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Abstract
We study the 𝐸2-algebra Λ𝔐∗,1 :=

∐
𝑔�0 Λ𝔐𝑔,1 consisting of free loop spaces of moduli spaces of Riemann

surfaces with one parametrised boundary component, and compute the homotopy type of the group completion
Ω𝐵Λ𝔐∗,1: it is the product of Ω∞MTSO(2) with a certain free Ω∞-space depending on the family of all boundary-
irreducible mapping classes in all mapping class groups Γ𝑔,𝑛 with 𝑔 � 0 and 𝑛 � 1.
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1. Introduction

The Madsen–Weiss theorem [14] can be formulated as follows: let 𝔐𝑔,1 denote the moduli space of
Riemann surfaces of genus 𝑔 � 0 with one parametrised boundary curve. By [19] and [4], the collection

𝔐∗,1 :=
∐
𝑔�0

𝔐𝑔,1

admits the structure of an 𝐸2-algebra, more precisely an algebra over the little 2-discs operad 𝒟2.
Madsen and Weiss identify the group completion Ω𝐵𝔐∗,1 with the infinite loop space Ω∞MTSO(2),
where MTSO(2) is the two-dimensional oriented tangential Thom spectrum [8].

One can consider the analogous problem with 𝔐∗,1 replaced by the mapping space map(𝑋,𝔐∗,1).
This space is again a 𝒟2-algebra by pointwise composition, and it is our goal to understand its group
completion Ω𝐵 map(𝑋,𝔐∗,1). Note that the 𝒟2-algebra structure extends to an algebra structure over
Tillmann’s surface operad built out of 𝔐∗,1, so the main theorem of [26] implies the homotopy type we
wish to understand is an infinite loop space.

In this article, we will focus on the simplest non-trivial case 𝑋 = 𝑆1: i.e., we consider the free loop
space Λ𝔐∗,1 := map(𝑆1,𝔐∗,1); we will briefly discuss in the appendix the general case, which is very
similar.

For any discrete group Γ, one can identify Λ𝐵Γ �
∐

[𝛾 ] ∈Conj(Γ) 𝐵𝑍 (𝛾, Γ), where Conj(Γ) denotes
the set of conjugacy classes of Γ, and 𝑍 (𝛾, Γ) is the centraliser of 𝛾 ∈ Γ. Note also that the isomorphism
type of the group 𝑍 (𝛾, Γ) only depends on the conjugacy class of 𝛾 ∈ Γ.

The problem we address in this paper is strongly related to analysing the structure of centralisers of
elements of mapping class groups: indeed, recall that 𝔐𝑔,1 is a classifying space for the mapping class
group Γ𝑔,1 of a smooth oriented surface of genus g with one parametrised boundary curve; we then have
a homotopy equivalence

Λ𝔐∗,1 �
∐
𝑔�0

Λ𝐵Γ𝑔,1 �
∐
𝑔�0

∐
[𝜑 ] ∈Conj(Γ𝑔,1)

𝐵𝑍 (𝜑, Γ𝑔,1).

Results

The free loop space of the moduli space of surfaces of genus g with n parametrised boundary circles,
Λ𝔐𝑔,𝑛, admits an action by the isometry group of the disjoint union of n oriented circles: that is, by
𝑇𝑛 �𝔖𝑛 = (𝑆1)𝑛 �𝔖𝑛.

We introduce an irreducibility criterion for mapping classes that is invariant under conjugation. We
then consider, for any 𝑛 � 1 and 𝑔 � 0, the subspace ℭ𝑔,𝑛 ⊆ Λ𝔐𝑔,𝑛 of free loops whose corresponding
conjugacy classes of elements in 𝜋0 (𝔐𝑔,𝑛) � Γ𝑔,𝑛 are irreducible. The pointwise action of 𝑇𝑛 �𝔖𝑛 on
Λ𝔐𝑔,𝑛 restricts to an action on ℭ𝑔,𝑛, and the main result of this work is the following identification,
where � stands for homotopy quotient.
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Theorem 1.1. There is a weak homotopy equivalence

Ω𝐵Λ𝔐∗,1 � Ω∞MTSO(2) ×Ω∞Σ∞
+

∐
𝑛�1

∐
𝑔�0

ℭ𝑔,𝑛 � (𝑇𝑛 �𝔖𝑛).

The key to proving this theorem is a good understanding of mapping class groups of surfaces (also
with more than one boundary component) as well as an extension of classical operadic techniques to a
coloured setting. As a first step, we prove a structure result for centralisers of mapping classes in Γ𝑔,𝑛,
which might be of independent interest: see Proposition 3.8.

Second, we develop a machinery for N-coloured operads with homological stability 𝒪 containing a
suboperad 𝒫, such as a family of topological groups: the group completion of the derived relatively free
algebra �̃�𝒪

𝒫
(𝑿) over a 𝒫-algebra 𝑿 is computed colourwise as an infinite loop space, under suitable

assumptions on 𝒪 and 𝒫; see Theorem 5.9. This part of the work is a generalisation of [26] and [1] to
the coloured and relative setting.

The two ingredients are put together by proving that Λ𝔐∗,1 is the colour-1 part of a relatively free
algebra over a coloured version ℳ of Tillmann’s surface operad, relative to a sub-operad built out of
𝑇𝑛 �𝔖𝑛; the ‘relative generators’ are precisely the spaces ℭ𝑔,𝑛 mentioned above: see Theorem 6.5.

Related work

One approach to studying classifying spaces of diffeomorphism groups pertains to the notion of cobor-
dism categories. It was pioneered with the breakthrough theorem by Madsen and Weiss and refined by
Galatius, Madsen, Tillmann and Weiss [8].

