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1

Harnack inequalities are known to be of great importance in the theory of
quasilinear elliptic partial differential equations. In the case of such equations
defined over a domain Q in R”, inequalities of this type have been proved for
solutions of second-order equations in divergence form which are of either
elliptic or degenerate elliptic structure. More recently Bombieri and Giusti (2)
have proved a Harnack inequality for solutions of linear elliptic equations on a
minimal surface in R"*!. The equations are of the form

oya;iou) =0, (1.1)

where summation over i, j = 1, ..., n+1 is understood, and 6 = (6, ..., 8,41)
is the tangential derivative on S. In (2), the inequality is used to give much
simplified proofs of some classical results on minimal surfaces, and to generalise
some more recent ones.

In this paper we shall establish inequalities of Harnack type for weak solutions
and supersolutions of equation (1.1), where the coefficients a;; satisfy

ﬁ%l £1? S ay(0EE S (I EI? forall ¢ in R,

(1]

Here po>1 is a constant and u, p~' are non-negative and satisfy certain
integrability conditions. This means that u can have zeros on S, and so the
matrix (a;;) is non-negative definite, rather than positive definite as in the elliptic
case. The results in this paper combine the methods of (2) with the work of
Murthy and Stampacchia on degenerate elliptic equations (7).

2

Let A be an open set in R**!, h € C*(A), | Dh | never zero on A. Denote the
operator 8/dx; by D;, fori =1, ..., n+1. If Sis the surface » = 0, the normal
v = (¥, ..., Vo41) to S (disregarding direction) is given by

D
V=
| Dh |

We will define

6!' = Di—vi Z ij_,-, i= 1, veey n+1,

i=1

Of = (811, «es bnsrS)-
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If H" denotes the n-dimensional Hausdorff measure on S, then for any ¢ in
C*(R"*Y), such that ¢ |g has compact support,

j 6,9dH" = n'[ ¢HvdH", i=1, ..., n+1,
s s

where H is the mean curvature of S (see (1)). If S is a minimal surface, H = 0,
and so

f §¢dH" =0, i=1, .. n+l.
S

This enables us to integrate by parts on the surface, and so we can define weak
derivatives on S, and thus weighted Sobolev spaces. If ue L°*(H", S) for some
s = 1, we shall write L?(u, S), p = 1, for the set of functions u: S— R with

1/p
uun,,,,,,szq lul"udH") <o
S

and denote by H*'* 2(u, S) the set of functions u in LP(u, S) for which there
exist functions u,, (¢ = 1, ..., n+1), in LP(y, S) such that for each ¢ in C}(S)

J‘ $(X)u(x)dH" = — I (8.4C)u(x)dH".
N N

When there is no ambiguity, we shall write H'* ?(x), and omit the subscript S
in writing the norm. H?''?(y) is the Banach space of equivalence classes of
functions with norm

Nl z,=0ullzut 2 1uglz,u
a

HJ: %() will stand for the completion of C}(S) in H'* %(u). Local versions of
these spaces are defined in the obvious way. Analogous definitions are made for

the unweighted Sobolev spaces H' %(S), Hy %(S).
Now suppose the isoperimetric inequality holds, that is, for any subset
E of S,
(H'(E))*~ 1" < yH"™'(E), 2.1

where H"(E) denotes the n-dimensional measure of E, 0E the boundary of E,
and 7y is a constant depending only on n. Then we have a Sobolev inequality
for functions u in the space Hy (S),

Theorem 2.1. (See (1).) Let n=2 and 1 £ p<n. Then for all u in
H} ?(S), ue IP"~?X(S) and

< f | u |/=P dH")Up_l/ng Cn, p) (f | 6u |? dH")llp. @.2)
S S

By using the techniques of (7), we can derive a similar inequality in the case of
weighted Sobolev spaces, under suitable hypotheses on pu. Let

peL®(H", S), =t e L'(H", S),
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where 1/t < 2/n<1+1/t. For convenience we write
(P*)~t = 1p=1/n, (p*)"" = A+ 1/)[p—1/n,

and 1/t = 141/t
First we shall prove that Hy 2(u, S) < HYy 2%(S), with a continuous embedding.
Now I < 27<n,and t+1/t = 1. Let ueHS %(u, S); then

