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This paper reports on the efficacy of the Gortler number in scaling the laminar-turbulent
boundary-layer transition on rotating cones facing axial inflow. Depending on the
half-cone angle Y and axial flow strength, the competing centrifugal and cross-flow
instabilities dominate the transition. Traditionally, the flow is evaluated by using two
parameters: the local meridional Reynolds number Re; comparing the inertial versus
viscous effects and the local rotational speed ratio S accounting for the boundary-layer
skew. We focus on the centrifugal effects, and evaluate the flow fields and reported
transition points using Gortler number based on the azimuthal momentum thickness of
the similarity solution and local cone radius. The results show that Gortler number alone
dominates the late stages of transition (maximum amplification and turbulence onset
phases) for a wide range of investigated S and half-cone angle (15° < i < 50°), although
the early stage (critical phase) seems to be not determined by the Gortler number alone on
the broader cones (1 = 30° and 50°) where the primary cross-flow instability dominates
the flow. Overall, this indicates that the centrifugal effects play an important role in the
boundary-layer transition on rotating cones in axial inflow.

Key words: boundary layer stability, transition to turbulence, absolute/convective instability

1. Introduction

Rotating cones in axial inflow are one of the simplified models for probing the transition
phenomena in three-dimensional boundary layers developed on aero-engine-nose-cones,

1 Email address for correspondence: sumittambe @iisc.ac.in

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 987 R3-1

L))

Check for
updates


mailto:sumittambe@iisc.ac.in
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.379&domain=pdf
https://doi.org/10.1017/jfm.2024.379

https://doi.org/10.1017/jfm.2024.379 Published online by Cambridge University Press

S. Tambe, K. Kato and Z. Hussain

launch vehicle tips, turbo-machinery rotors, etc. Generally, the rotation destabilises the
boundary layer on a rotating cone such that the disturbances grow to form coherent vortex
structures close to the cone surface. In the presence of the meridional velocity component,
the instability-induced vortices align in a spiral vortex pattern around the cone surface
(Kobayashi & Izumi 1983). As the azimuthal wall velocity increases with the radius, the
spiral vortices grow and eventually set on the turbulence (Kohama 1984a). In practice,
this transition phenomena, i.e. the spiral vortex growth and the turbulence onset, affect the
performance of an engineering system — by altering the momentum distribution near the
wall, affecting the local skin friction and heat transfer.

The cone rotation destabilises the boundary layer through two types of primary
instabilities: centrifugal and cross-flow instabilities. The centrifugal instability relates to
the balance between the centripetal force and the radial pressure gradient — inducing
counter-rotating vortices on rotating cylinders (Taylor 1923; Hollerbach, Lueptow & Serre
2023), concave walls (Gortler 1954) and rotating cones with relatively small half-apex
angle ¥ < 30° (Kobayashi, Kohama & Kurosawa 1983) in still fluid (Hussain, Stephen
& Garrett 2012; Hussain, Garrett & Stephen 2014) and in axial flow (Hussain et al. 2016;
Song & Dong 2023; Song, Dong & Zhao 2023). The cross-flow instability arises from the
inflectional meridional velocity profile — inducing co-rotating vortices, which have been
investigated on rotating disks (Smith 1947; Gregory, Stuart & Walker 1955; Lingwood
1995), on smooth rotating broad cones ¥ = 30° (Kobayashi & Izumi 1983) within still
fluid (Garrett, Hussain & Stephen 2009), axial flow (Garrett, Hussain & Stephen 2010)
and, more recently, on rough rotating cones (Al-Malki, Fildes & Hussain 2022), as well as
on swept wings (Kohama 2000).

Generally, a rotating-cone boundary layer undergoes transitions through three distinctly
observable phases along the cone: (1) the critical phase where the instability-induced
spiral vortices begin their growth, (2) the maximum amplification phase where the spiral
vortex amplification peaks, where the vortices rapidly enhance mixing of the outer and
inner flow, and (3) the turbulence onset phase where the velocity fluctuation spectra start
resembling a general turbulence spectrum (Kobayashi er al. 1983; Kohama 1984b). The
present article refers to these phases as transition points in geometric or flow-parameter
spaces. In the transition region from the critical to turbulence onset, the instability-induced
spiral vortices alter the thermal footprint and velocity distribution of the cone boundary
layer. These effects are measurable and useful in identifying the phases of boundary-layer
transition on rotating cones, as reported in the previous literature (Kobayashi et al.
1983, 1987; Kato et al. 2021; Tambe et al. 2021).