Recall that, in the orientable setting, the cobordism category Cob𝑑 is a topological category, with
object space given by the union of all moduli spaces of closed, oriented (𝑑−1)-manifolds, and morphism
space given by the union of all moduli spaces of compact, oriented d-manifolds with incoming and
outgoing boundary. It is natural to study two related generalisations of Cob𝑑 , in an equivariant and a
parametrised direction:

1. for a (topological) group G, we can consider the G-equivariant cobordism category Cob𝐺𝑑 : objects
and morphisms are, respectively, (𝑑 − 1)- and d-manifolds endowed with an (continuous) action of
G by orientation-preserving diffeomorphisms;

2. for a topological space Y, we can consider the Y-parametrised cobordism category Cob𝑑 (𝑌 ): objects
and morphisms are, respectively, orientable (𝑑 − 1)- and d-manifold bundles over Y.

In the case 𝐺 = Z and 𝑌 = 𝑆1, there is a continuous functor CobZ𝑑 → Cob𝑑 (𝑆1), given by taking
mapping tori: using that every smooth bundle over 𝑆1 is induced from a diffeomorphism, this functor
is in fact a levelwise equivalence. For more general groups G and 𝑌 = 𝐵𝐺, the analogous argument
pertaining to G-actions and bundles over 𝐵𝐺 can fail: see [22] for a discussion of this phenomenon and
counterexamples in case 𝐺 = SU(2).

Our work can be seen as a contribution toward understanding the homotopy type of
CobZ𝑑 � Cob𝑑 (𝑆1): gluing a pair of pants gives a map of monoids Λ𝔐∗,1 → Cob2(𝑆

1) |𝑆1 , where
Cob2(𝑆

1) |𝑆1 denotes the full subcategory of Cob2(𝑆
1) on a single object represented by a trivial 𝑆1-

bundle over 𝑆1.
In the non-parametrised setting, the composition 𝔐∗,1 → Cob2 |𝑆1 → Cob2 is known to induce an

equivalence after taking classifying spaces; we hope that in a similar way, the understanding of 𝐵Λ𝔐∗,1
can shed some light on the homotopy type of 𝐵CobZ2 � 𝐵Cob2(𝑆

1) in future work.
In the case of a finite group G, the homotopy type of Cob𝐺𝑑 was recently determined by Szűcs and

Galatius [9]. In work by Raptis and Steimle [20], parametrised cobordism categories Cob𝑑 (𝑌 ) featured
as a tool to prove index theorems; however, it was not necessary for the scopes of that work to describe
the homotopy type of the classifying spaces of these categories. The much older work of Kreck on
bordisms of diffeomorphisms [13] can be seen as a description of 𝜋0

(
Cob𝑑 (𝑆1)

)
.
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Outline

In Section 2, we recall Alexander’s method concerning arc systems. We apply these concepts to associate
with a mapping class 𝜑 ∈ Γ𝑔,𝑛 a canonical decomposition ofΣ𝑔,𝑛 along a system of simple closed curves,
called the cut locus of 𝜑. The goal of Section 3 is a detailed understanding of centralisers of mapping
classes: this uses the canonical decomposition described in the previous section in a crucial way.

In Section 4, we recall some basic definitions and constructions related to coloured operads and
introduce the coloured surface operad ℳ. In Section 5, we introduce the notion of a coloured operad
with homological stability and prove a levelwise splitting result in the spirit of [1], which applies in
particular to ℳ. Finally, in Section 6, we show that Λ𝔐∗,1 is the colour-1 part of a relatively free
ℳ-algebra, which in combination with the splitting result concludes the proof of Theorem 1.1.

We briefly discuss in Appendix A the analogue of Theorem 1.1 for a general parametrising space X
(see Theorem A.2) as well as a weak form of naturality in X of the equivalence (see Theorem A.7); in
Appendix B, we address two similar problems concerning group completion of free loop spaces, related
to braid groups and symmetric groups, respectively.

2. Arc systems and the cut locus

The aim of this and the next section is to study centralisers in mapping class groups of surfaces.
This interest is motivated by the following observation: for 𝑔 � 1, the space Λ𝔐𝑔,1 � Λ𝐵Γ𝑔,1 has
one connected component for each conjugacy class [𝜑] ∈ Conj(Γ𝑔,1); this component is homotopy
equivalent to 𝐵𝑍 (𝜑, Γ𝑔,1), where we denote by 𝑍 (𝜑, Γ𝑔,1) ⊂ Γ𝑔,1 the centraliser of 𝜑 in Γ𝑔,1: that is,
the subgroup of all mapping classes 𝜓 ∈ Γ𝑔,1 commuting with 𝜑.

In this section, we will first introduce some notation for surfaces and mapping class groups and then
define the cut locus of a mapping class.

2.1. Surfaces and mapping class groups

We work in the entire article with smooth, oriented surfaces and orientation-preserving diffeomorphisms
of surfaces.

Notation 2.1. We usually denote by S a smooth, compact, oriented, possibly disconnected surface, such
that each component of S has non-empty boundary; we denote the boundary of S by 𝜕S ⊂ S.

The boundary 𝜕S is equipped with a decomposition 𝜕S = 𝜕inS 	 𝜕outS, into unions of connected
components: the incoming boundary 𝜕inS is allowed to be empty, whereas each component of S is
required to intersect the outgoing boundary in at least one curve; see Figure 1 for an example.

Both parts of the boundary are equipped with an ordering and a parametrisation: that is, there are
preferred diffeomorphisms 𝜗in : {1, . . . , 𝑛} × 𝑆1 → 𝜕inS and 𝜗out : {1, . . . , 𝑛′} × 𝑆1 → 𝜕outS, where
𝑛 = #𝜋0 (𝜕

inS) and 𝑛′ = #𝜋0 (𝜕
outS).

Note that each boundary component 𝑐 ⊂ 𝜕S is endowed with two natural orientations: the first is
induced from the orientation of S, that is, it is the unique orientation of c that, concatenated with a

2 13 4 5
in

out

1 4 2 3

Figure 1. A surface S with 5 incoming and 4 outgoing boundary curves.
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vector field along c pointing out of S, returns the orientation of S; the second orientation comes from
the parametrisation of c. For an incoming boundary component 𝑐 ⊂ 𝜕inS, we require that these two
orientations coincide, whereas for an outgoing boundary component 𝑐 ⊂ 𝜕outS, we require that these
two orientations differ.