1/(29)
w2 = (L |u|? u’u"dH") = 7 PO 7l
and
Wloulae < N 10wl ™t I}
From (2.2), we see that
et ez S CODN ™2 IR ) G0 |l 2, e
But (27)* = 2* and so
lulle =Cl1oullly,,.
If ye L*(H", S) then
(70 PY I 78 PP 70 e

and thus
lullze,, SClT0u]l2,,e (2.3)
Now suppose that Q is a subset of R?, fe C%(Q), and let S be the surface
given by
S ={(x, f(x)): xeQ}. 2.4

If f satisfies the minimal surface equation, then S is a minimal surface. If E
is any measurable subset of S, and £ denotes the projection of E onto Q then,
cf. (4), there is a constant x>0 such that

IX(E) = xkH"(E)

where L" denotes #-dimensional Lebesgue measure. Suppose p e L*(S, H"),
then
j aH"
E

and so H)(E) < KLX(E), where K depends on n, p. Similarly

r , 1/t 1/t
o] [ o) ([ o)
E E E
i -1 n e -t n e
|| ¥ 'udH p~'dH
JE E

S M ulise™t s CGHUED'".

H'(E) =

f pdH" | = || p o, &
E

H™E) =

Thus
(K'L(E))" £ HYE) £ KL'(). (2.5
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In the work that follows we shall have occasion to use the following two
theorems proved in (2). The second is an analogue of the John-Nirenberg
lemma used in the proof of Harnack inequalities in a domain € in R".

Theorem 2.2. Let S be an oriented boundary of least area in By, the (n+1)-ball
of radius R. Then for every f in C*(By),

(n—1)/n
min {f | f—k /=D dH"} é%’j | 6f | dH",
ke R Bpr Br

where B is a constant depending only on the dimension n+ 1.

Before stating the next theorem we need some notation. Let X be a topo-
logical space, m a regular positive Borel measure on X, and X,, 0 <r < 1,
a family of non-empty open subsets of X such that

(i) K,cK, ifs=sr,
(i) 0O<m(K,))<oo if 0 < r £1.
Let u: X— R be m-measurable, and if p # O let

1 1/p
[wlp,,= u?dm .
m(Kr) K,

uly,,=esssupu,

r

|u|_y,,=essinfu.

r

Theorem 2.3. Let 0<f,, 8, < o, and let

lu |90,1<+w9 | u |—01,1>0'

Suppose there exist constants a>1, p,, 0<py, < 4 min (0, 6,), and Q>0
suchthat for0 < p=r=s1

I u |oo, P é {Q(r_p)a}lloo—l/p I u |p,r!
I u |-o,, P é {Q(r_p)a}llp—llox l u |—p,r’
and further suppose that
A = sup inf {

r k

| log u/k | dm} <00.
m(Kr) K,
Then

| 16, 0 < {M(K)[(m(Ko)} "+ exp {20~ *(1/po+ A} u | -s,,05
where ¢, depends only on a.

3
In this section we shall obtain inequalities for weak solution and super-

solutions of the equation
oa;;0;u) =0 3.1
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over a minimal surface S. As we are interested in local estimates we may assume
that S is contained in the open (n+ 1)-ball of radius R, B,. We suppose that
a;{(x) = a;{(x) are measurable functions satisfying

WO & 12 = ay(x)6; S u(x) £ forall & in R, (3.2)
where pe L°(H", S), u~! e L'(H", S) and ¢ satisfies 1/t < 2/n<1+1/t.
A function u is called a weak solution (supersolution) of (3.1) if it lies in
H}2(u, S) and

J a,j5i¢5judH" = 0 (g 0)
S

for all bounded non-negative functions ¢ in Hy %(u, S). We let S, = B,nS.

