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ON BAIRE-HYPERPLANE SPACES

by M. VALDIVIA
(Received 28th April 1978)

In this article we prove that in every infinite dimensional separable Fréchet space
there is a dense barrelled subspace which is not the inductive limit of Baire-
hyperplane spaces.

The linear spaces we use are defined over the field K of the real or complex
numbers. By “space” we mean ‘‘separated locally convex topological vector space”.
Given a space H, H' denotes its topological dual and if A is a bounded closed
absolutely convex subset of H, H, is the normed space over the linear hull of A has
as norm the gauge on A. Let &f be the family of all the bounded closed absolutely
convex subsets of H. If B is a subspace of H its local closure B is the intersection of
all subspaces of H containing B and intersecting H,, A € &, in a closed set. We say
that H is locally complete if H4 is a Banach space for every A € .

Let Q) be a non void open set in the euclidean m-dimensional space R™. We denote
by 2(Q) and 2'(2) the spaces of L. Schwartz with the strong topologies. Let M be
the set of all points of () having rational coordinates. If b € M, T, is the set formed by
the delta of Dirac concentrated in b and its derivatives of all orders. @) is the
subspace of 2'(Q)) generated by {T,: b € M}. As is usual, C ~ D is the difference of C
and D. N denotes the set of the natural numbers.

1. Baire-hyperplane spaces

A space H is a Baire-hyperplane space if every union of a countable family of
closed hyperplane of H has void interior.
The following three theorems are of a trivial nature.

Theorem 1. Every separated quotient of a Baire-hyperplane space is a Baire-
hyperplane space.

Theorem 2. If a space E contains a dense subspace which is a Baire-hyperplane
space then H is a Baire-hyperplane space.

Theorem.3. If E is a Baire-hyperplane space and 7 is a separated locally convex
topology on E coarser than the original topology, then E[J] is a Baire-hyperplane
space.

Note 1. If E is a space such that its topology is defined by a family of norms there
is in E'[o(E', E)] a compact absolutely convex subset A which is total. Then, if % is a
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topology on E’' compatible with the dual pair (E’, E), Theorem 3 implies that E); with
the topology induced by & is a Baire-hyperplane space. According to Theorem 2,
E’[#] is a Baire-hyperplane space.

Theorem 4. Every metrizable (LF)-space is a Baire-hyperplane space.

Proof. Let (H,) be an increasing sequence of subspaces of E with U{H,:
n € N} = E. Suppose that there is a topology on H,, %,, finer than the original topology
such that H,[%,], n €N, is a Fréchet space and E is the inductive limit of the
sequence (H,[%.]). The sequence of the closures of H, in E, n €N, is increasing and
its union in E. Since E is a metrizable barrelled space there is a positive integer p so
that I-?,, = E, (1). On the other hand, let us suppose that there is a sequence (L,) of
closed hyperplanes of E with E as its union. Then U{L, N H,[%,]: n EN} = H,[7,]
and since H,[J,] is a Fréchet space there is a positive integer q such that L, D
Hp[7,] and therefore L, D I-_I,, = E which is a contradiction.

Note 2. In (3, p. 369) a non closed barrelled subspace of !!' is given. It is easy to
show it is not a Baire-hyperplane space. Other examples of normed barrelled spaces
which are not Baire-hyperplane spaces are given in (2).

Theorem 5. Every product of Baire-hyperplane spaces is a Baire-hyperplane
space.

Proof. Let {E;;i € I} be a family of Baire-hyperplane spaces and let E be its
topological product. If we suppose that E is not a Baire-hyperplane space let (L,) be a
sequence of closed hyperplanes of E covering E. For each i € I, let %; be the family
of those elements of (L,) not containing E. % does not cover E; since E; is a
Baire-hyperplane space and therefore a vector x; € H; can be found which is not in
any member of &. Call F;, the linear hull of {x;}. Every element of the family
&L ={%;i eI} does not contain F =II{F,:i €I}, but F is a Baire space and thus .¥
cannot cover F and therefore #4 ={L,,L,,...,L,, ...}~ L is not void which means
that every M € # contains E;, i € I, and, therefore M D E which is a contradiction.

2. Bornological barrelled spaces

Proposition 1. Let H be a locally complete space and let S and T be subspaces of
E such that T C S. If & denotes the associated ultrabornological topology to S then T

is ¥-dense in T.