We usually denote a surface by (S, 𝜗), or shortly by S when it is not necessary to mention the
parametrisation of the boundary; here 𝜗 is the map {1, . . . , 𝑛 + 𝑛′}×𝑆1 → 𝜕S obtained by concatenation
of 𝜗in and 𝜗out.

Definition 2.2. Let Φ : (S, 𝜗) → (S′, 𝜗′) be an orientation-preserving diffeomorphism of surfaces. We
say that Φ preserves the boundary parametrisation if the following conditions hold:

◦ Φ restricts to diffeomorphisms Φ : 𝜕inS �
→ 𝜕inS′ and Φ : 𝜕outS �

→ 𝜕outS′.
◦ If 𝑛 := #𝜋0 (𝜕

inS) = #𝜋0 (𝜕
inS′) and 𝑛′ := #𝜋0 (𝜕

outS) = #𝜋0 (𝜕
outS′), then there exist permutations

𝜎in ∈ 𝔖𝑛 and 𝜎out ∈ 𝔖𝑛′ such that
– (Φ ◦ 𝜗in) ( 𝑗 , 𝜁) = (𝜗′)in(𝜎in( 𝑗), 𝜁) for each 1 � 𝑗 � 𝑛 and 𝜁 ∈ 𝑆1;
– (Φ ◦ 𝜗out) ( 𝑗 , 𝜁) = (𝜗′)out(𝜎out( 𝑗), 𝜁) for each 1 � 𝑗 � 𝑛′ and 𝜁 ∈ 𝑆1.

Note that in the previous definition, we do not require that Φ also preserves the orderings of the
incoming and outgoing components of 𝜕S and 𝜕S′: that is, the permutations 𝜎in ∈ 𝔖𝑛 and 𝜎out ∈ 𝔖𝑛′

may be non-trivial. To emphasise this, we distinguish between the words ‘ordering’ and ‘parametrisation’.
In Section 4, when introducing the coloured operad ℳ, we will also consider surfaces equipped with a
parametrisation of collar neighbourhoods of the incoming and the outgoing boundary.

Notation 2.3. For all 𝑔 � 0 and 𝑛 � 1, we fix a model surface Σ𝑔,𝑛: it is a connected surface of genus g
with n outgoing and no incoming boundary components. We say that S is of type Σ𝑔,𝑛 if there exists a
diffeomorphism S → Σ𝑔,𝑛 preserving the boundary parametrisation.

Definition 2.4. The mapping class group Γ(S, 𝜕S) is the group of isotopy classes of diffeomorphisms
Φ : S → S that fix the boundary pointwise: that is, Φ ◦ 𝜗 = 𝜗. Such a Φ is called a diffeomorphism
of (S, 𝜕S). For S = Σ𝑔,𝑛, we also write Γ𝑔,𝑛 for Γ(S, 𝜕S). We usually denote isotopy classes by small
Greek letters 𝜑 and use capital Greek letters for diffeomorphisms.

Remark 2.5. Note that any diffeomorphism Ξ : S → S′ induces an identification of the groups
Γ(S, 𝜕S) � Γ(S′, 𝜕S′) by conjugation with Ξ: the mapping class 𝜑 ∈ Γ(S, 𝜕S), represented by the
diffeomorphism Φ, corresponds to the mapping class 𝜑Ξ ∈ Γ(S′, 𝜕S′), represented by Ξ ◦Φ ◦ Ξ−1.

Definition 2.6. Let ℌ ⊂ 𝔖𝜋0 (𝜕outS) ×𝔖𝜋0 (𝜕inS) be a subgroup, where ‘𝔖’ denotes the symmetric group
on the finite set given as index. We define the extended mapping class group Γℌ (S) as the group of
isotopy classes of diffeomorphisms Φ : S → S that preserve the orientation of S and the boundary
parametrisation, and permute the boundary components of 𝜕outS and 𝜕inS according to a pair of
permutations in ℌ.

If we take ℌ = 𝔖𝜋0 (𝜕outS) ×𝔖𝜋0 (𝜕inS) , we also write Γ(S) for the extended mapping class group. If
S = Σ𝑔,𝑛, we also write Γℌ

𝑔,𝑛 = Γℌ (S) and Γ𝑔, (𝑛) = Γ(S) for the extended mapping class groups.

Note that we have an extension 1 → Γ(S, 𝜕S) → Γℌ (S) → ℌ → 1.

Definition 2.7. If G is a group, we denote by Conj(𝐺) the set of conjugacy classes of G. For a group
element 𝛾 ∈ 𝐺, we denote by 𝑍 (𝛾, 𝐺) ⊆ 𝐺 the centraliser of 𝛾: that is, the subgroup of all elements
𝛾′ ∈ 𝐺 that commute with 𝛾.

Notation 2.8. We fix, once and for all, for all conjugacy classes in Conj(Γ𝑔,𝑛), a representative of
the class. We denote by 𝔤 : Γ𝑔,𝑛 → Γ𝑔,𝑛 the function of sets assigning to each element of Γ𝑔,𝑛 the
representative of its class.

Definition 2.9. Let S be a surface. We denote by 𝔐(S) the moduli space of Riemann structures on S;
two Riemann structures on S are considered equivalent if there is a diffeomorphism Ψ : S → S fixing
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𝜕S pointwise and pulling back one Riemann structure to the other. If S = Σ𝑔,𝑛, we also write 𝔐𝑔,𝑛 for
the moduli space 𝔐(Σ𝑔,𝑛).

The hypothesis that every connected component of S has non-empty boundary implies that 𝔐(S) is
a classifying space for the group Γ(S, 𝜕S).

