8,:, y/; generate the ring H*(Ng;Z, ), where 2 < 2/ < 2g -1
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and 1 < j < 2g. We can obtain pairing formulas for these classes from the above data
as follows. Let £2(2) be the set of partitions each of whose parts is a power of 2. Thus
(4,2,2,1) € 22(2), but (6,4,2,1) ¢ F#(2). For A € Z(2), let m; denote the number
of Isin A, and let ¥ denote the partition obtained from A by removing all of its I’s, so
in particular m = [A| — |A*|. Set 84, := 8¢, -+ O,1,. Now we define

Pg,k = Z am‘(?g,p[Nk]-m,\ mod 2.
AeP(2)
Then the collection of P, i with1 < k < g determines the ring structure of H*(N; Z,).
Indeed, it is evident that P, ; encodes all mod 2 pairings involving the generators §, ,:
and «, while, for example, the pairing a™ g 1+ Y1¥14g -+ Wg-_kY2g-k [ Ng] is equal to
the coeflicient of m, in Py ;. Recalling that §,,; = (g — 1)a, we have the following,
which tells us how to compute Py x from the § ; pairings:

Coeff[Pg 1] = Coeff[CN(fiVg|n,)/(g—1)™] mod 2.
m) m)

Here A € 7(2). The polynomials P, i are presented up to genus 8 in Table 1.

We remark that the computations of Chern numbers and hence that of Table 1
could have also been done without using Theorem 4.1. Indeed, one can write out
the J,; classes as rational functions of «, f3, y using (4.4) and (1.1), and then apply
Thaddeus’s intersection pairing formula for a’B/y* from Section 3 term-wise. As an
illustration of this, we can write 8g = 8 g € H'®(Ne; Z) as follows:

_ 3184129) 8_( 351163) 6 (747229) ( 3539) 5 _( 1044149) 203
86’8‘(10321920 o 3es6d0) & B+ 537550 B 53020) Y~ 2580180 ) ¢ B

— (5556) @’ By + (365 ) B* + (etssn ) By + (556) @*y* = (5550 ) BY™-
We also compute 06 » = 981 2.1 % B- Then we can apply Thaddeus’ intersection pairing
formula to the terms of a 86,286,8 and sum to obtain 117071517415. This number is
odd, and accounts for the partition (8,2,1,1,1,1,1) appearing in the first column of
row g = 6 in Table L.

From Table 1 we can read off the ring structure of H*(N;Z,) for 1 < g < 8, and
we will spell this out for 1 < g < 4. We make a few preliminary remarks. We know
from Corollary 2.6 that H*(Ng; Z,) is generated by a, 8,1,y for 2 < 2° < 2g -1
and 1 < j < 2g. We write I(Ng; R) ¢ H*(Ng; R) for the subring invariant under the
Sp(2g, Z)-action, where R is any ring. It is well known that I(N; Q) is generated by
«, B,y and that a monomial basis for the vector space I(N; Q) is given by

(&' Bly* i jk>0,i+j+k<g)
see [ST95, §5]. In particular, dim I(Ng; Q) = g(g+1)(g+2)/6 = T, the g-th tetrahe-
dral number. This in fact holds for any field, and in particular Z,. From Proposition
2.8 we know that I(N; Z, ) is generated by a, 8,:, v5; for 2 < 2f € 2g-land1< 27 < g
We now proceed to describe the rings H*(N,;Z,) and their invariant subrings for
1<g<4
Genus 1: In this case, Nj is a point, so H*(N;Z) 2 Z.

Genus 2: Even over Z this ring is simple to describe [New67, §10]. As remarked
there, the only interesting cup product in H*(Ny;Z) is a, which is 4 times an inte-
gral generator, equal to a® — §,. Thus the ring H* (N,;Z; ), which has betti numbers
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1,0,1,4,1,0,1, has the residue classes of « in degree 2 and 8, in degree 4, and & = 0
(mod 2). The classes y1, Y2, ¥3, Y4 generate the four-dimensional middle cohomol-
ogy group, and «d,, Y113, Y214 are all equal to the non-zero top degree element in
H®(N,;Z,), while all other pairings are zero. The invariant subring I(N; Z, ) is gen-
erated by « and 8, and has betti numbers 1,0,1,0,1,0, 1.

Genus 3: The ring H* (N3;Z,) has betti numbers 1,0,1,6,2,6,16,6,2,6,1,0,1. It
is generated by a, 85, 04, and y; for 1 < j < 6. The nontrivial pairings in top degree, as
can be read from Table 1, are

a8y, 83 WiYjagads (1< <3), Yy eViVieg (1< j#k<3).
The invariant subring I(N3; Z, ), which has betti numbers1, 0,1,0, 2,0, 2,0,2,0,1,0, 1,
is generated by «, 02, 04, and vy, v,. We can compute a presentation for the invariant
ring:
I(N3;Z2) = ZZ[“: 82) 647 U1, 02]
/(Ufa 64“11 82) 8264) 8184 + 621)1) 8; + 611)1) 6121)1) 8f82> 8?)
We remind the reader that

U1 =WYs + ¥2V¥s + Yss, U2 = YnYu¥os + Y1vaPsye + Va¥sysye.
Note here that 63 is nonzero. This property seems to persist possibly for all &, €
H*(Nyg;Z,), and can perhaps be proven using the same methods used to prove The-
orem 1.1.