Proof. Let T* be the %-closure in S of T and write T, for T* N T. We show that
T C T*. Given any bounded closed absolutely convex subset A of H we have that H,
is a Banach space and H, N T is a closed subspace of H, coinciding with Han7 which
is therefore a Banach space and its topology is finer than the topology induced by %
and thus Husn7 N T*, which coincides with Hanr, is closed in Ha. Therefore T,
coincides with T and the conclusion follows.
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Next we consider a locally complete space E which has a bi-orthogonal sequence
(xn, u,;) such that the linear hull G of (x,) is dense in E. If x € E we write

A(x) ={n EN: u,(x) #0}.

Suppose that there is a xo € E such that A(xy) is infinite and call # the filter on N such
that F € ¢ if and only if F NA(xy) has a finite complement in A(x,) and let % be an
ultrafilter on N finer than #. For any U € U we write L(U) to denote the local closure
of the linear hull of {x,: n €N~ U}. Since L(U,) U L(U,) C L(U,; N U,) for every pair
U,, U,€ % it follows that L = U{L(U): U € %} is a subspace of E containing G. We
write F for the linear hull of LU {xo}. In what follows % denotes the associated
ultrabornological topology to L.

Proposition 2. The neighbourhoods of the origin in L[%] absorb the bounded sets
of G.

Proof. Let V be an absolutely convex neighbourhood of the origin in L[J] and
suppose the existence in G of a bounded closed absolutely convex set Q such that Q
is not absorbed by V. Take y, € Q ~ V. Suppose we have already constructed the
elements y,, y2,..., ¥y, of Q such that

yPEpV’yp= E AnxmAnEI<, p=1,2,...,q,
n€N(p)

where
NDH=1,2,...,n
NQ@)=m+1,n+2,...,n

N@=n,+1,n,0+2,...,n,
If G, denotes the linear hull of
{x.,:nEN, nE€N({p),p=12,...,q}

then G, N Gy is a closed finite codimensional subspace of Go. If X is a topological
complement of G, NGy in Gg, call Q, and Q, the projections of Q over X and
G, N Gy, respectively. Obviously, V absorbs Q; which is a bounded set in a finite
dimensional space. Since Q, is a bounded set in G, N G, there is a A >0 such that

Q:CAQNGy).
V cannot absorb Q N G, because otherwise there is a 4 >0 such that
QCuV,QNG,CuVv
and therefore
QCQ+QCQ+HAMOANGHCuV+AuV=pnu(l+A)V,
which is a contradiction. Thus, there is an element y,., in Q N G, so that
Yon&(@+ D)V
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which can be written
yq"" = 2 Alelh AIl e K9
nEN(q+1)

where
N(q+ 1)={nq+1, nq+2’-‘-ynq+l}'
The elements of the sequence (N(q)) are a partition of N. We write

My=U{NQqg-1):9q=12,..}
M,= U{NQ¢):q=1,2,...}.

Obviously, MyN M, =@ and M, U M, = N and since % is an ultrafilter it follows that,
for instance, M, belongs to . The sequence (y,,) belongs to L(M,) and it is bounded.
Writing D for the closed absolutely convex hull of (y,,) in E we have that Ep N L(M))
is a Banach space since Ep is a Banach space and therefore VN Epnym, is a
neighbourhood of the origin in Epnyu, (remember that V is a #-neighbourhood of the
origin in L) and thus V absorbs the elements of the sequence (y,,) which is in
contradiction with y,,& (2q)V.

Proposition 3. If G is a bornological space then L is an ultrabornological space.

Proof. Let J be the canonical injection of G into L[%]. The former proposition
implies that J is continuous since if V is an absolutely convex J-neighbourhood of
the origin in L, then J~'(V) = V N G absorbs the bounded sets of G and since G is
bornological J~'(V) is a neighbourhood of the origin in G. If L[%] is the comglgtion of
L[J1], J can be extended to a continuous linear mapping ¢ from L into L{Z]. The
conclusion follows if we show that ¢ is the identity from L in L[J]. But this is the
case since if z € L there is U € % such that z € L(U). According to Proposition 1,
L(UYN G is %-dense in L(U) and therefore there is a net

{zi: i€ I, =}
in L(U) N G %-converging to z which obviously also converges to z in L and thus

lim{p(z):i€EL,z}=p@)=lim{J(z):. i€L,=}=lim{z:iE€L=}=12

Note 3. In (2) ultrafilters on N are used also to construct examples of metrizable
ultrabarrelled spaces which are not Baire-hyperplane spaces.

Proposition 4. L is an hyperplane of F.

Proof. Given any x belongs to L there is an element U € % such that x € L(U)
and therefore A(x) & U. On the other hand A(xy) € U and thus x,& L. Since F is the
linear hull of L U {x¢}, L is an hyperplane of F.

