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Abstract

We show that almost stable constant mean curvature hypersurfaces contained in a sufficiently small ball
of a manifold of bounded sectional curvature are close to geodesic spheres.
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1. Introduction and statement of the result

Let φ : (Mn, g) → (Nn+1, g) be an isometric immersion of an oriented closed n-
dimensional Riemannian manifold M in an (n + 1)-dimensional oriented manifold
(N, g). We assume that M is oriented by the global unit normal field ν so that ν
is compatible with the orientations of M and N. We will denote by B the second
fundamental form of φ and its mean curvature by H. Let F : (−ε, ε) × M → N be a
variation of φ so that F(0, ·) = φ. The balance volume associated with the variation F
is the function V : (−ε, ε)→ R defined by∫

[0,t]×M
F? dvg,

where dvg is the volume element associated to the metric g on N. We will denote
simply by dv the volume element of g. It is a classical fact that

V ′(0) =

∫
M

f dv,

where f (x) = 〈∂F/∂t(0, x), ν〉. Moreover, the area function A(t) =
∫

M dvF?
t g satisfies

A′(0) = −n
∫

M
H f dv.
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We say that F preserves the volume if V(t) = V(0) in a neighbourhood of 0 and in this
case we have

∫
M f dv = 0. Conversely, for all smooth functions f so that

∫
M f dv = 0,

there exists a preserving volume variation so that f = 〈∂F/∂t(0, x), ν〉. It is well known
that M has constant mean curvature if and only if the immersion φ is a critical point of
the area functional (that is, A′(0) = 0 ) for all variations which preserve the volume.

An immersion with constant mean curvature is called stable if A′′(0) > 0 for all
variations preserving the volume. Then A′′(0) depends only on f and

A′′(0) =

∫
M
|d f |2 dv −

∫
M

(RicN(ν, ν) + |B|2) f 2 dv

=

∫
M

f ∆ f −
∫

M
(RicN(ν, ν) + |B|2) f 2 dv

=

∫
M

f J f dv,

where RicN is the Ricci curvature of N with respect to the metric g and J is the so-
called Jacobi operator defined by J f = ∆ f − (RicN(ν, ν) + |B|2) f . It is well known that
φ is a stable constant mean curvature immersion if and only if A′(0) > 0 for any smooth
function f so that

∫
M f dv = 0 or equivalently if J is a nonnegative operator. (See [2]

and [3] for more details about the notion of stability.)
Barbosa and do Carmo [2] proved that the only stable closed hypersurfaces of

constant mean curvature (CMC hypersurfaces) of the Euclidean space are the round
spheres. This result was extended later by Barbosa et al. [3] for spheres and hyperbolic
spaces.

In [4], Grosjean with the first author considered the stability of CMC hypersurfaces
in Riemannian manifolds with (nonconstant) bounded sectional curvature. After
proving a pinching result for the first eigenvalue of the Laplacian, they were able to
show that a closed stable CMC hypersurface of a Riemannian manifold with bounded
sectional curvature and contained in a geodesic ball of sufficiently small radius is
close to a geodesic sphere. Here, close means diffeomorphic and almost isometric
to a geodesic sphere of appropriate radius (depending upon the mean curvature).

The aim of this short note is to show that the assumption of being stable can be
relaxed to almost stable in the result of [4]. By almost stable, we mean that the Jacobi
operator J is not supposed to be nonnegative but is greater than some small negative
constant, that is, ∫

M
f J f dv > −nε

∫
M

h2 f 2 dv (1.1)

for any smooth function f so that
∫

M f dv = 0, where h =
√
‖H‖2∞ + δ. Note that

h2 appears in the right-hand side of the almost stability condition for homogeneity
reasons.

In the remainder of this paper, we assume that the sectional curvature of (N, g)
satisfies µ 6 SectN 6 δ for µ 6 δ two real constants. Before stating the main result of
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this note, we introduce the function

sδ(r) =



1
√
δ

sin
√
δr if δ > 0,

r if δ = 0,
1
√
|δ|

sinh
√
|δ|r if δ < 0

and the set HV (n, N), which is the space of all Riemannian compact, connected
and oriented n-dimensional Riemannian manifolds without boundary isometrically
immersed into (Nn+1, g) and which satisfy the volume hypothesis

V(M) 6


cωn

δn/2 if δ > 0,

cωni(N)n if δ 6 0

for some constant c. This condition on the volume is required to apply the result of [4]
(see Theorem 2.1 below) about the pinching of the first eigenvalue of the Laplacian.
The condition comes from the extrinsic Sobolev inequality of Hoffman and Spruck
[6], which is used in the proof of that pinching result.