On a cone/disk rotating in still fluid, transition has been evaluated by a single parameter
such as rotational Reynolds number based on the local radius and wall velocity (Kobayashi
& Izumi 1983; Lingwood 1995, 1996; Garrett et al. 2009; Hussain et al. 2014). Recently,
Kato et al. (2021) suggested another parameter, Gortler number G, and experimentally
showed that thickening of the boundary layer due to transition can be scaled by Gortler
number rather than the Reynolds number on a ¥ = 30° cone.

When the cone is rotating in axial inflow, however, both cone rotation and axial inflow
are two independent control parameters. Therefore, Kobayashi et al. (1983), Kobayashi
et al. (1987) identified two flow parameters for scaling the boundary-layer transition on
rotating cones in axial inflow: (1) the local rotational speed ratio S = r*2* /U which
accounts for the boundary-layer skew, and (2) the local Reynolds number Re; = [*U} /v*
comparing the inertial vs viscous effects. Here, asterisk denotes dimensional variables;
as schematically shown in figure 1, r* = [* siny is the local cone radius, [* is the local
meridional length from the cone apex, £2* is the angular velocity of the cone, U} is the
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Figure 1. Schematic of a rotating cone in axial inflow.

meridional component of the boundary-layer edge velocity, v* is the kinematic viscosity,
U}, is the free-stream velocity, L* is the total meridional length of a cone, and U*, V* are
the meridional and azimuthal velocity components.

The present article reports the efficacy of Gortler-number-based scaling of the
boundary-layer transition on rotating cones in axial inflow, which reduces the
two-parameter scaling (Re;—S) down to a single parameter G. Section 2 describes the
Gortler number and the basic flow formulation as functions of the local rotational speed
ratio S, which inversely represents the axial inflow strength. Section 3 describes the
experiments, in which the flow data were obtained. Section 4 presents the measured
flow data and reported transition points along conventional Re;—S scale as well as along
Gortler-number scale. Section 5 concludes the article.

2. Gortler number and the basic flow formulation

Gortler (1954) showed that due to the centrifugal effects, a boundary layer on a concave
wall becomes unstable and its instability induces counter-rotating vortices — also known
as Gortler vortices. Furthermore, the vortices form at a constant Gortler number — which
is a product of two non-dimensional parameters: Reynolds number comparing the inertial
vs viscous effects and a curvature term €, accounting for the wall-normal extent of the
viscous effects, e.g. boundary-layer thickness compared with the radius of wall curvature
(Taylor 1923; Gortler 1954; Saric 1994).

On a rotating cone, the centrifugal effects exist because the viscous flow on the cone
wall follows the curved motion of the rotating-cone surface. The curved flow within the
boundary layer affects its instability behaviour which can be evaluated by Gortler number
G formulated with the azimuthal-momentum-based Reynolds number Resx = r*2*§* /v*
and the curvature term €, = /6% /r*:

G=Regree = — 2 |2 — /3y = [$3Isiny. @.1)
v* r*
Here, §2* is the angular velocity and the azimuthal momentum thickness

§* = /oo V(1 — V) dz*. 2.2)
0
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Here, V is the azimuthal velocity normalised by the local wall velocity r*§2*, z* is the
wall-normal coordinate, § = §*/8} is the azimuthal momentum thickness normalised by
the length scale 8 = /v*/2*, r = r*/8}; and | = [*/§. Since the strongest curvature
appears at the rotating cone surface, the local cone radius r* is chosen as the radius
of curvature in €.; and as the rotation adds momentum in the azimuthal direction, the
azimuthal momentum thickness §* accounts for the wall-normal extent of viscous effects
n €.

For a fixed non-dimensional radius r, Gortler number only depends on the
non-dimensional azimuthal momentum thickness 6 in (2.1). In the present work, we
used the basic flow to compute §, assuming that the instability-induced distortion of the
mean flow remains small until the maximum amplification phase, which will be validated
through figures 4 and 5 in §4. In the rest of this section, we describe the basic flow
formulation and the effect of axial flow (or S) on 8, which consequently affects the local
Gortler number G for a given r.