Theorem 3.1. Let S be a minimal surface and u a positive solution in By of
(3.1). Then

esssupu < Cessinfu
s, s,

Jorr £ BR, where B is the constant of Theorem 2.2, and C depends on n, u, po, 1, t.
For supersolutions we have

Theorem 3.2. Let S be a minimal surface, u a positive supersolution in By of
(3.1). Then

| ulg,, < Cessinfu
S,

fJor r<BR. Here C depends on n, u, u=*, uy, K, t and 0,, where 6,<2% /2.
These theorems are known for S = R”, see for example (3).

First we shall prove Theorem 3.1. Let u be a solution of (3.1) and put
v = uP’2, where p # 0, 1. Then by direct calculation, v satisfies

8i(a,;6v)+(2/p— 1)~ a;; 006 v = (3.3)

Let ¢ be a non-negative test function with compact support in S. Multiplying
(3.3) by ¢%v and integrating over S gives

J‘ ¢205,(a,15,v)dH"+(2/p— 1) J\ ¢2aij51U5jvdH" = 0.

Since S is a minimal surface, j JdH" = 0, for any function f with compact

support on S, and it follows that

- J‘ ¢va‘15,¢5}vdH"+(l/p—- l)f ¢2a1j5‘05jvdH" = 0,
s s
hence
(p 1) 2 n n __
¢ a;;0;06;vdH" +sgn p | ¢va;;6;¢0,pdH" = 0.
s

E.M.S.—ZO/I—C
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If p>1,(p—-1)/l p|>0, and so
f ¢*a;;6,06 vdH" <
S

J $va;;6,¢6 vdH"l
If p<1, (p—1)/| p 1 <0, and this, together with™ (3.2) gives

1 n
0> ” I $2a, 506 vdH" > —

¢va; ;6,46 ;vdH" |
s

Using the Cauchy-Schwarz inequality:
| aij5i¢5 U | = (aij5i¢5j¢)*(aij6ivéjv)*

together with Holder’s inequality, we get, in either case

2
f $2a, 008 pdH" < —2 | v%a,6,46,6dH". (3.4)
N (P - 1) S
We now use the structure condition (3.2) to give

2
1 ¢2|av|2udH"§(—p”1) fv2|6¢|2udﬂ".
- S

Ho Js

Since | 8(¢pv)|?> < 2(] pdv |>+]| v5¢ |?), this yields

-[ | 8(¢)|? de"<2(1+ (:°p1)2)f v? | 8¢ |2 pdH",

which, together with the Sobolev inequality (2.3), gives

. 22t pop
( | ¢v |2 udH") < C<1+ %)J‘ v? | 8¢ |? pdH"
s (®-1*/Js

Now let ¢ have compact supportin S,, ¢ = 1 on S, p<r, | 6¢ | <2/(r—p).
Then substituting this ¢ into the equation we obtain

2/2% 2
U | u [p2*12 #dH"> < G Cp)2(1+(:°”1)2)f wPudH*.  (3.5)
Sp - - Sr

We now use the well-known iteration scheme due to Moser (6). First suppose
p>0. Letp, = (1—1)r+tr2~%, sothat p, = r,p, = (1—7)r,and let A = 2%/2.
Then (3.5) gives

vl 1av+
uP* " ydH"
s

242y A=V 1/av
{——C 2(1+ P o ”02)} ( f u”"udH") . (3.6)
(pv—0v41) (p2’-1) S,

IIA
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Iterating the right-hand side v times gives

vt 1/1v+1
uP** udH"
s

Pyv+1

v
EA-J

CO v p212ju A-J .
5 - jl;[o (1+ (__—pllj—lt))z ) uP#dH .
Ho (Pi=pj+1) i’

fIA

j=
As v> 00, p,—(1—1)r and so

©
EaA-J

(V] ) 2125 A-J
N 1=%)r - 0 P - r
@ I;I(Pj—PjH)“ ! §

Since A>1, ZA™/ is convergent to 2% /(2% —2). Also p;—p;4q = 27U+ 50

T (oy=pye )™ = (iF23 [T 27092477 = (a2 21272,
1) 0

To estimate the product [ ( 14 220}~
o estimate the product + —0 , W€ suppose
’ IoT( @11—1)2) P
(i) 0<p<1/\/no;
Gi) | pA’—1| = 1/n for each . 3.7