2.2. Arcs and the Alexander method

For the rest of this section, we fix a connected surface S of type Σ𝑔,𝑛, with 𝑔 � 0 and 𝑛 � 1, and focus
on the mapping class group Γ(S, 𝜕S). Given a mapping class 𝜑 ∈ Γ(S, 𝜕S), we construct a system of
simple closed curves on S cutting S into two subsurfaces W and Y: the subsurface 𝑊 ⊂ S is the white
subsurface and is, up to isotopy, the maximal subsurface of S satisfying the following conditions:

◦ all connected components of W touch 𝜕S;
◦ 𝜑 can be represented by a diffeomorphism of S fixing W pointwise.

We start by recalling some standard facts about embedded arcs in surfaces. The material of this subsection
is taken, up to minor changes, from [7]. For the following definition see [7, §1.2.7].

Definition 2.10. An arc in S is a smooth embedding 𝛼 : [0; 1] ↩→ S such that 𝛼−1(𝜕S) = {0, 1} and 𝛼
is transverse to 𝜕S. Two arcs are disjoint if their images are disjoint (also at the endpoints). An arc is
essential if it does not cut S in two parts, one of which is a disc.

Two arcs 𝛼 and 𝛼′ are directly isotopic if 𝛼(0) = 𝛼′(0), 𝛼(1) = 𝛼′(1), and there is an isotopy of
embeddings [0; 1] → S that is stationary on {0, 1} and connects 𝛼 to 𝛼′. Two arcs are inversely isotopic
if the previous holds after reparametrising one of the two arcs in the opposite direction. Two arcs are
isotopic if they are directly or inversely isotopic; we write 𝛼 ∼ 𝛼′ if 𝛼 and 𝛼′ are isotopic.

Two arcs 𝛼 and 𝛽 are in minimal position if they are disjoint at their endpoints, they intersect
transversely, and the number of intersection points in 𝛼 ∪ 𝛽 is minimal among all choices of 𝛼′ ∼ 𝛼 and
𝛽′ ∼ 𝛽 with 𝛼′ and 𝛽′ transverse.

Note that we only consider isotopy classes of arcs relative to their endpoints; two arcs sharing one
endpoint are never considered in minimal position (and, by convention, cannot be isotoped to be in
minimal position). In particular, unless S is a disc, there are more than countably many isotopy classes
of essential arcs in S.

If 𝜒(S) = 2 − 2𝑔 − 𝑛 � 0, then according to [7, §1.2.7], the following statement holds: given a
collection of essential arcs 𝛼1, . . . , 𝛼𝑘 in S, which have all distinct endpoints and are pairwise non-
isotopic, one can replace each 𝛼𝑖 with an arc 𝛼′

𝑖 ∼ 𝛼𝑖 so that 𝛼′
1, . . . , 𝛼′

𝑘 are pairwise in minimal
position. In fact, it suffices to choose a Riemannian metric of constant curvature on S such that 𝜕S is
geodesic, and replace each 𝛼𝑖 with its geodesic representative relative to the endpoints: the hypothesis
on 𝜒(S) ensures that we get a non-positively curved metric, so that geodesic representatives are unique;
moreover, geodesic representatives are automatically pairwise in minimal position.

Among all connected surfaces with non-empty boundary, the only one with positive Euler character-
istic is Σ0,1, that is, the disc: note that the statement holds vacuously also for the disc, which contains
no essential arc. The following is a special case of the Alexander method [7, Prop. 2.8].

Proposition 2.11. Let 𝛼0, . . . , 𝛼𝑘 and 𝛽 be a collection of essential arcs in S, and assume the following:

◦ all arcs are pairwise in minimal position;
◦ the arcs 𝛼0, . . . , 𝛼𝑘 are pairwise disjoint.

Let Φ be a diffeomorphism of (S, 𝜕S), and suppose that Φ fixes each of 𝛼0, . . . , 𝛼𝑘 and 𝛽 up to isotopy
relative to the endpoints. Then Φ can be isotoped to a diffeomorphism Φ′ of S that fixes 𝛼0 ∪· · ·∪𝛼𝑘 ∪ 𝛽
pointwise.

In Proposition 2.11, one can enhance the requirement on Φ′ to be the following: the map Φ′ fixes
pointwise a small neighbourhood 𝑈 ⊂ S of the union 𝛼0 ∪ · · · ∪𝛼𝑘 ∪ 𝛽∪ 𝜕S. Here and in the following,
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Figure 2. A maximal collection of six pairwise non-parallel arcs 𝛼0, . . . , 𝛼5 on a surface of type Σ1,2.

a small neighbourhood is required to deformation retract onto 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝛽 ∪ 𝜕S by restriction of
an ambient homotopy, defined on S and stationary on 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝛽 ∪ 𝜕S.

Remark 2.12. The Alexander method, as stated in [7], only applies under the additional hypothesis that
the arcs 𝛼0, . . . , 𝛼𝑘 and 𝛽 are pairwise non-isotopic. We remark, however, that this hypothesis is not
essential.

To see this, suppose that 𝛼0, . . . , 𝛼𝑘 and 𝛽 is a collection of arcs as in Proposition 2.11: up to
reordering the arcs 𝛼𝑖 , we can assume that there is 0 � 𝑘 ′ � 𝑘 such that the arcs 𝛼0, . . . , 𝛼𝑘′ and 𝛽 are
pairwise non-isotopic, and, moreover, each 𝛼𝑖 with 𝑖 � 𝑘 ′ + 1 is isotopic to some 𝛼 𝑗 with 𝑗 � 𝑘 ′.

We can then apply the Alexander method to the collection 𝛼0, . . . , 𝛼𝑘′ and 𝛽, obtaining a diffeomor-
phism Φ′ that fixes a small neighbourhood U of 𝛼0 ∪ · · · ∪𝛼𝑘′ ∪ 𝛽 pointwise. We then argue as follows:
for each index 𝑖 � 𝑘 ′ + 1, there is an index 𝑗 � 𝑘 ′ such that 𝛼𝑖 and 𝛼 𝑗 are isotopic and in minimal
position: this implies that they cobound (together with two segments in 𝜕S) a rectangle in S, and, up
to shrinking, we can assume that this rectangle lies already inside U: that is, we can assume that 𝛼𝑖 is
fixed pointwise by Φ′ as well.