The basic flow is computed using the formulation given in § 2.3 of Hussain (2010),
which is based on the formulation by Koh & Price (1967). Following the Mangler
transformation, Hussain used a stream-function-based similarity type transformation to
obtain the governing equations in the non-dimensional form (Hussain 2010). The stream
function

—1/2
v = <"2’le/2§ Sinlf’> fom) = U= LS ang v = @Gl + 1.
s any
(2.3a,b)
Here,
2 172
_o_ (e _ (M3
§ = S — ( U: ) n=n 251/2 Sln'l// ) (24a’b)

n is the scaled wall-normal coordinate z*/§}, m is the exponent in the potential flow
solution over a cone U} = C*I*™, where C* is a constant; for ¥ = 15°, 30°, and 50°,
m = 0.0396, 0.117 and 0.3, respectively (Hussain 2010). The governing partial differential

equations of the basic flow are as follows:

Py [(g +1)2+2(1 — m) (f”ai f/%)] -

m+3 m+3 ds  ° ds
(2.5)
4 4(1 — m)s of ag
4 /_— / 1 N T /__ /_ :0 26
g +/g m+3f(g+ )+ o (gas fas (2.6)

Here, ' denotes the 3/9n;. The boundary conditions are
f=0,f=0,g=0,onn =0; and f — 1,g— —1, asn — oo. (2.7a,b)

A commercial routine NAG DO3PEF is used to obtain the basic flow solution. Hussain
et al. (2016) have used this basic flow to successfully predict the trend of the critical
Reynolds number for the instability onset on a rotating slender cone (¢ = 15°) in axial
inflow — agreeing with the experimental results (Kobayashi et al. 1983; Tambe et al. 2021),
also shown in figure 6(a).

Figure 2 shows the computed velocity profiles of the basic flow for three different
half-cone angles ¢ = 15°, 30° and 50°. When the axial inflow is dominant over the
rotation (e.g. figure 2a at S = 0.32), the momentum is distributed in both azimuthal
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Figure 2. Three-dimensional boundary-layer profiles on rotating cones ( = 15°, 30° and 50°) with examples
of (a) strong axial inflow S = 0.32 and () strong rotation S = 100. (c¢) Variation of the azimuthal momentum
thickness with the local rotational speed ratio S. Here §; is the momentum thickness in the transformed
wall-normal coordinate 7;; & is the momentum thickness in the scaled wall-normal coordinate n = z*/8.

and meridional directions. However, when the rotation is dominant (e.g. figure 2b at
S = 100), most of the momentum is distributed in the azimuthal direction. Furthermore,
the meridional velocity takes the inflectional form, owing to the increased meridional
pressure gradient caused by the strong rotation.

Owing to the transformation (2.3a,b), the basic flow profiles for different half-cone
angles ¥ closely follow each other, especially in the azimuthal direction, see figures 2(a)
and 2(b). Consequently, their azimuthal momentum thickness 81 (in n; coordinates)
follows a common trend with respect to the local rotational speed ratio S, see figure 2(c).
This shows that varying axial inflow influences the wall-normal distribution of the
azimuthal momentum. When transformed back onto the physical coordinates 1, azimuthal
momentum thickness § increases with S and decreases with the half-cone angle . Thus,
at a fixed non-dimensional radius r, increasing axial inflow strength or reducing S will
lower the local Gortler number G, weakening the centrifugal effects. This shows that the
Gortler number formulation in (2.1) accounts for the axial flow strength (inverse of local
rotational speed ratio S) through §.
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3. Methodology

