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1
Harnack inequalities are known to be of great importance in the theory of

quasilinear elliptic partial differential equations. In the case of such equations
defined over a domain fl in R", inequalities of this type have been proved for
solutions of second-order equations in divergence form which are of either
elliptic or degenerate elliptic structure. More recently Bombieri and Giusti (2)
have proved a Harnack inequality for solutions of linear elliptic equations on a
minimal surface in R"+1. The equations are of the form

dtarfju) = 0, (1.1)
where summation over /, j = 1, ..., n+l is understood, and 5 = (<51; ..., Sn+1)
is the tangential derivative on S. In (2), the inequality is used to give much
simplified proofs of some classical results on minimal surfaces, and to generalise
some more recent ones.

In this paper we shall establish inequalities of Harnack type for weak solutions
and supersolutions of equation (1.1), where the coefficients aXi satisfy

^ K I2 ^ atjxKtj g Kx)\ 112 for all { in Rn+K

Here no>l ' s a constant and n, \TX are non-negative and satisfy certain
integrability conditions. This means that \i can have zeros on S, and so the
matrix (a;j) is non-negative definite, rather than positive definite as in the elliptic
case. The results in this paper combine the methods of (2) with the work of
Murthy and Stampacchia on degenerate elliptic equations (7).

2
Let A be an open set in Rn+1, h e C°(A), \ Dh \ never zero on A. Denote the

operator d/dxt by Dh for i — 1, ..., n+1. If S is the surface h = 0, the normal
v = (vls ..., vB+1) to S (disregarding direction) is given by

v,= \Dh\
We will define

i £ J J , ,

= (dJ,...,5n+J).
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30 FRANCES COOPER

If H" denotes the n-dimensional Hausdorff measure on S, then for any <\> in
C2(R"+1), such that 4> \s has compact support,

I SrfdH" = n tHvidH", i = 1, ..., n+1,
Js Js

where H is the mean curvature of S (see (1)). If S is a minimal surface, H = 0,
and so

1
j )p

G
s

5^dH" = 0, i = l, ....
Js

This enables us to integrate by parts on the surface, and so we can define weak
derivatives on S, and thus weighted Sobolev spaces. If \i e L%H", S) for some
s ^ 1, we shall write Lp(ji, S),p ^ 1, for the set of functions u: S-*R with

I <oo

and denote by H1' 2(ji, S) the set of functions w in Lp(ji, S) for which there
exist functions ua, (a = 1, ..., n+1), in L"(ji, S) such that for each cj> in Cl(S)

f <t>(x)ua(x)dHn = - f (dJ(xy)u(x)dHn.
Js Js

When there is no ambiguity, we shall write H1' 2(ji), and omit the subscript S
in writing the norm. H1' 2(ji) is the Banach space of equivalence classes of
functions with norm

HQ1 2(H) will stand for the completion of Cl(S) in H1' 2(ji). Local versions of
these spaces are defined in the obvious way. Analogous definitions are made for
the unweighted Sobolev spaces Hu 2(S), fl£- 2(S).

Now suppose the isoperimetric inequality holds, that is, for any subset
EofS,

(H"(£))(n-1)/n ^ yH"-\dE), (2.1)

where H\E) denotes the n-dimensional measure of E, 8E the boundary of E,
and y is a constant depending only on n. Then we have a Sobolev inequality
for functions u in the space Hj' P(S),

Theorem 2.1. (See (1).) Let n ^ 2 and 1 %p<n. Then for all u in
HJ-P(S), ueLpn/(n-p)(S) and

a \l/p-l/n / / " \l/p

| M |"P/(*-P) d H n \ ^ C{n, p)l\ \Su\p dH"\ . (2.2)
By using the techniques of (7), we can derive a similar inequality in the case of
weighted Sobolev spaces, under suitable hypotheses on /x. Let

https://doi.org/10.1017/S001309150001573X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001573X


A HARNACK INEQUALITY 31

where l/t g 2/n< 1 + 1//. For convenience we write

O*)"1 = 1/p-l/n, (p*)'1 = (1 + 110/p-l/n,
and 1/T = 1 + 1/?.

