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ABSOLUTELY CONTINUOUS MEASURES 
ON LOCALLY COMPACT SEMIGROUPS*1* 

BY 

JAMES C. S. WONG 

ABSTRACT. Let S be a locally compact Borel subsemigroup of a 
locally compact semigroup G. It is shown that the algebra of all 
"absolutely continuous' measures on £ is isometrically order 
isomorphic to the algebra of all measures in M(G) which are 
"concentrated" and "absolutely continuous" on S. 

§1. Introduction. Let G be a locally compact group M(G) its measure algebra and 
Ma(G) the absolutely continuous measures (with respect to the left Haar measure 
X). It is well known that Ma(G) can be identified with the group algebra L±(G). 
Moreover, a measure /u in M(G) is absolutely continuous iff the map a->ju * sa 

(or equivalently a~>ea * //) of G into M (G) is norm continuous where ea is the 
Dirac measure at a. 

For locally compact semigroups, LX{G) is not available due to the absence of a 
Haar measure. However, the absolutely continuous measures make sense. The 
main purpose of this paper is to show that if S is a locally compact Borel subsemi­
group of a locally compact semigroup G, then the absolutely continuous measures 
on S are precisely the set of all measures in M{G) which are "concentrated" and 
"absolutely continuous" on S. As a consequence, if G is a group with left Haar 
measure X and 0<A(5)<oo, then S admits absolutely continuous probability 
measures. 

§2. Terminologies. Let S be a locally compact semigroup with jointly continuous 
multiplication, M(S) the Banach algebra of all bounded regular Borel measures on 
S with variation norm and convolution as multiplication (see for example [8] 
or [9]) and M0(S)={JLI G M(S):JLI>09 \\JU\\ = 1} be the probability measures is M(S). 
A measure fx e M (S) is left (right) absolutely continuous iff the map a->ea * p 
(a-+fi * ea) of S into M (S) is norm continuous where sa is the Dirac measure at a. 
fji is absolutely continuous if it is both left and right absolutely continuous. Let 
Ml

a(S), Mr
a(S) and Ma(S)=Ml

a(S) n Mr
a(S) denote the left, right and two-sided 

absolutely continuous measures respectively. Clearly these are norm closed sub-
algebras of M(S). In addition, Ml

a(S) (Mr
a(S)) is a right (left) ideal of M(S). (for 

more detail see [4] and references cited there) For groups, these three concepts 
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coincide and agree with the definition given in Hewitt and Ross [5, §14.20 and 
§19.27]. 

§3. Main results. From now on, unless stated otherwise, G will be a locally 
compact semigroup and S a. locally compact Borel subsemigroup of G (for example, 
any subsemigroup which is either open or closed). We first present a few technical 
lemmas. For notations in integration on locally compact spaces, we follow Hewitt 
and Ross [5]. 

LEMMA 3.1. Let F be a Borel measurable function on S, then there is a unique 
Borel measurable function f on G such that f=f on S andf(G—S)=Q. Moreover 

(1) Iff is bounded on S,fis bounded on G and | | / | | u = ||/|| t f 
(2) laf=laf outside the set a^S—Sfor any ae S. 
Here a~"1*S'={x e G\ax e S}, lafis defined by laf(x)=f(ax)9 x e S and similarly 

for I J. Also G-S={x eG:x$ S). 

Proof. Straight forward verification, we omit the detail. 

Note that each Borel subset of S is a Borel subset of G. 

LEMMA 3.2. If [i is a measure in M(G), then the restriction v offt, to the Borel 
subsets of S is a measure in M(S). Moreover, 

(1) J / d v = $ f' dfx for any bounded Borel measurable function f on S. 
(2) If a e S and /Lc(a~~1S—S)=0, then j* fd(ea * v)=$ f d(sa * JU) for any bounded 

Borel measurable function f on S. 

Consequently if JU is a measure in M(G) such that ju(a~~1S—S)=0 V ae S and the 
map a -+sa * JU of S into M{G) is norm continuous, then v e Ml

a{S). 

Proof. If ii e M(G), it is clear that its restriction v is a bounded measure on the 
Borel sets in S. Regularity of v follows from that of [A, (by [5, Theorem 11.32 and 
§11.34] while taking note that an open set in S need not be open in G). 

Next, if/is the characteristic function of a Borel set B in S, then/is the character­
istic function of B in G. Hence (1) holds for such / a n d the same is true for all 
bounded Borel measurable functions/on S. 