The efficacy of Gortler-number-based scaling for boundary-layer transition on rotating
cones is assessed by using surface temperature fluctuations and the velocity fields obtained
as described in Tambe (2022) and by evaluating the Gortler numbers for the transition
points reported along the two-parameter Re;—S space in the literature. Parts of the raw data
have been used to estimate the transition points reported by Tambe et al. (2021, 2023).
The experiments were performed at a low-speed open jet wind tunnel (named
W-tunnel) at Aerospace Engineering, Delft University of Technology. The cones, made
of polyoxymethylene (POM), were rotated in an axial inflow with the free-stream velocity
U}, =0.7-10.7m s~ ! and typical turbulence level below 0.01U, % Infrared thermography
(IRT) is performed at a frequency of 200 Hz using an infrared camera FLIR (CEDIP)
SC7300 Titanium to detect the thermal footprints of the instability-induced features, as
described in Tambe et al. (2019, 2021). Moreover, the meridional velocity field is measured
with two-component particle image velocimetry (PIV) at a frequency of 2000 Hz, using
a high-speed camera Photron Fastcam SA-1 and a high-speed laser Nd:YAG Quantronix
Darwin Duo 527-80-M. The flow is seeded with smoke particles having a mean diameter
of approximately 1 pm. Two-component velocity vector fields (with the vector pitch of
approximately 2.6 x 10~* m) are obtained using a commercial software DaVis 8.4.0.
Cones with different half-cone angles i = 15°, 30° and 50° are rotated at various
rotational speeds (0—13 500 r.p.m.) to obtain different combinations of the operating
conditions, i.e. S, = L* sin 2%/ U} and inflow Reynolds number Re;, = L*U}_/v*. As §
varies with S (figure 2¢), the measurement uncertainties of S and /* (£0.06S and 4+0.02/*,
respectively) cause uncertainty in Gortler number (using (2.1)) of approximately +0.1G .

4. Results and discussions

During the boundary-layer transition on a rotating cone in axial inflow, the growing
spiral vortices increase the surface temperature fluctuations, which is detected using IRT
(Tambe et al. 2019, 2021). Figure 3(a) shows the r.m.s. of surface temperature fluctuations
along a cone with the half-cone angle v = 15° at different operating conditions, i.e.
different combinations of base rotational speed ratio S, and inflow Reynolds number Rey.
The temperature fluctuations are in terms of the normalised pixel intensity 17, /1], nax-
Critical and maximum amplification phases of the spiral vortex growth are identified
for all profiles; examples are marked in figure 3(a). Here, the critical points are the
intersection points (marked by squares) of the baseline noise level and the least-square
linear fit through the rising 1}, /17, nax> Which represents the rapid growth of the spiral
vortices. Further downstream, the growth saturates at the 7., /I, ... peak (the maximum
amplification phase marked by the arrows), and, subsequently, the flow becomes turbulent
(the turbulence onset phase) (Tambe et al. 2021, 2023). When the inflow Reynolds number
Rey is increased at a fixed £2* (consequently, Sp, is decreased), the spiral vortex growth
shifts downstream on the cone — showing that the scaled meridional length /* /8’ does not
scale the spiral vortex growth. In contrast, figure 3(b) shows that, on the Gortler number
scale, the temperature fluctuation profiles associated with the spiral vortex growth overlap
with each other. This confirms that Gortler number is an appropriate parameter for scaling
the spiral vortex growth region on a rotating cone in axial inflow.

The amplified spiral vortices begin to interact with the outer flow and enhance mixing;
the enhanced mixing starts to increase the boundary layer thickness. For example,
figures 4(a) and 4(b), show the mean meridional velocity fields over a rotating cone
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Figure 3. Meridional profiles of r.m.s. of surface temperature fluctuations (I7,,,;/1},,s nax)> caused by the growth

of instability-induced spiral vortices on a rotating cone (¢ = 15°), represented along (@) scaled meridional
length [* /8 and (b) Gortler number scale. Squares and downward arrows represent the critical and maximum
amplification points, respectively.

(¥ = 15°) on the local Reynolds number scale, at two different operating conditions. Here,
the black dashed line marks the location of maximum amplification identified from the
surface temperature fluctuations (e.g. figure 3). The solid and dotted black lines represent
the boundary-layer thicknesses 895 ¢y, and 895z obtained from the measured mean flow
and computed basic flow, respectively; do5 is the wall-normal extent along 1 up to which
the meridional velocity deficit (or excess, e.g. at high S, figure 2b) is more than 5%
of the outer irrotational flow velocity. Before the maximum amplification, the measured
boundary-layer thickness (solid line) follows that of the basic flow (dotted line) within
0.1-0.2895 ¢xp but starts to drastically deviate around the maximum amplification. The
velocity fields in two different cases, as shown in the left columns of figures 4(a) and
4(b), do not align with each other on the local Reynolds number Re; scale — suggesting
that Re; alone is not an appropriate scaling parameter for the rotating cones. However, on
the Gortler number scale, the near-wall velocity fields and the maximum amplification
locations align close to each other at G & 7.5, as shown in the right columns. This further
confirms that the Gortler number appropriately scales the spiral vortex growth region on a
rotating slender cone ¥y = 15°.