First we shall prove that H£• 2(/i, S) c H£' 2r(S), with a continuous embedding.
Now 1 ^ 2 T < « , and x+z/t = 1. Let ueH\-2(ji, S); then

\ 1 / (2T)

and

From (2.2), we see that

».,,=(j>iw«
II?.

B u t ( 2 T ) * = 2* a n d so
II M II2* = C || | (5M I || 2, ^>

If n e U°{Hn, S) then

and thus
I I « I I 2 * , ^ C I I l ^ « l llz.^. (2 .3 )

Now suppose that Q is a subset of R", fe C2(Q), and let S be the surface
given by

S = {(x,/(*)): xeO}. (2.4)

If/ satisfies the minimal surface equation, then S is a minimal surface. If E
is any measurable subset of S, and E denotes the projection of E onto Q then,
cf. (4), there is a constant K > 0 such that

i = KH\E)

S, H"),where LP denotes n-dimensional Lebesgue measure. Suppose n e
then

^ II MIL.u Ldrr

and so H"JE) g KE{E), where X depends on n, ̂ . Similarly

H\E) =

I/«

Thus
(2.5)
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In the work that follows we shall have occasion to use the following two
theorems proved in (2). The second is an analogue of the John-Nirenberg
lemma used in the proof of Harnack inequalities in a domain Q in R".

Theorem 2.2. Let S be an oriented boundary of least area in BR the (n + l)-ball
of radius R. Then for every fin C1(BR),

min \\ \f-k I"'*"-" dH"\ ^ 2y \8f\ dH",

where ft is a constant depending only on the dimension n +1.

Before stating the next theorem we need some notation. Let AT be a topo-
logical space, m a regular positive Borel measure on X, and Kt, 0 ^ r ^ 1,
a family of non-empty open subsets of X such that

(i) Ks<=Kr if s^r,

(ii) 0<m(K,)<oo i f O ^ r ^ l .
Let u: X-*R be w-measurable, and if p # 0 let

I" L,r = esssupu,
Kr

I u !_„ r = essinf u.
Kr

Theorem 2.3. Let O<0O, 0X g oo, and let

| u | e O ) 1 <+oo, | « |_ 8 l > 1 >0 .
Suppose there exist constants a > l , p0, 0<p0 g i min (0O, 6^), and Q>0
such that for O g p ^ r ^ l

and further suppose that

A = sup inf •< | log u/k \ dm} <oo.
r k [m(Kr)JKr J

Then
| u |fl0>0 ^ {m(JK1)/(m(Ko)}/o/lexp { c 2 e ( l / p 0 + ̂ )}l « U . o ,
c2 depends only on a.

3
In this section we shall obtain inequalities for weak solution and super-

solutions of the equation
Sfajdju) = 0 (3.1)
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over a minimal surface S. As we are interested in local estimates we may assume
that S is contained in the open (n+ l)-ball of radius R, BR. We suppose that
aij(x) = aji(x) a fe measurable functions satisfying

Oi(x)//0l { 12 ^ a,j(x)Uj ^ Kx)\ « 12 for all £ in R"+\ (3.2)
where /ie £"(#", S), n'1 eL'(H", S) and / satisfies l/t ^ 2/n<l + l/f.

A function w is called a weak solution (supersolution) of (3.1) if it lies in
Hfr2(ji,S) and

II - = 0 (^ 0)
for all bounded non-negative functions <j> in Hj' 2(ji, S). We let Sr = BrnS.

Theorem 3.1. Let S be a minimal surface and u a positive solution in BR of
(3.1). Then

ess sup u ^ C ess inf u
Sr Sr

for r ^ PR, where /? is the constant of Theorem 2.2, and C depends on n, fi, n0, r, t.

For supersolutions we have

Theorem 3.2. Let S be a minimal surface, u a positive supersolution in BR of
(3.1). Then

| u |8o r g C ess inf u

/or r<f}R. Here C depends on n, fi, jT1, /x0, AT, t and 0O, where 0o<2#/2.

These theorems are known for S = R", see for example (3).