2.3. The cut locus of a mapping class

In this subsection, we fix a class 𝜑 ∈ Γ(S, 𝜕S), represented by a diffeomorphism Φ, and study the
isotopy classes of arcs and curves that it fixes.

Definition 2.13. Two arcs 𝛼 and 𝛼′ inS are directly parallel if they are disjoint and there is an embedding
[0; 1] × [0; 1] ↩→ S restricting to 𝛼 on [0; 1] × {0} and to 𝛼′ on [0; 1] × {1}, and restricting to an
embedding {0, 1} × [0; 1] ↩→ 𝜕S.

Two arcs 𝛼 and 𝛼′ are inversely parallel if the previous holds after reparametrising one of the two
arcs in the opposite direction. Two arcs 𝛼 and 𝛼′ are parallel if they are directly or inversely parallel.

Note that in the previous definition, we do not insist that the embedding [0; 1] × [0; 1] ↩→ S is
orientation-preserving; see Figure 2.

Definition 2.14. The fixed-arc complex of 𝜑 is an abstract simplicial complex whose vertices are all
isotopy classes of essential arcs 𝛼 inS fixed by 𝜑. A collection of isotopy classes of arcs 𝛼0, . . . , 𝛼𝑘 spans
a k-simplex if the arcs 𝛼0, . . . , 𝛼𝑘 can be isotoped to disjoint, pairwise non-parallel arcs 𝛼′

0, . . . , 𝛼′
𝑘 .

The mapping class 𝜑 is called 𝜕-irreducible if its fixed-arc complex is empty and if S is not of
type Σ0,1.

Example 2.15. Every isotopy class of essential arcs in S is fixed (up to isotopy) by the identity
1 ∈ Γ(S, 𝜕S). Therefore 1 is not 𝜕-irreducible, provided that S admits some essential arc; if S does not
admit essential arcs, then S is a disc Σ0,1 and we have prescribed, also in this case, that 1 ∈ Γ0,1 is not
𝜕-irreducible. The reason to regard 1 ∈ Γ0,1 as not being 𝜕-irreducible will become clear later; for the
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moment we make a simple comparison and say that, in a similar way, 1 ∈ Z is not considered a prime
number.

Example 2.16. The fixed-arc complex of 𝜑 ∈ Γ0,2 � Z is empty if 𝜑 ≠ 1 and consists of uncountably
many vertices, joined by no higher simplex if 𝜑 = 1. Therefore every non-trivial element in Γ0,2 is
𝜕-irreducible.

Example 2.17. For 𝑔 � 1 the boundary Dehn twist 𝑇𝜕 ∈ Γ𝑔,1 is 𝜕-irreducible, though there are plenty
of isotopy classes of simple closed curves in Σ𝑔,1 that are fixed by 𝑇𝜕: in fact, all simple closed curves
are fixed, up to isotopy, by 𝑇𝜕. Nevertheless, no isotopy class of essential arcs is fixed by 𝜑; here it is
crucial to consider isotopy classes of arcs relative to the endpoints.

Note that a simplex in the fixed-arc complex of a class 𝜑 ∈ Γ(S, 𝜕S) has dimension at most−3𝜒(S)−1
if 𝜒(S) < 0, and at most 0 if S is of type Σ0,2. In the second case, just note that each two disjoint
essential arcs in Σ0,2 are parallel. In the first case, let 𝛼0, . . . , 𝛼𝑘 be disjoint, pairwise non-parallel and
essential arcs in S; then cutting S along the arcs 𝛼𝑖 yields a surface whose connected components are
either hexagons or connected surfaces of negative Euler characteristic. Up to adjoining more arcs (and
thus increase k), we can assume to have only hexagons. Each hexagon has 3 sides coming from 𝜕S and
3 sides coming from the cuts. If ℓ � 1 denotes the number of hexagons, we have 3ℓ = 2(𝑘 + 1), as each
arc contributes to 2 hexagons; moreover 𝜒(S) = ℓ − (𝑘 + 1), implying 3𝜒(S) = 3ℓ − 3(𝑘 + 1) = −𝑘 − 1.

Construction 2.18. Let S be not of type Σ0,1, let 𝜑 ∈ Γ(S, 𝜕S), and let 𝛼0, . . . , 𝛼𝑘 be disjoint, essential,
pairwise non-parallel arcs in S, representing a maximal simplex in the fixed-arc complex of 𝜑. Let U be
a closed, small neighbourhood of the union 𝛼0 ∪ · · · ∪𝛼𝑘 ∪ 𝜕S. The complement S \𝑈 consists of many
regions, some of which may be discs: let 𝑊 ⊂ S denote the union of U and all discs in S \𝑈. Then W is
a closed, possibly disconnected subsurface of S; we denote by Y the closure of S \𝑊 . If 𝜕𝑊 denotes the
union of all boundary components of W, and 𝜕𝑌 denotes the union of all boundary components of Y,
then 𝜕𝑊 takes the form 𝜕S ∪ 𝑐1 ∪ · · · ∪ 𝑐ℎ , for some ℎ � 0 and some curves 𝑐1, . . . , 𝑐ℎ ⊂ S; similarly
𝜕𝑌 = 𝑐1 ∪ · · · ∪ 𝑐ℎ . The curves 𝑐1, . . . , 𝑐ℎ inherit a canonical boundary orientation from Y, which is
oriented as subsurface of S.

Definition 2.19. For 𝜑 and 𝛼0, . . . , 𝛼𝑘 as above, we define the cut locus of 𝜑, relative to the simplex
𝛼0, . . . , 𝛼𝑘 , as the isotopy class of the multicurve 𝑐1, . . . , 𝑐ℎ , denoted [𝑐1, . . . , 𝑐ℎ]. Here and in the
following, a multicurve is an unordered collection of disjoint and oriented simple closed curves, and
two multicurves are considered isotopic if there is an ambient isotopy bringing the first to the second.