Generally, increasing the half-cone angle has a stabilising effect on the boundary layer,
such that the transition is delayed to higher values of local Reynolds number Re; and local
rotational speed ratio S (Kobayashi et al. 1987; Garrett et al. 2010; Tambe et al. 2023). For
example, at a fixed local Reynolds number (Re;), broader cones require a stronger rotation
effect (higher S) to cause the boundary-layer transition. Figure 5 shows the mean velocity
fields for two rotating cones (¢ = 30° and 50°, respectively) on Re; and G scales. Due to
the high rotation rates, typically S = 5, the local meridional velocity is higher as compared
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Figure 4. Mean meridional velocity field obtained from PIV over a rotating cone of ¢ = 15° on Reynolds
number and Gértler number scales with (a) Sp = 1.9 and Re;, = 9.7 x 10%; (b) S, = 3.1 and Re;, = 6.2 x 10*.
Solid and dotted black lines represent the boundary-layer thicknesses 895 exp and 895, obtained from measured
mean flow and computed basic flow, respectively. The black dashed line represents the maximum amplification
identified from surface temperature fluctuations.

with the boundary-layer edge (e.g. as also seen in figure 2b). Similar to v = 15° (figure 4),
on broad cones ¥ = 30° and 50° (figure 5), the measured boundary-layer thickness (solid
white line) is close to that of the basic flow (dotted white line) within 0.1-0.2895 ¢, until
the maximum amplification, beyond which it increases. For both these cones, the velocity
fields align with each other on the Gortler number scale, unlike on the local Reynolds
number scale. This shows that the Gortler-number-based scaling is effective for a range of
half-cone angles: from slender (¥ = 15°) to broad (¥ = 50°) cones. The Gértler number
related to the maximum amplification increases from approximately G & 7.5 for a slender
cone ¥ = 15° to approximately G &~ 10-11 for the broader cones ¥ = 30° and 50°.

To assess the generality of Gortler-number-based scaling of rotating-cone boundary-layer
transition, Gortler numbers are evaluated for the transition points reported by different
studies in the literature in Re;—S parameter space, which used different wind tunnel
facilities, different model sizes (base diameters D* = L* sin{r = 0.047-0.1m), different
measurement techniques (hot-wire anemometry, infrared thermography, etc.), transition
criteria, free-stream turbulence levels (0.05—-1 %), half-cone angles (¥ = 15°, 30° and
50°) (Kobayashi & Izumi 1983; Kobayashi et al. 1983, 1987; Tambe et al. 2021, 2023)
and theoretical analysis (Hussain et al. 2016). The transition points (relating to critical,
maximum amplification and turbulence onset phases) are shown in Re;—S space directly as
they are reported in the literature (figure 6a—c) and, after estimating their respective Gortler
numbers, they are represented in G—S space (figure 6d—f, transformed using (2.1), where
§ is obtained from the similarity solution as shown in figure 2¢ and [ = \/Re;S/ sin {r).
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Figure 5. Mean meridional velocity field obtained from PIV over a rotating cone of (a—c) ¥ = 30° and (d—f)
50° on Reynolds number and Gortler number with (a) S, = 28.4, Rey, = 8 x 103; (b) Sp = 15.7, Re, = 1.5 x
10%; (¢) Sp = 10.8, Rep = 2.2 x 10%; (d) S = 94, Rey = 3 x 10°; (e) S = 55.6, Rep = 5 x 10%; (f) Sp =
18.0, Rey, = 1.7 x 10*. Solid and dotted white lines represent the boundary-layer thicknesses 895 .y, and 895 1
obtained from measured mean flow and computed basic flow, respectively. The black dashed line represents the
maximum amplification identified from surface temperature fluctuations.