First we shall prove Theorem 3.1. Let u be a solution of (3.1) and put
v = up/2, where p # 0, 1. Then by direct calculation, v satisfies

SfajSjv)+(2/p -1)»- ^jSflSjV = 0. (3.3)

Let 0 be a non-negative test function with compact support in S. Multiplying
(3.3) by 4>2v and integrating over S gives

(j>2v8i(aijdjV)dHn+(2lp-l)\ tpaydp
Js Js

Since 5 is a minimal surface, SJdH" = 0, for any function / with compact

support on S, and it follows that

= 0.

hence
(P-D

- <t>vaiJ5i(j>5jVdHn + (l/p-l)\ ^2aiibivbpdHn = 0,

^2ay5,efy;dJJB + sgnj> ^va^bpdH" = 0
Js Js

E.M.S.—20/1—C
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If p> 1, (j>-1)/| p | >0, and so

I ^aijdiVdjvdH" < —?— | ^va^djV
Js (p-l)IJs

If p<\, (p-\)l\p |<0, and this, together with"(3.2) gives

0 ^ 2^1 I ^a^iVdjVdH" ^ - I tvaijdrf
\ P\ Js \Js

Using the Cauchy-Schwarz inequality:

together with Holder's inequality, we get, in either case

I ^aijdiVdjvdH" g P
 2 | v2aij8i4>8j<l>dHn. (3.4)

Js G>~1) Js

We now use the structure condition (3.2) to give

— f <l>2 | 3v |2 ndH" g (-2-Y ( v2\S<l> \2

(*oJs \ P - 1 / Js

Since | ^ o ) | 2 ^ 2(| </>̂  |2 + | ^ |2), this yields

f | <5(<MI2 ndH" ^ 2 (1 + 7 ^ - 2 ) f «2 I S<l> |2
Js V (P-1) 2 /Js

which, together with the Sobolev inequality (2.3), gives

Now let <£ have compact support in Sr, 4> = 1 on 5P, p<r, | 8(p \<2/(r—p).
Then substituting this <j) into the equation we obtain

(T
\JsP

(3.5)

We now use the well-known iteration scheme due to Moser (6). First suppose
/?>0. Letpv = (l-x)r+Tr2"v, sothatpo = rxpn = (1 - r)r, and let X = 2*72.
Then (3.5) gives

s P v t ,
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Iterating the right-hand side v times gives

(L
j = 0

As v-»oo, pv-*(l — t)r and so
oo

°sup up ^

"0"

Since A> 1, EA"' is convergent to 2*7(2* - 2 ) . Also Pj-pJ+1 = ir2~u+1\ so
00 00

Il(Pj-Pj+i)2X" = (*r)™-JYl:
o o

To estimate the product Yl (1 + -^—-— 2 ) ' w e s u PP o s e

(0
(ii) \pli-\ | ^ 1/n for eachy. (3.7)

Then the product converges and is bounded by a constant independent of p.
Thus, letting <r = 22#/(2* - 2 ) , we have, for 0< T < 1,

sup u" ^

Now supposep<0, \p\<l/y/no- As we have already shown (3.5) holds. We
can assume, with no loss in generality, that u 2; e>0 (see Moser (6)). As
before, putting pv = (1 - x)r+ xr2~v, (3.6) holds. Iterating as before, and taking
account of the fact that/><0, we get

(min u 1 " ! ) " 1 ^ —
s,.-.,, ~ (Tr)1

that is,
i - l

nun
( C C

nin u 'p' ^ < I u
-xi, l(Tr)'JSr

Using the inequality (2.5), we have H^(Sr) g Xr", and hence if (3.7) is satisfied,
we have

C 1 f Cr"'"
sup «p < — — upndHn = — — | « | ' (3.8)

and a similar inequality for min up.
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In order to eliminate the second condition in (3.7) we notice that this holds
for some/; in any interval (a, Xd). For each such/?, and for q satisfying/?<q<Xp,
using | u |p> r g | u |,,,, (3.8) gives

Thus we have shown that if p # 0, 0 <p < lj^Jn0, and w is a positive solution
of (3.1) then there is a constant C, depending on n, fi0, \i, K, r, t such that

sup « > ^ | «|P',,,

min ^ ( l l p l u H L , , , . (3.9)
S(l-r)r \T /

Now write (1 — r)r = p; then r = (1 + s)p for some s 6 [0,1]. In the notation
of Theorem 2.3, put

eo = 61 = oo,

Kt = S(1+t)p, where 0<p<pR/4

(here /? is the constant of Theorem 2.2),

a = Xa.

