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If X and Y are Tychonoff spaces then the continuous function f mapping
X onto Y is said to be compact (perfect, or proper) if it is closed and point
inverses are compact. If / is a continuous function mapping X onto Y then
by a compactification of 4 we mean a pair (X*, h*) where X* is Tychonoff
and contains X as a dense subspace, and where #*: X*— Y is a compact
extension of 4. The idea of a mapping compactification first appeared in (7).
In (1) it was shown that any compactification of X determines a compactifica-
tion of /1, and that any compactification of 4 can be determined in this way.
This idea was then developed in (2) and (3).

Throughout this paper all topological spaces are assumed to be Tychonoff.
We consider throughout a fixed continuous function f mapping X onto Y.

A compactification of X is a compact Hausdorff space containing as a dense
subspace a homeomorphic image of X. We assume X to be a subspace of
each of its compactifications. If a is a partition of X, the Stone-Cech com-
pactification of X, then a is said to be an upper semicontinuous (u.s.c.)
decomposition of X if

(a) the members (blocks) of a are compact subsets of fX and

(b) whenever V is open in X and contains the block 4 of a, there exists
an open set W in X such that 4 € W < J and W contains any block of a
that it meets. (Notice that since fX is normal the partition a of fX is u.s.c.
if and only if the associated canonical quotient mapping is closed.) Refinement
of partitions imposes a natural partial order upon the set of u.s.c. decompositions
of BX: a £ b if and only if given A € a, there exists Be b such that 4 € B.
The u.s.c. decompositions of f.X with this partial order form a complete lattice

(4). For our purposes we need only note that

Nai: iel} ={\{4;: iel}: A;ea,iel}.
A natural partial order also exists on the set of compactifications of X. We
say aX = bX if and only if there exists a continuous function # mapping bX
onto aX such that 4| X is the identity. The compactifications aX, bX are
said to be equivalent if aX £ bX and bX £ aX and we consider equivalent
compactifications to be the same compactification. Similarly, if (X*, f*)
and (X', f') are compactifications of £, we say (X*, /*) < (X', f") if and only
if there is a continuous function 42 mapping X’ onto X* such that 42| X is the
identity and such that f' = f*.h. Again we say that (X*, /*) and (X', f)
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are equivalent if (X*,f*) < (X’,f")and (X', f") £ (X*,f*), and by considering
equivalent compactifications to be the same compactification we have a partial
order defined on the compactifications of f. In (6) it was shown that there is a
natural bijection between the set of compactifications of X and the set of u.s.c.
decompositions of §.X which contain the points of X as blocks. If ais a u.s.c.
decomposition of fX with this property then we denote by aX the corresponding
compactification of X and by ¢, the corresponding mapping from BX onto
aX. (Infact g, is the canonical quotient mapping associated with the partition
a.) In (5) it was shown that aX < bX if and only if b £ a.

We denote by f: BX—BY the continuous extension of f: X—-Y < g7,
and by u we mean the u.s.c. decomposition {f~'(y): yepY} of BX. If a
is a u.s.c. decomposition of fX containing the points of X as blocks, and if
a £ u, then denote by p, the restriction of ¢, to f~!(Y). We then define f
and f* by

fo=7.q5': aX->BY

fE=Fp 7YY
It is a routine matter to show that f, and f* are continuous functions onto
BY and Y respectively. Notice that £,"1(Y) = q,(f " (Y)) = p,(Ff~1(Y)) and
fX is the restriction of f; to this set. Notice also that f,, being a continuous
function defined on a compact space, is compact.

Theorem 1. If aX is a compactification of X then (f;}(Y), fX ) is a com-
pactification of f and each compactification of f can be described in this way.

Proof. aAwu is a us.c. decomposition of fX containing the points of X
as blocks and aAu < u. Then f, , being the restriction of £, ,, to £,;3(Y) is a
compact mapping, and moreover £} , is an extension of f, since for each xe X
pa_/\lu(x) = X.