The main result of this note is the following theorem.

Theorem 1.1. Let (Nn+1, g) be an (n + 1)-dimensional Riemannian manifold whose
sectional curvature SectN satisfies µ 6 SectN 6 δ and i(N) > π/

√
δ if δ > 0 and let

M ∈ HV (n,N). Assume that φ(M) lies in a convex ball of radius

min
(
π

8
√
δ
,

i(N)
2

)
if δ > 0 and

i(N)
2

if δ ≤ 0.

Let ε < 1
12 , q > n and A > 0. Assume that V(M)1/n‖B‖q 6 A for δ > 0 and that

max(H/h,V(M)1/n‖B‖q) 6 A for δ < 0. Then there exist positive constants α := α(q, n),
K := K(n, q, A) and R0(δ, µ, ε) such that if φ is of constant mean curvature H and
almost stable in the sense of (1.1), εα < 1/K and φ(M) is contained in a convex ball of
radius R0(δ, µ, ε), then M is diffeomorphic and Kεα-quasi-isometric to S (p, s−1

δ (1/h)),
that is, there exists a diffeomorphism F from M into S (p, s−1

δ (1/h)) so that

| |dFx(u)|2 − 1| 6 Kεα

for any x ∈ M, u ∈ TxM and |u| = 1.

In the case of the Euclidean space, without the assumption of being contained in
a small ball, almost stability implies that the hypersurface is a geodesic hypersphere
(see [8]). As a corollary of Theorem 1.1, we give an analogue of the result of [8] for
spheres and hyperbolic spaces.

Corollary 1.2. Let (Nn+1, g) be the (n + 1)-dimensional Riemannian space form of
constant sectional curvature δ and M ∈ HV (n,N). Suppose that φ(M) lies in a convex
ball of radius π/(8

√
δ) if δ > 0, where q > n and A > 0. Assume that V(M)1/n‖B‖q 6 A
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for δ > 0 and max(H/h, V(M)1/n‖B‖q) 6 A for δ < 0. Then there exists a positive
constant ε0 depending only on n, q and A such that if φ is of constant mean curvature H
and almost stable in the sense of (1.1) for ε 6 ε0, then φ(M) is a geodesic hypersphere
of radius s−1

δ (1/h).

2. Proof of the results

2.1. Proof of Theorem 1.1. Let M ∈ HV (n, N) and denote by φ the isometric
immersion of (M, g) into (N, h). Moreover, let us assume that φ has constant mean
curvature and is almost stable in the sense of (1.1) for some positive ε. Let f be an
eigenfunction associated with the first eigenvalue λ1(M) of the Laplacian on (M, g).
Since

∫
M f dv = 0, condition (1.1) gives

λ1(M)
∫

M
f 2 dv −

∫
M

(RicN(ν, ν) + nH2 + |τ|2) f 2 dv > −εnh2
∫

M
f 2 dv,

where τ is the traceless part of the second fundamental form B. Since µ 6 SectN ,

λ1(M) > n(H2 + µ − εh2)
> nh2 + n(µ − δ − εh2)

> nh2
(
1 +

µ − δ − εh2

h2

)
and so

nh2 6 λ1(M)
(
1 +

1
h2

δ−µ+εh2 − 1

)
.

Set R1(δ, µ, ε) = s−1
δ (

√
( 1

2 − ε)/(δ − µ)(1 + 1/2ε)). We recall that the extrinsic radius
of M is defined as the radius of the smallest ball containing φ(M). For compact
hypersurfaces of a Riemannian manifold of sectional curvature bounded from above
by δ, there is a well-known lower bound for the extrinsic radius R(M) given by

sδ(R(M)) >
1
h

(see, for example, [1]). If we assume that φ(M) is contained in a ball of radius R1,

h2 >
1

s2
δ(R(M))

>
1

s2
δ(R1)

=
(δ − µ)

( 1
ε

+ 1
)

1
2 − ε

,

since sδ is an increasing function. From this, we deduce easily that

1
h2

δ−µ+εh2 − 1
6 2ε

and so
nh2 6 λ1(M)(1 + 2ε).
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That is, (Λ2ε) holds, where we denote by (Λη) the pinching condition

nh2 6 λ1(M)(1 + η) (Λη)

associated with the upper bound for the first eigenvalue of the Laplacian proved by
Heintze [5], namely

λ1(M) 6 nh2.