The two regions W and Y are called the associated white and yellow regions or subsurfaces of S, and
they depend, as subsets of S, on a choice of a multicurve representing the cut locus. If 𝜑 = 1 ∈ Γ0,1, we
declare the cut locus to be empty and W to be the entire surface Σ0,1.

See Figure 3 for an example of the cut locus of a mapping class obtained as a simple product of Dehn
twists. Note that it is possible that two curves 𝑐𝑖 and 𝑐 𝑗 cobound a cylinder in Y: in this case, the two
curves are isotopic as non-oriented simple closed curves, but the isotopy bringing 𝑐𝑖 to 𝑐 𝑗 , spanned by
the cylinder of Y, ends with an orientation-reversing diffeomorphism 𝑐𝑖 � 𝑐 𝑗 , as the two curves inherit
their orientation from Y while being on opposite sides of the cylinder contained in Y. Hence the isotopy
classes of the curves 𝑐1, . . . , 𝑐ℎ , considered as oriented curves, are all distinct.

Note that the cut locus of the identity 1 ∈ Γ(S, 𝜕S) is empty, and the white and yellow decomposition
consists of a white region 𝑊 = S and an empty yellow region. Vice versa, the cut locus of a non-trivial
mapping class 𝜑 ∈ Γ(S, 𝜕S) is always non-empty.

Definition 2.19 depends a priori on a choice of a maximal simplex in the fixed-arc complex of 𝜑;
there is, moreover, a subtle detail that we should check to guarantee that Definition 2.19 is well-posed:
suppose that the disjoint arcs 𝛼′

0, . . . , 𝛼′
𝑘 are isotopic to the disjoint arcs 𝛼0, . . . , 𝛼𝑘 (that is, 𝛼′

𝑖 ∼ 𝛼𝑖 for
all 0 � 𝑖 � 𝑘), so that the two collections of arcs represent the same maximal simplex in the fixed-arc
complex of 𝜑; then we need to check that the two collections of arcs give rise to the same collection of
isotopy classes of oriented, disjoint simple closed curves 𝑐1, . . . , 𝑐ℎ .

https://doi.org/10.1017/fms.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.29


Forum of Mathematics, Sigma 9

1

3

5 7

2 4 6

1 2 3 4 5

3 1 2

Figure 3. Two examples of a decomposition into the ‘yellow’ and the ‘white’ region according to a
fixed mapping class 𝜑. In the first case, 𝜑 is given by the product of the Dehn twists along the curves
𝑑1, . . . , 𝑑7, and in the second case, it is just the Dehn twist along the single green curve d. In the second
case, the mapping class 𝜑 is 𝜕-irreducible, the cut locus consists of the only isotopy class of d, oriented
as a boundary of the yellow region, and the white region is just a collar neighbourhood of 𝜕S.

We will prove directly that the cut locus only depends on 𝜑, and not on the chosen maximal simplex
(and its representative) in the fixed-arc complex of 𝜑.

Lemma 2.20. Let 𝜑 and 𝛼0, . . . , 𝛼𝑘 be as in Definition 2.19, and let 𝛽 be an arc whose endpoints are
disjoint from the endpoints of 𝛼0, . . . , 𝛼𝑘 . Suppose that the isotopy class of 𝛽 is fixed by 𝜑; then 𝛽 can be
isotoped, relative to its endpoints, to an arc 𝛽 lying in a small neighbourhood U of 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝜕S.

Proof. Up to isotoping 𝛽 to another arc, we can assume that 𝛽 is in minimal position with respect to
the arcs 𝛼0, . . . , 𝛼𝑘 . By Proposition 2.11, we can represent 𝜑 by a diffeomorphism Φ that fixes a closed
neighbourhood 𝑈 ′ of the union 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝛽 ∪ 𝜕S. Let 𝑈 ⊂ 𝑈 ′ be a small neighbourhood of
𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝜕S.

If 𝛽 is disjoint from the arcs 𝛼𝑖 , by maximality of the simplex 𝛼0, . . . , 𝛼𝑘 in the fixed-arc complex of
𝜑, we obtain that either 𝛽 is not essential (and can then be isotoped inside a small neighbourhood of 𝜕S,
hence inside U) or 𝛽 is parallel to one of the arcs 𝛼𝑖 (and can then be isotoped to a small neighbourhood
of 𝜕S ∪ 𝛼𝑖 , hence inside U).

If 𝛽 is not disjoint from the arcs 𝛼𝑖 , let ℓ � 1 be the number of transverse intersections of 𝛽 with
𝛼0 ∪ · · · ∪𝛼𝑘 : by induction, let us suppose that the statement of the lemma holds whenever 𝛽 is replaced
by an arc that can be isotoped so as to have at most ℓ − 1 intersection points with the arcs 𝛼𝑖 . Suppose
that p is one intersection point of 𝛽 with one arc 𝛼𝑖: suppose further that the segment [𝛼𝑖 (0); 𝑝] ⊂ 𝛼𝑖
contains no other point of 𝛼𝑖∩𝛽 in its interior (this means that p is an outermost point of 𝛼𝑖∩𝛽 along 𝛼𝑖).

We can operate a surgery on 𝛽 and produce two arcs 𝛽′ and 𝛽′′ also contained in 𝑈 ′ and transverse
to 𝛼0 ∪ · · · ∪ 𝛼𝑘 ; see Figure 4: the arc 𝛽′ is obtained by smoothing the concatenation of the segments
[𝛽(0); 𝑝] ⊂ 𝛽 and [𝑝; 𝛼𝑖 (0)] ⊂ 𝛼𝑖 , whereas the arc 𝛽′′ is obtained by smoothing the concatenation of
the segments [𝛼𝑖 (0); 𝑝] ⊂ 𝛼𝑖 and [𝑝; 𝛽(1)] ⊂ 𝛽. We assume that 𝛽′ and 𝛽′′ are disjoint and have an
endpoint on a small interval of 𝜕S centred at 𝛼𝑖 (0), on opposite sides with respect to 𝛼𝑖 (0).