Then the product converges and is bounded by a constant independent of p.
Thus, letting ¢ = 22% /(2% —2), we have, for 0<t<1,

sup ufP < —GC; uPudH".

S(1-or Tr

Now suppose p<0, | p | <1/\/po. As we have already shown (3.5) holds. We
can assume, with no loss in generality, that ¥ = >0 (see Moser (6)). As
before, putting p, = (1 —t)r+r27", (3.6) holds. Iterating as before, and taking
account of the fact that p<0, we get

S,

(min u!?) ' g

< - u'“"de"
Stt-or (xr) S-

that is,

C -1

min ulnlg{ J u""'udH"}
St1-oyr (Tr)d Sr

Using the inequality (2.5), we have H},(S,) < Kr", and hence if (3.7) is satisfied,

we have

sup uf < C_ 1 ufudH" = Cr';
S(t-o)r r° "H:(S,) S, T

lulf,, (3.8)

and a similar inequality for min wu?.
S(1-o)r
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In order to eliminate the second condition in (3.7) we notice that this holds
for some p in any interval (@, Aa). For each such p, and for g satisfying p <g < Ap,
using | ul,,, < | ul,, » (3.8) gives

Cri—o\u/» Crn—2)A
S(sllig)r uq é ( ta ) I ¢ ‘ql” é Tal | * IZ' "
Thus we have shown that if p # 0, 0<p<1/\/y, and u is a positive solution
of (3.1) then there is a constant C, depending on n, y,, p, K, r, t such that

C
sup uf < i lwlpr

S(t-o)r
. c\!

sl(‘lxlm) uf = e luiZ, . 3.9
-<)r

Now write (1 —t)r = p;thenr = (1+s)p forsome s€[0,1]. Inthe notation
of Theorem 2.3, put

6o = 6, = o0,
K. = S(1 41, Where 0<p<pBR/4
(here B is the constant of Theorem 2.2),
m = Hj,
o« =lo.

Then we see that (3.9) puts us in a position to apply Theorem 2.3, provided we
can show

. 1
A= sup mf{ | log u/k | udH"} <o00.
H:(Sr) Sr

pSrs2pkeR
Now since u is a bounded function

f [logu/k |pdH" = || |l J |log u/k | dH"
S,

Sr

nl(a=1) R (n—1)/n " 1/n
Shule | log u/k | dH dH
slp slp

Putting w = log u, and using Theorem 2.2, we find

minj Ilogu/kI#dH"_S_Cpllullwf | ow | dH".
S2p0

ke R S2,/8
But w satisfies the differential equation

0(a;;6;w)+a;;0,wé;w = 0.
If we multiply this by a test function ¢, and integrate by parts then

I ¢2a,J5,W5‘,WdH"—2J. ¢wa,_,5,¢5_,wdH" = 0.
S N
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Using the Cauchy-Schwarz inequality we get

J ¢%a;; 6w ;wdH" < 4 f a;;6,45 ;0dH",
which together with tl;ge structure conditions ;ives
f ¢* | 6w |? pdH" < 4ﬂoj {66 |* udH".
S S
Taking ¢ = 1in S,,,5, ¢ = 0 outside S /5, | 66 | < B/p,

J‘ | 6w | udH" < 4Cpo || pt |l p" 1.
S20/8

Now if E is any subset of S5,

Jmmam:f | 6w | udp~tdH"
E E

<] o) ]