Now, we recall the result proved by Grosjean and the first author in [4].

Theorem 2.1 [4]. Let (Nn+1, g) be an (n + 1)-dimensional Riemannian manifold whose
sectional curvature SectN satisfies µ 6 SectN 6 δ and i(N) > π/

√
δ if δ > 0. Let

M ∈ HV (n,N). Assume that φ(M) lies in a convex ball of radius

min
(
π

8
√
δ
,

i(N)
2

)
if δ > 0 and

i(N)
2

if δ ≤ 0.

Let p0 be the centre of mass of M. Let η < 1/6, q > n and A > 0 and assume that
max(V(M)1/n‖H‖∞,V(M)1/n‖B‖q) 6 A for δ > 0 and

max(V(M)1/n‖H‖∞, ‖H‖∞/h,V(M)1/n‖B‖q) 6 A

for δ < 0. Then there exist positive constants C := C(n, q, A) and α := α(q, n) such that
if (Λη) holds, ηα < 1/C and φ(M) is contained in the ball B(p0, s−1

δ (
√
η/(δ − µ))), then

M is diffeomorphic and Cηα-quasi-isometric to S (p, s−1
δ (1/h)).

Let ε < 1
12 and η = 2ε < 1

6 . We set

R0(δ, µ, ε) = min
{
s−1
δ

(√ 2ε
δ − µ

)
,R1(δ, µ, ε)

}
and K(n,q,A) = 2α(n,q)C(n,q,A), where α, C and R are the constants given by Theorem
2.1 and R1 is defined at the beginning of the proof.

If we assume that φ(M) is contained in a ball of radius R0(δ, µ, ε), by the definition
of R0(δ, µ, ε), we have R0(δ, µ, ε) 6 R1(δ, µ, ε) and so the above computation shows
that (Λ2ε) holds. Moreover, φ(M) is contained in a ball of radius s−1

δ (
√

2ε/(δ − µ)).
In addition, if we assume that εα < 1/K, then, from the definition of K, we see that
(2ε)α < 1/C and Theorem 2.1 (applied with η = 2ε) shows that M is diffeomorphic
and Cηα-quasi-isometric to S (p, s−1

δ (1/h). Since Cηα = Kεα, by the definition of K,
Theorem 1.1 is proven.

2.2. Proof of Corollary 1.2. We assume here that N is the (n + 1)-dimensional
Riemannian space form of constant sectional curvature δ. Let M ∈ HV (n, N) so that
φ(M) lies in a convex ball of radius π/(8

√
δ) if δ > 0, where q > n and A > 0. Moreover,

let us assume that V(M)1/n‖B‖q 6 A for δ > 0 and that max(H/h,V(M)1/n‖B‖q) 6 A for
δ < 0. Since N is of constant sectional curvature δ, we are in the case where δ = µ. From
the definition of R0(δ, µ, ε) in the proof of Theorem 1.1, in the case δ = µ, it follows
that δ = µ = +∞. Let α := α(q, n) and K := K(n, q,A) be the constants of Theorem 1.1.
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We set ε0 = min{ 1
12 , 1/K

1/α}. Note that ε0 depends only on n, q and A. Now, if M is of
constant mean curvature H and almost stable in the sense of (1.1) with ε 6 ε0, then,
applying Theorem 1.1, M is diffeomorphic to S (p, s−1

δ (1/h)). The diffeomorphism F
between M and S (p, s−1

δ (1/h)) is explicitly given in the proof of Theorem 2.1 (see [4]).
Namely,

F : M −→ S (p, s−1
δ (1/h))

x 7−→ expp(s−1
δ (1/h)Y/|Y |),

where Y = exp−1
p (φ(x)). Hence, F is of the form F = G ◦ φ, where φ is the immersion

of M into N. But, since F is a diffeomorphism, then φ is necessarily injective and so φ
is an embedding. In conclusion, M is embedded either into a hyperbolic space or into
an open half-sphere (because it is contained in a ball of radius π/(8

√
δ) if δ > 0) and

so, by the Alexandrov theorem (see [7]), φ(M) is a geodesic sphere of radius s−1
δ (1/h).

This concludes the proof of the corollary.
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