Both 𝛽′ and 𝛽′′ are contained in 𝑈 ′, hence they are fixed pointwise by Φ: in particular the isotopy
classes of 𝛽′ and 𝛽′′ are fixed by Φ. Moreover, each of 𝛽′ and 𝛽′′ has strictly less than ℓ intersections
with 𝛼0 ∪ · · · ∪ 𝛼𝑘 , and hence, by inductive hypothesis, each of 𝛽′ and 𝛽′′ can be isotoped to lie in U,
relative to its endpoints.

Let 𝛽′ and 𝛽′′ be the two arcs obtained in this way, and assume that 𝛽′ and 𝛽′′ are transverse.
If 𝛽′ and 𝛽′′ are not in minimal position, they must form some bigon in S; the possibility of half-
bigons in the sense of [7, §1.2.7] is irrelevant, since we consider arcs up to isotopy relative to the
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Figure 4. If 𝜑 is the Dehn twist along the curve d, then the blue arcs 𝛼0, . . . , 𝛼3 constitute a maximal
simplex in the fixed-arc complex of 𝜑; the subset U is a small neighbourhood of the union of the blue
arcs and the black boundary curve. The red arc 𝛽 intersects 𝛼2 transversally, and the surgery produces
the yellow and violet arcs 𝛽′ and 𝛽′′.

endpoints. Clearly, we can simplify all bigons formed by 𝛽′ and 𝛽′′ without losing that these two arcs are
contained in U.

Suppose therefore that 𝛽′ and 𝛽′′ are in minimal position: then they are disjoint because 𝛽′ and
𝛽′′ were disjoint (in particular, it is automatic that 𝛽′ and 𝛽′′ do not form half-bigons). The arc 𝛽 is
homotopic, relative to its endpoints, to the concatenation of the arcs 𝛽′ and 𝛽′′, which can be connected
using a small segment near 𝛼𝑖 (0). Note that this concatenation gives an embedded arc 𝛽 with the
same endpoints as 𝛽; since homotopic arcs relative to their endpoints are also isotopic relative to their
endpoints, we have that 𝛽 is isotopic to 𝛽; moreover, 𝛽 lies in U. �

Proposition 2.21. Let 𝜑 ∈ Γ(S, 𝜕S), and let 𝛼0, . . . , 𝛼𝑘 and 𝛽0, . . . , 𝛽𝑘′ be two sequences of arcs
representing two different maximal simplices in the fixed-arc complex of 𝜑; we assume that all arcs
𝛼0, . . . , 𝛼𝑘 , 𝛽0, . . . , 𝛽𝑘′ are in minimal position. Then the associated cut loci constitute the same isotopy
class of an oriented multicurve in S.

Proof. Let 𝑈𝛼 be a closed small neighbourhood of 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝜕S and 𝑈𝛽 be a closed small
neighbourhood of 𝛽0 ∪ · · · ∪ 𝛽𝑘′ ∪ 𝜕S; let 𝑊𝛼 and 𝑊𝛽 be obtained from 𝑈𝛼 and 𝑈𝛽 by adjoining the
disc components of S \𝑈𝛼 and S \𝑈𝛽 , respectively (see Definition 2.19).

By Lemma 2.20, we can find an isotopy of the identity of (S, 𝜕S) bringing 𝑈𝛼 in the interior of 𝑈𝛽 ,
and hence in the interior of 𝑊𝛽: without loss of generality, in the following assume 𝑈𝛼 ⊆ 𝑈𝛽 ⊆ 𝑊𝛽 . If D
is a disc component of S\𝑈𝛼, then 𝐷 \𝑈𝛽 is a union of discs contained in S\𝑈𝛽 , and therefore 𝐷 ⊂ 𝑊𝛽 .
It follows that 𝑊𝛼 ⊆ 𝑊𝛽 . Since every component of 𝑊𝛽 touches 𝜕S, the map 𝜋0 (𝜕S) → 𝜋0 (𝑊𝛽) is
surjective. This map factors through the canonical map 𝜋0 (𝑊𝛼) → 𝜋0 (𝑊𝛽), as 𝜕S ⊂ 𝑊𝛼. We conclude
that 𝜋0 (𝑊𝛼) → 𝜋0 (𝑊𝛽) is surjective.

By the same argument we can find an isotopy of the identity of S bringing 𝑈𝛽 in the interior of 𝑈𝛼,
and hence 𝑊𝛽 in the interior of 𝑊𝛼: as a consequence we can obtain a surjection 𝜋0 (𝑊𝛽) → 𝜋0 (𝑊𝛼),
showing that #𝜋0 (𝑊𝛽) = #𝜋0 (𝑊𝛼) and that the map 𝜋0 (𝑊𝛼) → 𝜋0 (𝑊𝛽) induced by the inclusion is in
fact a bijection.

We next prove that each component V of 𝑊𝛽 \ 𝑊𝛼 is a cylinder with one boundary curve equal to
some 𝑐𝑖 and one boundary curve equal to some 𝑐′𝑗 . Fix a component �̄�𝛽 ⊂ 𝑊𝛽 , and let �̄�𝛼 ⊂ 𝑊𝛼 be the
unique component of 𝑊𝛼 contained in �̄�𝛽 . We know that, conversely, �̄�𝛽 can be embedded in �̄�𝛼: since
the genus is weakly increasing along embeddings of orientable surfaces with boundary, the surfaces
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�̄�𝛼 and �̄�𝛽 must have the same genus; this implies in particular every component V of �̄�𝛽 \ �̄�𝛼 has
genus 0 and touches at most one curve 𝑐𝑖 ∈ 𝜕�̄�𝛼.

Since �̄�𝛼 and �̄�𝛽 are connected, we have that a component V of �̄�𝛽 \ �̄�𝛼 touches exactly one curve
𝑐𝑖 ⊂ 𝜕�̄�𝛼, and since V cannot be a disc, we obtain that V is a surface of genus 0 with at least two
boundary components; more precisely, one boundary component of V is a curve 𝑐𝑖 ⊂ 𝜕�̄�𝛼, and all
other boundary components are curves 𝑐′𝑗 ⊂ 𝜕�̄�𝛽 .