Proposition 5. F is not an inductive limit of Baire-hyperplane spaces.
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Proof. Suppose that there is a family {(F, ¢;):i € I} such that F; is a Baire-
hyperplane space, ¢; is a linear continuous mapping from F; into F and F is the
locally convex hull of the family. Let u be a linear form on F such that u~'(0)= L.
Since u is not continuous there is an index h € I such that u © ¢, is not continuous on
F, and thus ¢;'(L) is a dense hyperplane of F,. Take a net {y;;j€J,=} in ¢;'(L)
converging in F, to an element y, & ¢3'(L) and select a sequence (¢,) such that if
@n(yo) = 2o and @4(t,) = z, then

lim u,(2,) =un(z), m=1,2,...

Write zo=Axp+ x, A# 0, x € L and then
A(z¢) D A(Axg) ~ A(x) = A(xp) ~ A(x)
and since A(xg) € U and A(x) Z U it follows that A(z,) € 4. Write
Qi = A(z1) N A(zg)
Qn = [A(zn) ~ ZQ:A(z,,)] NA(z), m=23,...
If n € A(zy) the sequence (u.(z,));-1 converges to u,(z,) and therefore there is a
positive integer p, such that
u,(z,) #0, for p = p,.
If u,(z,) is the first element of (u,(z,));-1 which is non-zero then n € Q, and therefore
A(z)= U{Q,:p=1,2,...}.
Since
Q CA(Z)EX,
given a finite subset M of N the union
U{Q:pEMIZU
and thus
U{Q,: p € M} # A(z))

and therefore there is a strictly increasing sequence of positive integers (n(q))3-, such
that

Q,.@)#ﬂ,q:l,z,...

hence we can suppose that the sequence (z,) has been selected so that Q,# #,
n=12,....
For any pair of positive integers n, m construct a continuous linear form ¢, on F},
such that
Ynm (t) = Un(Zo)ltm (@n(1)) — Un(@n(t))Um(20), t € F;,.

Let {f,: n € P C N} be the set of all the non-null elements of {,.: n,m EN}. If p, g
are positive integers, p <gq, and if n € Q,, m € Q,, then mZ A(z,) and n € A(z,) and
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therefore u,(z,) =0 and u,(z,) # 0. Then
'l’nm(tp) = U, (ZO)“m(‘Ph(tp)) - un(‘Ph(tp))um(zO) = un(Zo)“m(Zp) - “n(Zp)“m(Zo)
= —Un(2p)Um(20) # 0,

hence {f, : n € P CN} # 8. Since F,, is a Baire-hyperplane space the family {f;'(0): n €
P} of closed hyperplanes of F, does not cover F, and therefore there is v € F, with
fa(v) #0 for every n € P.

The set A(gx(v)) belongs to . Indeed, suppose that A(z¢) € A(ex(v)), which is the
difficult case. Then there is q € A(zp) so that u,(¢s(v)) = 0. Take a positive integer k
such that g € Q.. If p € N, p # k, let m be an element of Q,. Then, according to (1), we
can take s € P such that ¢,, = f, and therefore

0 # f.(v) = Ygm(v) = Ug(20) U (@n(v)) — Uy (@n(V))Um(20) = Uy (Z0)Um(pr(v)),
and therefore u,(¢n(v)) # 0 and thus
A(en(v)) D A(zg) ~ Qx,

M

hence (¢, (v)) € U.
Write

en(v) = pzo+ w, p#0,weE L.
Since A(w) € U there are two different p,q €N such that
(A(z)) ~A(WH N Q, # H, (A(20) ~ A(z)) N Q, # B.

Take n € Q, and m € Q,. Then

un(@n(v)) = putn(20) + un(w) = pttn(20)

Un(@a(v)) = pltm(20) + U (W) = pUtm(20)
and therefore

0 # thm (V) = tn(20)Um (01 (v)) — Un(@n(V)) U (20) = Un(20)pltm(20) — pUtn(20)tim(20) = O,

which is a contradiction.

Proposition 6. If a barrelled space H admits a bi-orthogonal sequence (x,, u,) such
that the linear hull M of (x,) is not closed in H then there is an element x € H so that
the sequence (u,(x)) has an infinity of non vanishing terms.

Proof. If Z denotes the subspace of H orthogonal to {u;, u,,..., u,, ...} the
sequence (u,(z)), for any z € H, has a finite number of non vanishing terms if and only
if z€ M+ Z. Suppose that H coincides with M+ Z. If ¢ denotes the canonical
mapping from H onto H/Z and  stands for the restriction of ¢ to M then ¢ is an
injective continuous mapping from M onto H/Z. Since H/Z is a barrelled space of
countable dimension it is provided with the finest locally convex topology and
therefore also M which implies its completeness but M was supposed to be non
closed in E.
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Note 4. If E is a space with a dense subspace G of infinite countable dimension, a
theorem of Klee (4, p. 148) can be applied to obtain a bi-orthogonal system (x,, u,) for
E so that the linear hull of (x,) is G. If E is locally complete and G is bornological and
different from E there is an element xo € E such that A(xp) is infinite, according to
Proposition 6, and the spaces L and F can be constructed with the properties
obtained in Propositions 3, 4, 5.

