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1. The number of Latin rectangles

A Latin rectangle L is a k × n array with symbols from Zn such that each row
and each column contains only distinct symbols. When k = n, L is called a Latin
square. We say L is reduced if the first row is (0, 1, . . . , n − 1) and the first
column is (0, 1, . . . , k − 1)T . The number of k × n Latin rectangles, denoted Lk,n , is
related to the number of reduced k × n Latin rectangles, denoted Rk,n , by the formula
Lk,n = n!(n − 1)!Rk,n/(n − k)!. We also write Rn = Rn,n . McKay and Wanless [10]
gave Rk,n when n ≤ 11.

The author’s thesis [14] primarily investigates the number Rk,n . For example, we
use a formula of Doyle [6, 12] to find R4,n for n ≤ 80, R5,n for n ≤ 25 and
• R6,12 = 16 790 769 154 925 929 673 725 062 021 120 and
• R6,13 = 4 453 330 421 956 050 777 867 897 829 494 620 160.

In general, the problem of finding Rk,n is difficult and, furthermore, the literature
contains many published errors (see [5, 9, 10, 12] for surveys of its history). In addition
to tackling the enumeration problem computationally, we also find theoretical results
for Rk,n . For example, we find the value of Rk,n mod n for all k and n [19].

THEOREM 1.1. If k ≥ 1 and n ≥ 1, then Rk,n ≡ ((−1)k−1(k − 1)!)n−1 mod n.
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Theorem 1.1 implies the surprising fact that Rn mod n is an indicator variable for
primality of n. We also generalize recurrence congruences for R3,n by Riordan [11]
and Carlitz [3] to arbitrary fixed k. The techniques were further developed to
encompass the number of certain graph factorizations and the size of certain subsets
of Latin hypercuboids (a very broad generalization of Latin rectangles).

2. Orthomorphisms and partial orthomorphisms

A partial orthomorphism of Zn is an injection ν : S→ Zn for some S ⊆ Zn
such that i 7→ ν(i)− i is also an injection [20]. An orthomorphism is a partial
orthomorphism with |S| = n [8]. Let zn be the number of orthomorphisms σ of Zn
for which σ(0)= 0. We extend a result by Clark and Lewis [4] who found zn mod n
for prime n [16].

THEOREM 2.1. Rn+1 ≡ zn ≡−2 mod n for odd prime n and Rn+1 ≡ zn ≡ 0 mod n
for composite n.

The enumeration of partial orthomorphisms is also linked to the value of Rk,n [17].
We give new sufficient conditions for when a partial orthomorphism admits a
completion to an orthomorphism and give a method for finding the number of partial
orthomorphisms with |S| = a, for fixed a [17].

Let d be a divisor of n. If σ is an orthomorphism of Zn such that σ(i)≡ σ( j)mod d
whenever i ≡ j mod d then we call σ a d-compound orthomorphism. We develop
the theory of d-compound orthomorphisms and, in particular, two special subclasses,
compatible and polynomial orthomorphisms [16].

3. The Alon–Tarsi conjecture

The sign of a Latin square is −1 if it has an odd number of rows and columns that
are odd permutations, otherwise it is +1. Let REVEN

n and RODD
n be respectively the

number of Latin squares of order n with sign +1 and −1. The Alon–Tarsi conjecture
asserts that REVEN

n 6= RODD
n when n is even [1]. In a 1997 paper, Drisko [7] proved

that REVEN
n+1 ≡/ RODD

n+1 mod n for prime n and suggested some ideas for future research in
the study of the Alon–Tarsi conjecture, which we show to be futile with the following
theorem [18].

THEOREM 3.1. If 2≤ t ≤ n, then REVEN
n+1 ≡/ RODD

n+1 mod t if and only if t = n is prime.

4. Autotopisms and subsquares

We also investigate symmetries of Latin squares; see [5] for the relevant definitions.
Autotopisms and automorphisms play a key role in finding divisors of Rn . Moreover,
Latin squares that admit automorphisms typically contain partial orthomorphisms. Let
L be a Latin square of order n and let Atop(L) be the autotopism group of L . We
bound the maximum cardinality of Atop(L), enabling us to find divisors of Rn for
large n. A similar method gives a bound on the maximum number of k × k subsquares
in a Latin square, for general k.
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THEOREM 4.1. If L is a Latin square of order n, then

|Atop(L)| ≤ n2
blog2 nc∏

t=1

(n − 2t−1).

THEOREM 4.2. The number of k × k subsquares in a Latin square of order n is
O(ndlog2(bk/2c+1)e+2).

Finally, we find new strong necessary conditions for when an isotopism is an
autotopism of some Latin square [15]. We use 4n to denote the set of permutations
α ∈ Sn , such that (α, α, α) is an automorphism of some Latin square of order n.

THEOREM 4.3. Suppose that α ∈ Sn has precisely m nontrivial cycles of length d. If
α has no fixed points, then α ∈4n if and only if m is even or d is odd. If α has at least
one fixed point, then α ∈4n if and only if n ≤ 2md.

THEOREM 4.4. Suppose α ∈ Sn consists of a d1-cycle, a d2-cycle and d∞ fixed points.
If d1 = d2 then α ∈4n if and only if 0≤ d∞ ≤ 2d1. If d1 > d2 then α ∈4n if and
only if:

(a) d2 divides d1;
(b) d1 ≥ dn/2e;
(c) d2 ≥ d∞; and
(d) if d2 is even then d∞ > 0.

Theorems 4.3 and 4.4 generalize a theorem of Wanless [20] (see also [2]) for cyclic
automorphisms. The techniques developed in [15] were subsequently used to study
the parity of the number of quasigroups [13].
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