In Re;—S space (figures 6a—c), all transition points show a nearly log-linear behaviour. For a
Y = 15° cone (figure 6a), a good agreement between theory and different measurements is
shown, confirming that Re; and S together are appropriate to represent the boundary-layer
transition region on rotating cones. However, in G—S space (figure 6d for v = 15°),
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Figure 6. The boundary-layer transition on rotating cones ((a,d) ¥ = 15°, (b,e) ¥ = 30° and (c,f) ¥ = 50°)
in two different parameter spaces: (a—c) Reynolds number and local rotational speed ratio (Re;—S) as reported
in the literature, and (d—f) the estimated Gortler number and local rotational speed ratio (G=S).

the transition points appear at respectively fixed Gortler numbers — regardless of the
local rotational speed ratio in the investigated range S 2 1. The Gortler numbers for the
measured turbulence onset points by Kobayashi er al. (1987) in axial inflow § ~ 2.5-4.5
agree with that of Kobayashi & Izumi (1983) in still fluid S &~ oo — both studies used the
same measurement technique. Moreover, the critical points predicted by Hussain et al.
(2016) also appear within a narrow range of Gortler numbers. Considering the small
variation of the respective Gortler numbers relative to the uncertainty of approximately
40.1G, we can conclude that the critical and the maximum amplification points as well as
turbulence onset on the rotating 15° cone are scaled by Gortler number regardless of the
axial inflow for § = 1. At low local rotational speed ratio, i.e. S < 1, the centrifugal effects
are expected to be weak and different mechanisms dominate transition (Song et al. 2023).
However, at § 2 1, the centrifugal instability is known to be dominant on the slender cone
(Kobayashi & Izumi 1983; Kobayashi et al. 1983; Hussain et al. 2016; Kato et al. 2021),
and the influence of S on Gortler number is reported here for the first time. Thus, when
the transition is induced due to the strong rotation effect (S 2 1), Gortler number is an
appropriate parameter to scale the boundary-layer transition on a rotating slender cone
¥ = 15° rather than using the two-parameter space Re;—S.

For broader cones ¢ = 30° and 50°, figures 6(e) and 6(f) show the transition points in
G-S space, respectively. Unlike their near-log-linear trends in the Re;—S space (figures 6b
and 6c¢), the maximum amplification and turbulence onset points in G—S space appear
in a narrow Gortler number range for the investigated values of S. Moreover, maximum
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amplification points for both the cones (¥ = 30° and 50°) appear in the range G ~ 10-11
as shown in figures 5, 6(e) and 6( f). This range agrees with the results of Kato et al. (2021)
on a Y = 30° cone rotating in still fluid (S & 00), although there are some differences in
the transition criteria and the way of calculating the momentum thickness; Kato et al.
(2021) reported a gradual thickening of the boundary layer, starting at approximately G =
10 based on the measured momentum thickness evaluated below the 90 % boundary-layer
thickness whereas the present § is obtained by integrating the similarity solution in the
infinite space. Moreover, the turbulence onset points for ¢ = 30° cone appear at G =
10-12 (figure 6¢). Thus, the maximum amplification point, beyond which the measured
mean flow drastically deviates from the similarity solution flow, and turbulent onset occur
in a well-defined range of Gortler numbers for a wide range of investigated S. However,
the critical points vary with respect to the local rotational speed ratio S in G—S space at
high rotational speed ratio S = 5 (figures 6e¢ and 6f), where, for broader cones ¥ > 30°,
the primary cross-flow instability dominates the flow rather than centrifugal instability
(Kobayashi & Izumi 1983; Kobayashi et al. 1987; Garrett et al. 2010).

It is interesting that Gortler number dominates the maximum amplification and
turbulence onset on broader cones ¥ = 30° and 50° at higher S 2 5 (figures 5, 6e and 6 1),
where the primary instability is the cross-flow instability and forms co-rotating primary
vortices. A possible explanation for this might be that the centrifugal effects cause a
secondary instability; some measurements, e.g. figure 7 from Tambe et al. (2023) and also
the top right of figure 8b from Kobayashi & Izumi (1983), show that new counter-rotating
vortices emerge near the maximum amplification (after the primary co-rotating vortices
have developed), which might be caused by centrifugal effects. Dominance of Gortler
number in this region suggests that the centrifugal effects play an important role in
the spiral vortex amplification and turbulence onset even on the broad cones where the
cross-flow primary instability dominates the flow initially.