Theorem 6. Let E be a separable Fréchet space of infinite dimension. Then there
are two dense subspaces L and F of E so that

1. L is an hyperplane of F.

2. L is ultrabornological.

3. Fis a barrelled space which is not an inductive limit of Baire-hyperplane space.

Proof. Since E is a separable Fréchet space of infinite dimension there is an
infinite countable dimensional dense subspace which is different from E. According to
Note 4 the theorem follows.

Theorem 7. Let E be the inductive limit of a sequence of infinite dimensional
separable Fréchet spaces. If E is locally complete there are two dense subspaces L and
F of E so that

1. L is an hyperplane of F.

2. L is ultrabornological.

3. F is a bornological barrelled space which is not an inductive limit of Baire-
hyperplane spaces.

Proof. Let (E,) be an increasing sequence of subspaces of E with union E. Let
%, be a topology on E,, finer than the original topology, such that E,[%,] is an infinite
dimensional separable Fréchet space. Take in E,[%,] a dense subspace G, of
countable dimension. Then the linear hull G of U{G,:n=1,2,...}is dense in E and
different from E. On the other hand, it is easy to check that G is the inductive limit of
the sequence of metrizable spaces (G,) and thus G is bornological. We apply Note 4
and we finish by showing that F is bornological. Indeed, if we suppose that F N E, is
provided with the topology induced by %, it is easy to show that F is the inductive
limit of the sequence of metrizable spaces (F N E,).

Proposition 7. ] ~* H be a subspace of 9'(QY) such that it contains D). Then H
is bornological.

Proof. If B is a bounded set of H there is a compact absolutely convex set A in
2'(Q)) such that B is a precompact set of @'(Q), since 2'(Q}) is a nuclear complete
space. Then B is a precompact set of 9'(Q).4y and therefore there is in D'(W)sny a
sequence converging to the origin with closed absolutely convex hull containing B (3,
p. 273). Then the topology % on @(Q) of the uniform convergence of the sequences of
H converging to the origin in the sense of Mackey coincides with the topology on
2(0) of the uniform convergence of the bounded sets of H.

Let {¢;: i €I1,=} be a Cauchy net in D(Q) for the topology %. Let M be the set of
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all the points of Q with rational coordinates. If b € M, T, (b) is the set of the delta of
Dirac 8, concentrated in b and all its derivatives 8§ with order |m| less or equal than
n. Let

T, = U{T.(b): b € M}.

Then T, is a bounded set of H and thus given € >0 and p = (p,, p3, ..., Pm) Where p,
is a non negative integer, r=1,2,..., m, there is an i, € I such that

Kei — @i, 89 = lePUb) — 0P ()| <€, i, j= io, VbEM

and since ¢;, i € I, is a function on © with values in K having continuous derivatives
of all orders we have that

[e®(x) - oP(x)| <€, VX EQ,

and therefore there is a function ¢ on ) with values in K having continuous
derivatives of all orders such that

lim{e®(x): i€ T,=}= P (x)

uniformly on Q. Suppose that ¢ has non compact support in (). Then there is a
sequence (x,) in ) not contained in any compact of ) such that ¢(x,)#0, n=
1,2,.... The subset of H

{ﬁ&,ﬂ:n=l,2,...}

is bounded and therefore given a positive € less than 1 there is an index k € I such
that

1 > , 1
—o,——0 ) =l——e(xx)— 1| <en=1,2,...
or= o 3 )| = [y o0
Since the support D of ¢, is compact there is a positive integer q such that x,& D and
thus

1
|m¢k(xq)— 1| =l<e<1
which is a contradiction and therefore ¢ € () and thus Z(Q)[F] is complete. Since
H is a Mackey space, (5), and according to a theorem of Koéthe, (3, p. 386), H is
bornological.

Theorem 8. There are two dense subspaces L and F in 2'[Q] such that

1. L is a hyperplane of F.

2. L is ultrabornological.

3. F is a bornological barrelled space which is not an inductive limit of Baire-
hyperplane spaces.

Proof. %4(Q) has countable dimension, is dense in 2(Q2) and @) # D(). On
the other hand, 2((}) is complete. Then, according to Note 4, the theorem follows.
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