Finally, let a G S and/bounded Borel measurable on S. By Lemma 3.1, laf= 
laf outside a^S—S with fi(a~~1S—S)=0. Therefore $fdsa * v=J lafdv=j lafd/u,= 
S LJ dfi—SÎ d8a * P which established (2). Now if ju e M(G) satisfies fx(a~1S—S)= 
0 V a G S, then V a, b e S 

\\sa * v—eh * v = supjlj. fd(ea * v-eb * v) 

= sup pHC ea*/j,—eb*ft)\ 

:feC0(S),\\f\\u<\ 

: / e C 0 ( S ) , | | / | | M < l 

< s u p d l / L • K * tx-eh*ix\\ : / e C0(S), \\f\\u < 1} 

< \\ea*n—eb*pt 
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Here C0(S) is the space of all continuous functions on S which vanish at infinity. 
Therefore v e M«(S) if the map a-+ea * ju, of S into M(G) is norm continuous. 

REMARKS. (1) The measure v is uniquely determined by the condition that 
$fdv=$fdju for any/G C0(S) (Riesz Representation Theorem) 

(2) We do not have to assume that lafe C0(S) iff G C0(S) and a e S. In any case 
/ 0 / i s bounded Borel measurable on S. 

The converse of Lemma 3.2 is true. In fact, we have a stronger result. 

LEMMA 3.3. If v is a measure in M(S), then there is a unique measure fi e M(G) 
suchthat\iA\{S')=$and$ <f> djLt=j (flS) dvforany<j>e C0{G).Infact/u(B)=v(B n S) 
for any Borel set B in G. Moreover, for any ae S, cf> e C0(G), J <f> dea * jbt= 
J cf>/S dea * ju. Consequently, if v G Ml

a(S), then the map a-+sa * ji of S into M{G) 
is norm continuous. 

Proof. Let v e M(S) be non-negative. The map <£->]" (</>IS) dv is clearly a non-
negative bounded linear functional on C0(G). Hence there is a non-negative measure 
jit G M(G) such that J* <j> d/u,=$ (<£/S) dv for any $ e C0(G). We shall prove that 
[x{B)=v(B n S) for any Borel set B in G. Observe that if B is open in G, then 
B n Sis open hence Borel in S. Now {B^G:B n S is a Borel set in S} is a cr-ring 
containing all open sets in G. It follows that B-+v(B n *S) is a Borel measure on G. 
Let 17 be open in G, then the characteristic function %v of U in G is lower semi-
continuous (see [5, §11.8] for definition). Therefore JU,(U)=$ ^ d/u=sup{j <j> d/u: 
<f> G C0(G), 0£cf>£Xu}=sup{$ (<£/£) *:<£ G C0(G), ( K ^ ^ K K ^ n S). On the 
other hand, by regularity of v, given s > 0 , there is some compact set f c U Pi S 
such that K C / n ^ X K ^ + f i ^ n ^ + f i ([5, §11.32]). Since F^U, there is 
some cf> G C0(G), O ^ ^ l such that <f>(F)=l and </>(U')=0 (Kelley [6, Theorem 18, 
p. 146]). Hence XF<^<XU and Î<£7 n S)<v(F n S H ^ J (<£/S) <ft>+e^w(C/)+fi. 
Hence JLL(U)=V(U n 5). If FciG is closed, write F=G-U, U open in G, then 
II(F)=IA(G)-IA(U)=V{S)-V(S n [ / ) = ^ - C / ) = ^ n 5 ) . In general, let 5 be 

any Borel set in G, then /bi(B)=sup{[j,(F):F<^B, F compact}=s\xp{v(F n £): 
Fc:i?, jp compact} <>(i? n 5). By regularity of v, given e>0, there is some 
F^BHS, F compact such that v(B C\ S)<v(F)+s=v(F n S)+e=fji(F)+e. 
Therefore /u(B)—v(B n £). In particular fi(S')=0. In general, write v=v1—v2 

where vl9 v2 are non-negative measures in M(S) and let fil9 ju2 be the correrponding 
measures in M(G). Then /w=//1—//2

 e Af(G) has the required properties. Finally, 
if </>GC0(G), aeS, then S<f>dea*^lJd^S((Li>)lS)dv=Sla(cf>lS)dv= 
J ((f>jS) dea * ? which also implies that || sa * \i—e& * //1| < || ea * v—e& * v || for any a, 
6 G S. This completes the proof. 

REMARKS. (1) It can also be proved directly that the Borel measure B->v(B n S) 
on G is regular so that /J,(B)=V(B n *S) for any Borel set B in G once the same 
equality is established for open sets in G. 
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(2) An analogue of the above construction is given in Hewitt and Ross [5, 
§11.45] with the additional assumption that S be closed in G (but without any semi­
group structure for G or S). This assumption is required to make sure that 
(f>/S G C0(G) if <f> G C0(G) so J (</>/£) dv is finite even if v is not bounded. In any case 
<f>jS is bounded Borel measurable on S and J* (</>/£) <fo is finite for v G M(S). Thus the 
assumption that S be closed in G is not necessary in our case. 