5. Conclusion

The Gortler number is found to scale the centrifugal instability-led boundary-layer
transition on a rotating slender cone (y» = 15°) in axial inflow. For the local rotational
speed ratio § 2 1, the critical, maximum amplification and turbulence onset points appear
at well-defined Gortler numbers respectively, regardless of the axial inflow strength or
local rotational speed ratio S. Therefore, the Gortler number alleviates the need to use
the conventional two-parameter space of local Reynolds number Re; and local rotational
speed ratio S to represent the transition points on a rotating slender cone (y = 15°) in
axial inflow for § 2> 1.

On broader cones ¥ = 30° and 50°, where the cross-flow instability is the dominant
primary instability, the maximum amplification and turbulence onset are found to occur
at approximately G = 10-12 which is affected marginally by S, although the critical
Gortler number varies with S. This suggests that, for S 2 1, the centrifugal effects play an
important role in boundary-layer transition for a wide range of investigated rotating cones
with 15° < ¢ < 50°, regardless of the axial inflow. Further investigation is required to
understand the detailed role of the centrifugal effects in the turbulence onset mechanism.

Acknowledgements. Authors wish to acknowledge F. Schrijer, A. Gangoli Rao, L. Veldhuis, and TU Delft
Wind Tunnel Labs for the experimental data.

Funding. S. Tambe acknowledges the fellowship support of the Department of Science and Technology,
Government of India for this work and the European Union Horizon 2020 program: Clean Sky 2 Large

987 R3-11


https://doi.org/10.1017/jfm.2024.379

https://doi.org/10.1017/jfm.2024.379 Published online by Cambridge University Press

S. Tambe, K. Kato and Z. Hussain

Passenger Aircraft (CS2-LPA-GAM-2018-2019-01) and CENTERLINE (grant agreement No. 723242) for the
experimental data. K. Kato acknowledges support from JSPS KAKENHI grant number JP22K20406.

Declaration of interests. The authors report no conflict of interest.
Data availability statement. Data are available upon a reasonable request.

Author ORCIDs.
Sumit Tambe https://orcid.org/0000-0002-2628-4051;

Kentaro Kato https://orcid.org/0000-0002-5532-2379;
Zahir Hussain https://orcid.org/0000-0001-6756-6058.

Author contributions. S. Tambe contributed to measuring and analysing data, conceptualising and writing
the first draft manuscript. K. Kato contributed to conceptualising and writing the manuscript. Z. Hussain
contributed to basic flow computation, conceptualising and writing the manuscript.

REFERENCES

AL-MALKI, M.A.S., FILDES, M. & HUSSAIN, Z. 2022 Competing roughness effects on the non-stationary
crossflow instability of the boundary-layer over a rotating cone. Phys. Fluids 34 (10), 104103.

GARRETT, S.J., HUSSAIN, Z. & STEPHEN, S.0. 2009 The cross-flow instability of the boundary layer on a
rotating cone. J. Fluid Mech. 622, 209-232.

GARRETT, S.J., HUSSAIN, Z. & STEPHEN, S.0O. 2010 Boundary-layer transition on broad cones rotating in
an imposed axial flow. ATAA J. 48 (6), 1184—1194.

GORTLER, H. 1954 On the three-dimensional instability of laminar boundary layers on concave walls. Tech.
Rep. NACA.

GREGORY, B.Y.N., STUART, J.T. & WALKER, W.S. 1955 On the stability of three-dimensional boundary
layers with application to the flow due to a rotating disk. Phil. Trans. R. Soc. A 248 (943), 155-199.

HOLLERBACH, R., LUEPTOW, R.M. & SERRE, E. 2023 Taylor—Couette and related flows on the centennial
of Taylor’s seminal philosophical transactions paper: part 2. Phil. Trans. A Math. Phys. Engng Sci. A 381,
20220359.

HUSSAIN, Z. 2010 Stability and transition of three-dimensional rotating boundary layers. PhD thesis, School
of Mathematics, University of Birmingham.

HUSSAIN, Z., GARRETT, S.J. & STEPHEN, S.O. 2014 The centrifugal instability of the boundary-layer flow
over slender rotating cones. J. Fluid Mech. 755, 274-293.

HUSSAIN, Z, GARRETT, S.J., STEPHEN, S.O. & GRIFFITHS, P.T. 2016 The centrifugal instability of the
boundary-layer flow over a slender rotating cone in an enforced axial free stream. J. Fluid Mech. 788,
70-94.