Genus 4: The ring H*(N3;Z,) has betti numbers 1,0, 1, 8,2, 8, 30, 16, 30, 64, 30,
16,30,8,2,8,1,0,1. It is generated by «, &;, 84, and v, for 1 < j < 8. The only non-
trivial pairings in the top degree, as read from Table 1, are the following, in which
1< j,k, € < 4 are distinct:

065554> 0635254, Wjo+g‘x264: Wjo+g5254>

3
ViVisg0ss  ViVisgVkVisg®02s  WiWjrgViVisgVeVerg
The invariant ring I(Ny;Z,) has betti numbers 1,0,1,0,2,0,3,0,3,0,3,0,3,0,2,0,
1,0,1. Itis generated by «, 83, 84, v1, V2, justlike the genus 3 case. The ideal of relations
here is generated by
at, a%8, + av; + 8%, 8,a° + 0455, vy, 0(28%, avsy,

2 2 3 2 3 2
vy, 05, 0,01 + a” 8401, 85 + U2, 0102, 040y, 0.

We will stop here, but the interested reader can proceed to describe the higher genus
cases up to g = 8, using Table 1. Also, one can similarly describe the rings H* (Ng; Z, )
for other primes p, using our Chern number computations and some additional work.

https://doi.org/10.4153/CJM-2017-050-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-050-7

Mod Two Cohomology of the Moduli Space of Rank Two Stable Bundles 713

Table 1: Partitions A € Z7(2) for which Coeff,, [Py x] = 1 (mod 2). A partition
(8°4°2¢14) appears in row g and column k of this table if and only if the monomial
p = ¢858885a? is nonzero in the ring H*(Ng; Z,), i.e., 4[N,g] = 1 (mod 2), where
¢ = ViVisg .- ViVk+g-

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

g=1 0
g=2 (2"1Y) 0
g=3 (412) (2"1Y) 0
(2)
g=4 (4121 (41?) (2"1Y) 0
(42'1%) (4'2Y)
(2%)
g=5 (8211?) (4211*) (4'12) (2'1h) 0
(412311) (412211) (2141)
(8'%) (2%)
(4%)
g=6 (8221%) (4'2%1%) (422'1%) (4'1%) (2'1) 0
(812'1°)  (8'22) (4221))  (2%)
(812’11 (8'1%)
(#2111  (4%)
g=7 (8'412%1%) (8'412'1') (4'2°1%) (4'2'’) (4'1*) (2'1Y) 0
(812°1%) (8221%)  (8*) (4'221Y) (2
(8'4%1%) (81211 (4%)
(8'4M1°) (8'4'1%)
(4°2%) (4%2'1h)
(8'2°) (8'2'1°)

g =8 (8'412%1%) (8'41211*) (8'4'2'!
(81412215) (814221) (814113 (412312) (412113) (4112)

(812112) (4'221') (4'2Y) (2'1Y) 0

)
)
(8'422'1%) (8'4%1%) (8'2°1') (8'4') (2%)
(8'42271") (8'4'2%) (8'2%1°) (8'2%)
(8'4'2%1")  (8'4'1%) (8'2'1°) (8'1%)
(8'412117)  (8'2%1%) (4%21')  (4®)
(8'2%)
(432°)
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A Background on Symmetric Functions

In this section we provide the reader with the relevant background material on sym-
metric polynomials. For details and proofs, see [Macl5]. We will typically work with
symmetric functions in infinitely many variables x;, x2, x3, - - - with either integer or
rational coefficients.

There are a few standard symmetric functions that will be of use to us. First, for
any positive integer #, we have the elementary symmetric function e,, given by

ey = Z X,'lx,'z"‘x,‘n.
11<iz<<iy
If A = (A1, A2,...,Ak) is a partition, i.e., a nonincreasing sequence of nonnegative
integers, then we define ej = e), ey, ---e,,. If in the definition of e, one sums over
iy 2 iy 2 --- > i, instead, the result is the complete symmetric function h,,, and we can
similarly define h,. For n = 0, set eg = hg = 1.

Next, for any given partition A, we have the monomial symmetric function m,,
which is the sum of all distinct monomials of the form xi‘xiz . xfk" inwhich iy, ..., i
are distinct. Although we do not make much use of them, we also define the power
sum symmetric function p, by p, = Y150 X}

In Section 4.3 we defined (skew) Schur symmetric functions s). It is often conve-
nient to write a partition A = (11, A2, ..., A;) in the alternative format

A= (Im2m )

in which A has m; number of parts equal to i. For example, the partition (2,2,1,1,1)
can be written instead as (2213). We write |A| = $*_, A« for the sum of a partition, and
I(1) = k for its length. Sometimes we insert commas for clarity; the last partition can
be written as (22,1°).

We write A for the ring of symmetric functions with integer coefficients. The Fun-
damental Theorem of Symmetric Functions says that A is isomorphic to the ring
Z[ e, ey, ...] freely generated by the e;. The statement also holds with the e; replaced
by h;. Also, the sets {e, }, {hy}, {ma}, {s1}, where A runs over all partitions, each
separately provides an additive basis for A. If we work instead with rational coeffi-
cients, then the ring of symmetric functions A ®z Q is isomorphic to the freely gen-
erated algebra Q[ p1, p2, . . .], and {p, } provides an additive basis for the vector space
A®7 Q.
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