THEOREM 3.4. Ml
a{S) is isometrically order isomorphic to the subalgebra of all 

measures /J, in M(G) such that \ju\ (S ')=0 and the map a-+sa * fi of S into M{G) is 
norm continuous. 

Proof. Let M% be the set of all measures in M{G) such that \JU\ (S)=0 and the 
map a-+ea * JH of S into M (G) is norm continuous. Clearly Mx is a linear subspace 
of M{G). Let /JL19 IX2GMX observe that if yeS, then S'y-1 n £=</>. Hence 

IA* * H (S'KM * M tfWJ **(*?)<* M (*)<*M O0=L* M (s'jr1 n S)</M (J)= 
0, while ea * (^ * v) = (ea * /-0 * v. This shows that Afj is a subalgebra of M(G). 

If jbt G M l5 let ?> G A/^(S) be the restriction of /u to the Borel sets of S as in Lemma 
3.2. Define a map TiM^M^S) by 7>=i>. Clearly T is bounded linear. In fact 
\\T,\\=sup{\Sfdv\:feC0(S)9 l l / I L < l } = s u p { | J / > | : / G C 0 ( 5 ) , | | / I L £ 1 } £ I N . 
Next, if v G Àf(S), by Lemma 3.3, there is a measure [JLG M, such that ft(B)= 
v(B n S) for any Borel set I? in G. Hence if B is a Borel subset of S, TJU,(B)= 

ju(B)=v(B n S)=*>(£) or T/Lt=v and T is onto. Let </> G C0(G) and/=<£/£, then 
</>=fonS. Hence if/^x, [JL2GM1 and r /a1=7//2 , we have J (/> d/ji±=^ f dfi±=^ f d/jL2= 
J <£ d//2 (since 1^1 and |^2| vanish on 5") which implies that ^1=^2 and 7" is one-to-
one. To show that T is a homomorphism, observe that if fe C0(S), y G G, the 
function x-*f(xy) is bounded Borel measurable on G and $G f(xy) d[x1{x) = 
$sf(sy) dv±(s) (because ju1(B)=v1(B n 5)). Consequently 

IfdT^ * 7>2 = J f(st) dTfi^s) dTjbt2(t) 

sfdfi2 dT/Â^s) 

~- f(sy) dTjLt^s) dtu2{y) 

I f(xy) dfaix) dfi2(y) 

-- fdfa * [A2 = fdT(jAx * //2) 

^ 

•JP 
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Therefore T^ * [x^—T^ * T/u2 and T is an isomorphism which is evidently 
order preserving. 

Finaflysince ||/i||=sup{|J^d>f|:^eC0(G!), | |^||,^l}=sup{|J(^/S)ifrI:#eC0(G!) f 

II <f> II „ < 1} < II v || = || 7 ; II, T is an isometry. This completes the proof. 

REMARK. There are of course right handed and two sided versions of the results 
in this section. We omit the details. 

§4. Consequences and comments. Since the group algebra Lx{G)^Ma{G) of a 
locally compact group G plays an important role in abstract harmonic analysis, the 
quenstion naturally arises whether there exist absolutely continuous probability 
measures on a locally compact semigroup. In general, the answer is negative. Take 
S= [0,1] with usual topology and multiplication defined by ab=a, V a, b e S. Then 
S is a compact semigroup. If v e Ml

a(S), v>0, |M| = 1, then ea * v=sa for any 
a G S. Left absolute continuity of v implies that the unit ball in C[0, 1] is equi-
continuous hence norm compact by Ascoli's Theorem. This is certainly impossible. 
Thus not every (locally) compact semigroup admits absolutely continuous prob­
ability measure. However, most locally compact Borel subsemigroup of a locally 
compact group do. More precisely, if G is a locally compact group with left Haar 
measure A and S is a locally compact Borel subsemigroup of G, then S admits 
absolutely continuous probability measures provided that there is some Borel set 
B in G, B^S such that 0<A(J?)< oo. For if fi is the measure in Ma(G) which 
corresponds to the normalized characteristic function <I>=A(B)~1XB ^ I ( Q ) then 
T/Lt=v is an absolutely continuous probability measure on S. 

In [4, Theorem 6.3], G. Hart shows that if G is a locally compact abelian group 
and S a (locally compact) Borel subsemigroup of G, then {/u e L^G): \JU\ (G—S)= 
0}^Ma(S) (identifying /u and T/u). Lemma 3.2 is an extension of this result (apart 
from commutativity, which is really not necessary there) since if JLC e Ma(G)= 
LX{G), then the maps a-^sa * /u and a->ju * sa are norm continuous on G hence on 
S ([5, Theorem 20.4]) and G-S^a^S-S ( S i r 1 - 5 ) for any a e S. 
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