HUSSAIN, Z., STEPHEN, S.0. & GARRETT, S.J. 2012 The centrifugal instability of a slender rotating cone.
J. Algorithm Comput. 6 (1), 113-128.

KATO, K., SEGALINI, A., ALFREDSSON, P.H. & LINGWOOD, R.J. 2021 Instability and transition in the
boundary layer driven by a rotating slender cone. J. Fluid Mech. 915, 1-11.

KOBAYASHI, R. & IzuMl, H. 1983 Boundary-layer transition on a rotating cone in still fluid. J. Fluid Mech.
127, 353-364.

KoBAYASHI, R., KOHAMA, Y., ARAI, T. & UKAKU, M. 1987 The boundary-layer transition on rotating
cones in axial flow with free-stream turbulence. JSSME Intl J. 30 (261), 423-429.

KOBAYASHI, R., KOHAMA, Y. & KUROSAWA, M. 1983 Boundary-layer transition on a rotating cone in axial
flow. J. Fluid Mech. 127, 353-364.

Komn, J.C.Y. & PRICE, J.F. 1967 Nonsimilar boundary-layer heat transfer of a rotating cone in forced flow.
J. Heat Transfer 89 (2), 139-145.

KOHAMA, Y. 1984a Behaviour of spiral vortices on a rotating cone in axial flow. Acta Mech. 51 (3-4), 105-117.

KOHAMA, Y. 19845 Study on boundary layer transition of a rotating disk. Acta Mech. 50, 193-199.

KoHAMA, Y.P. 2000 Three-dimensional boundary layer transition study. Curr. Sci. 79 (6), 800-807.

LINGWOOD, R.J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 17-33.

LINGWOOD, R.J. 1996 An experimental study of absolute instability of the rotating-disk boundary-layer flow.
J. Fluid Mech. 314, 373-405.

SARIC, W.S. 1994 Gortler vortices. Annu. Rev. Fluid Mech. 26 (1), 379-409.

SMITH, N.H. 1947 Exploratory investigation of laminar-boundary-layer oscillations on a rotating disk. Tech.
Rep. 1227.

987 R3-12


https://orcid.org/0000-0002-2628-4051
https://orcid.org/0000-0002-2628-4051
https://orcid.org/0000-0002-5532-2379
https://orcid.org/0000-0002-5532-2379
https://orcid.org/0000-0001-6756-6058
https://orcid.org/0000-0001-6756-6058
https://doi.org/10.1017/jfm.2024.379

https://doi.org/10.1017/jfm.2024.379 Published online by Cambridge University Press

Gortler scaling of rotating-cone boundary-layer transition

SONG, R. & DONG, M. 2023 Linear instability of a supersonic boundary layer over a rotating cone. J. Fluid
Mech. 955, A31.

SONG, R., DONG, M. & ZHAO, L. 2023 Effect of cone rotation on the nonlinear evolution of mack modes in
supersonic boundary layers. J. Fluid Mech. 971, A4.

TAMBE, S.S. 2022 Boundary layer instability on rotating cones: an experiment-based exploration. PhD thesis,
Delft University of Technology.

TAMBE, S.S., SCHRUER, F.F.J., GANGOLI RAO, A. & VELDHUIS, L.L.M. 2019 An experimental method
to investigate coherent spiral vortices in the boundary layer over rotating bodies of revolution. Exp. Fluids
60 (7), 115.

TAMBE, S.S., SCHRUER, F.F.J., GANGOLI RAO, A. & VELDHUIS, L.L.M. 2021 Boundary layer instability
over a rotating slender cone under non-axial inflow. J. Fluid Mech. 910, A25.

TAMBE, S.S., SCHRIER, F.F.J., GANGOLI RAO, A. & VELDHUIS, L.L.M. 2023 Instability of rotating-cone
boundary layer in axial inflow: effect of cone angle. AIAA J. 61 (8), 3326-3336.

TAYLOR, G.I. 1923 Stability of viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc.
A 223 (605-615), 289-343.

987 R3-13


https://doi.org/10.1017/jfm.2024.379

	1 Introduction
	2 Görtler number and the basic flow formulation
	3 Methodology
	4 Results and discussions
	5 Conclusion
	References