Suppose now that (X', f’) is a compactification of /. Then fX’ is a com-
pactification of X which we denote by bX. If f': BX = bX—BY denotes the
continuous extension of f’, then since f’.g, is equal to fon X, ' .q, = f on
BX and so b < u. Then f, is defined and, again since the extension of f to
bX is unique, f, = f' on bX, and so if we can show that f;”}(Y) = X’ then the
proof is complete. Suppose then that xeBX'\f'~!(y). Then since 1"~ ()
is compact x has a compact neighbourhood N disjoint from f'~(y). Then
NN X’ is closed and non-empty and so f'(NnX') is closed, non-empty, and
does not contain y. Then since f’ is continuous

F'c(NnX)) ccd(F'(NnX) =f(NnX")
and so f'(x) # y. Hence X' = f'~"Y) =f" ~1(Y) =/, (Y) and this completes
the proof.

Notice that if (X*, /*) is a compactification of X then the content of Theorem
1 is to allow us to consider X * to be a subspace of any compactification aX
producing f*.
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Theorem 2. If (X*, f*) and (X', f') are compactifications of f then
(X* /% = X1
if and only if BX* = bX £ aX = fX".

Proof. We saw in the proof of Theorem 1 that (X*, f*) and (X', f')
respectively are determined by bX and aX.

If bX < aX then & defined by h = p,.p; * is a function onto X* and since
Pa is continuous and p, is closed, /4 is continuous. But then

f=1pit = *pypst ="

Conversely, if (X*, f*) £ (X', f’) then there is a continuous function A
mapping X’ onto X* and such that 4| X is the identity. If we extend 4 to
the continuous function h: BX' = aX—bX = pX* then h maps onto SX*
and so bX £ aX.

If p is a partition on the set S and if 4 = S then by p| S we mean the
partition {PnA: Pep}.

Corollary 3. If the compactifications (X*, f*) and (X', ') of f are produced
by the compactifications aX and bX respectively, then (X*, f¥) < (X', f') if
and only if

baulf I (Y)Sanulf7(Y).

Proof. (X*,f*)is produced by the compactifications aAuX and ¢cX = fX*
and thus anu|f YY) =c| f~(Y). Similarly, bau |/~ YY) =d|f 1Y)
where dX = pX’. Then (X*, f*) < (X', ') if and only if cX < dX and this
is so if and only if d £ ¢. However, since ¢X = fX*, ¢ is the minimal u.s.c.
decomposition of fX such that ¢ | f~}(Y) = aau| f~*(Y) and similarly d is
minimal such that d|f~1(Y) = bau|f~Y(Y). Thus d £ c if and only if
baulFH(Y) 2 anu|f7HY).

Corollary 4. The compactifications aX, bX determine equivalent compactifica-
tions of fif and only if in f ~1(Y) the partitions

{g:' (T~ (y): teaX, ye Y}
and {g; "(DN]~'(y): te bX, y e Y} are equal.

Corollary 5. The compactifications of f with the usual partial order form a
complete upper semilattice. They form a complete lattice if and only if for some
compactification sX of X, sau| (f "H{YW\X) = u |(F~H(Y)I\X).

Proof. If {(X,, f): i€} is a family of compactifications of f then

being a family of compactifications of X, has a supremum, aX say. Then
for each iel, a £ b; £ u and so from Corollary 3 we see that (X¥, £*) is an
upper bound for {(X;, f): iel}. Moreover, if (X', f') is an upper bound
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for {(X;, f}): iel} then for each iel, b,X £ bX = BX and so aX £ bX.
Then b < a and so (X7}, /) £ (X', f’). Thus the compactifications of f form
a complete upper semilattice.

This semilattice will be a complete lattice if and only if it has a smallest
member.

Now, if there is a smallest compactification of f, determined by the com-
pactification sX of X say, where s < u, then if s | f" ' (Y)\X # u | [ Y(Y)\X
there exist points x, y in f ~!(Y)\ X belonging to the same block in « but belong-
ing to different blocks in 5. But then the partition m produced from s by
joining the blocks containing x and y is again u.s.c. and is strictly less than s
on f~!(Y). It follows from Corollary 3 that (X}, £¥)<(X¥, f*) contradicting
the fact that (XZ¥, £.*) is minimal.

Conversely, if sX is such that s | f~'(¥Y\X = u | f~'(Y)\X then for any
compactification aX of X, aAau £ u and so from Corollary 3

(X3, £ S (X3 L.

In particular if X is locally compact the compactifications of f form a
complete lattice, since in this case the one-point compactification of X satisfies
the requirements of sX in Corollary 5.
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