%
sClu I} (f | 6w |? udH")
E

SC|ut}pinmt2
by (3.10).
Thus

minf |logu/k | pdH" < C || p™* I} p@* D2 <0
S2p

keR

and so A is bounded, and Theorem 3.1 is proved.
If u is a positive supersolution, then u satisfies

d4(a;;0;u) £ 0.
Putting v = u?/2, we obtain

8,8 9) +Qlp— v~ 1a, 5,95, { =0if p>0

= 0if p<O.
If p<0, we can proceed as in the proof of Theorem 3.1 to get

C -1
min u'?! >{— | wulPtudH"}
St1-or (xr) Js,

provided | p | <1/\/po. If p>0, we have
6i(auajv) + (2/p - l)v_ 16‘0610 é 0.
Multiplying by ¢?v and integrating by parts this gives

p_—lf ¢2ai,-6,-v¢5,-udH"+J> $va,;6,6,vdH" = 0.
P Js s
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If 0<p<l, (p—1)/p<0, hence

lii’j $2a,6,08 pdH" < j $v| 6,00, | dH",
4 s s

giving
2
I ¢2a,008pdH" < —F f v%a;;5,65,dH".
5 (P - 1) S
If p>1, (p—1)/p>0, so (3.11) yields only trivial information. In the case
0<p<1, using the structure relations we have

2
I¢zlévlzudH"§L”L2jv2|5¢lzudH"-
s (P-1*Js

As before, using Sobolev’s inequality, and choosing ¢ suitably we see that

2/2%* 2 "
(J. uPZ‘/2”dHn> < C 2<1+ P lo 2>J up#dHn,
Se (r—p) (p—1)%/)ls,

and in general for p(2#/2)’ <1 we can obtain, again putting 1 = 2#/2

At 2v_2
( f u"‘"“udH") <& 2(1+ A7p ”°2)J uP*pdH",
Sp (r-p) (pA"—=1)*)Js,

but since A>1 there is only a finite number, say j, of A such that pA<1. For
these A we find pA"* ! <A. Let 0, = max {pA**': pA"*1 <4}, thatis §, = pA/+i.

Then
( J u""#dH")p/oo < {L <1+ M)}( J uwdH»)"’.
So ~(r-p) (p¥/-1)* S,

Defining p, as before and iterating on the right-hand side we get

J
ploo £ i~y J 2v,.2 aA-v
(f u9°de”) < — ¢ 11 (1 + i{’—“—%) f uPudH".
S ﬁ (tr2_("“))2"_v 0 (p2'—1) S,
0

Pi+1

Now
J

J
H (Tr2—-(v+ 1))2}.-" = C(tr)2 2}.""
[})

But

ST T 2% -2 priI\F-2)

~%(1=-2)
Thus, since (1 —1)r<p;,,

(J‘ u"°udH">p/9° ¢ f wPudH".
Sc1oer (.tr)a(l—plﬂo) s,

$a=3aT- Y- 27 1 ( 27 )

IIA
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Since C(A(E))"" < HJ(E), hence

" P/ - a(1-pl6o)
——n-ir:—— (f uﬂoudH") he C"’;(l . ( ,,1 uPudH )
HiSa-0) \sa-on . Hy(S) Js,

Thus, putting 8, = pA’*1 <1, 6, = o, and K,, m as in the proof of Theorem
3.1, we can apply Theorem 2.3, provided 4 <o.
Writing w = log u, w satisfies

04(a;;0;w)+a;;0,wé;w < 0.
Multiplying by ¢2, and integrating by parts gives

J‘ ¢za”6lW5JWdH"“2J‘ ¢au§,¢51WdH" é 0,
N S

hence A is bounded exactly as before. Thus

n 1/60
| oo, r < (M) exp {C (i +A)} min u,
HI‘(SP) pO Sr

where C depends on n, u, u~ %, K, t, y, giving Theorem 3.2.
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