Then we see that (3.9) puts us in a position to apply Theorem 2.3, provided we
can show

A= sup infj-i— [ |log«/fc|^H"j<oo.

Now since fi is a bounded function

f | log u/fc | A^H" £ || /i |L f | log u/fc | dfl"

a \(n-D/"/f \l/n

\ log u/kfC-VdH"] M dif ' j .
Putting w = log K, and using Theorem 2.2, we find

m i n | | l o g u/k \ fidH" ^ C p \ \ n | L | \ 5 w \ dHn.

But w satisfies the differential equation
iw5jW = 0.

If we multiply this by a test function <f>2, and integrate by parts then

4>2aIJ5iwdjwdH''-2 Qwaijd
Js Js

= 0.
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Using the Cauchy-Schwarz inequality we get

<t>2aij8iw5JwdHn-gt4 a
Js Js

which together with the structure conditions gives

I <j>2 | dw | 2 fidH" ^ 4/i0 I | 5<l> | 2 fidH".
Js Js

Taking $ = 1 in S2p/p, <t> = 0 outside Sip/fi, \8<j>\ ^ Pip,

| 5w |2 fidH" ^ 4C[i0 || ^ IIoo P""1- (3.10)

Now if £ is any subset of S2p/p

\5w\dHn= I
JE JE

5w\dHn= I \Sw\
JE

\8w\2ndlA*

by (3.10).
Thus

m i n | l o g u / fc | fidH" ^ C \ \ n 1 \\f p

and so A is bounded, and Theorem 3.1 is proved.
If u is a positive supersolution, then u satisfies

Putting v = up/2, we obtain
' ^Oi f p>0
^ 0 i f p < 0 .

3, we can proceed as in the proof of Theorem 3.1 to get

min u
|p | ^ ] - ^

provided \p\< 1/̂ /W If/»>0, we have

Multiplying by <£2a and integrating by parts this gives

P- — 4>zaiJdivdjVdHn+ tvatjdiWjVdH" ^ 0. (3.11)
' Js Js
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If 0<p<l, (p-l)/p<0, hence

l _ n f f
I 0 ci:j3iv3jVdHn ^ I ©i? | Qi-S-dfS i(b I dHn

9

P Js ~ Js
giving

r 2 p2 r 2
Js ° ' J ~(P-I)2js ' " '

If p>\, (p — l)/p>0, so (3.11) yields only trivial information. In the case
0<p< 1, using the structure relations we have

f ^ | Sv |2 pdH" 1 - ^ - 2 f v
Js (P-1) Js

g

2 | 8* | 2 fidH"ndHn.

As before, using Sobolev's inequality, and choosing <f> suitably we see that

~(r-p)2

and in general for p(2#/2)v< 1 we can obtain, again putting 2 = 2*/2

VJsP / (r-
but since A>1 there is only a finite number, say j , of X such that pA<l. For
theseAwefindpA1-1-1^. Let0o = max {j?Av+1: ^Av+1<A}, thatis 9O = plJ+1.
Then

Defining pv as before and iterating on the right-hand side we get

a \p/»o rix-* j / ;2v 2 \A-» f

sPj+1 / fJ(Tr2- ( v + 1 ) )2 ; i" ^ ( P ^ - l ) / Jsr
fJ(Tr2-(v+1))2

o
Now

nn
o

But
j' _ °° °° 2* 1 / 2*

X A - Y A"v 1 A - ^Y, .1 —

Thus, since (1 — i)r<Pj+1

ue°ndHn < ^—— M

S(l-«)r / VJ'V JSr
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Since C(A(£))'' ^ #£(£), hence

ue°ndH") < ^ - — — _ ( _ J _ u'

Thus, putting 0O = pXJ+1<X, 0X = oo, and K^, m as in the proof of Theorem
3.1, we can apply Theorem 2.3, provided A<co.

Writing w = log u, w satisfies

5i(aij5jW)+aiJ5iw5jW ^ 0.

Multiplying by <j)2, and integrating by parts gives

I ^aijdiWdjWdH"-! f (tHiijdrfdjwdH
Js Js

r ^ o,

hence A is bounded exactly as before. Thus

I w I <

where C depends on n, //, \i 1, K, t, /i0, giving Theorem 3.2.
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