This proves in particular that the number of boundary components of �̄�𝛽 is greater or equal to the
number of boundary components of �̄�𝛼; we can again reverse the rôles of 𝛼 and 𝛽 and conclude that
�̄�𝛼 and �̄�𝛽 have the same number of boundary component; this in turn implies that every connected
component V of �̄�𝛽 \ �̄�𝛼 is a cylinder with one boundary curve equal to some 𝑐𝑖 and one boundary
curve equal to some 𝑐′𝑗 .

Thus, we obtain a bijection between the curves 𝑐1, . . . , 𝑐ℎ and the curves 𝑐′1, . . . , 𝑐′ℎ′ , showing in
particular that ℎ = ℎ′; note also that the bijection associates with each curve 𝑐𝑖 a curve 𝑐′𝑗 in the same
isotopy class of oriented curves. �

When referring to the cut locus of a mapping class 𝜑 ∈ Γ(S, 𝜕S), we will henceforth mean the cut
locus of 𝜑 with respect to any maximal simplex in the fixed-arc complex of 𝜑.

The cut locus of a mapping class behaves well under conjugation of the mapping class, as explained
in the following Lemma.

Lemma 2.22. Let 𝜑, 𝜓 ∈ Γ(S, 𝜕S) be mapping classes, let Ψ be a diffeomorphism representing 𝜓, and
let [𝑐1, . . . , 𝑐ℎ] be the cut locus of 𝜑; then [Ψ(𝑐1), . . . ,Ψ(𝑐ℎ)] is the cut locus of 𝜓𝜑𝜓−1. In particular,
if 𝜑 and 𝜓 commute, then 𝜓 preserves the cut locus of 𝜑 as an unordered collection of isotopy classes
of oriented simple closed curves.

Proof. Let 𝛼0, . . . , 𝛼𝑘 be disjoint arcs representing a maximal simplex in the fixed-arc complex of 𝜑,
and represent 𝜑 by a diffeomorphism Φ fixing pointwise a small neighbourhood U of 𝛼0∪· · ·∪𝛼𝑘 ∪𝜕S;
finally, represent the cut locus of 𝜑 by curves 𝑐1, . . . , 𝑐ℎ contained in U. Then Ψ induces an isomorphism
from the fixed-arc complex of 𝜑 to the fixed arc complex of 𝜓𝜑𝜓−1; in particular Ψ(𝛼0), . . . ,Ψ(𝛼𝑘 )
are disjoint arcs representing a maximal simplex in the fixed-arc complex of 𝜓𝜑𝜓−1. Moreover, Ψ(𝑈)

is a small neighbourhood of Ψ(𝛼0) ∪ · · · ∪ Ψ(𝛼𝑘 ) ∪ 𝜕S, which is fixed pointwise by the representative
ΨΦΨ−1 of 𝜓𝜑𝜓−1. We can represent the cut locus of 𝜑 by curves 𝑐1, . . . , 𝑐ℎ ⊂ 𝜕𝑈; then

Ψ(𝑐1), . . . ,Ψ(𝑐ℎ) ⊂ 𝜕Ψ(𝑈)

are automatically curves representing the cut locus of 𝜓𝜑𝜓−1, according to Construction 2.18. �

3. Centralisers of mapping classes

We fix a surface S � Σ𝑔,𝑛 and a mapping class 𝜑 ∈ Γ(S, 𝜕S) � Γ𝑔,𝑛 as in the previous section.
In this section, we prove a structural result for the centraliser 𝑍 (𝜑, Γ(S, 𝜕S)) of 𝜑 in Γ(S, 𝜕S); see
Proposition 3.8.

3.1. Yellow components, similarity and irreducibility

We fix oriented simple closed curves 𝑐1, . . . , 𝑐ℎ ⊂ S representing the cut locus of 𝜑, and we let 𝑊 ∪ 𝑌
be the associated decomposition of S into its white and yellow regions.

Recall from Construction 2.18 that the curves 𝑐1, . . . , 𝑐ℎ inherit an orientation from Y: we fix an
orientation-compatible parametrisation of each curve 𝑐𝑖: that is, an identification with 𝑆1. Note that
in this way 𝑐1, . . . , 𝑐ℎ are incoming curves for W and outgoing for Y. In fact, we have 𝜕𝑌 = 𝜕out𝑌 =
𝑐1 ∪ · · · ∪ 𝑐ℎ = 𝜕in𝑊 , whereas 𝜕out𝑊 = 𝜕outS = 𝜕S.
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We fix a representative Φ : S → S of 𝜑, which fixes the white region W pointwise: to see that this
is possible, choose arcs 𝛼0, . . . , 𝛼𝑘 in a maximal simplex of the fixed-arc complex of 𝜑, choose a first
representative Φ′ of 𝜑 fixing pointwise a small neighbourhood U of 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝜕S, construct W
and Y starting from U, and use that the group Diff(𝐷2, 𝜕𝐷2) of diffeomorphisms of a disc relative
to its boundary is contractible, and in particular connected, in order to isotope Φ′ relative to U to a
diffeomorphism Φ fixing W pointwise.

We note that this representative Φ is unique up to an isotopy that is stationary on W: to see this, first
note that there is a fibration

Diff (𝑌, 𝜕𝑌 ) ↩→ Diff (S, 𝜕S) 𝔭
→ Emb𝜕out (𝑊,S),

where Emb𝜕out (𝑊,S) denotes the space of embeddings of W into S restricting to the identity on
the boundary 𝜕out𝑊 = 𝜕S. A result of Earle–Schatz [5] ensures that Diff (S, 𝜕S) has contractible
components for every compact orientable surface S such that every connected component of S is
connected; in particular, Diff(𝑌, 𝜕𝑌 ) also has contractible components. A result of Gramain [10, Thm. 5]
ensures that for disjoint, properly embedded arcs 𝛼0, . . . , 𝛼𝑘 ⊂ S, the space Emb∐

𝜕𝛼𝑖 (
∐

𝛼𝑖 ,S) has
also contractible components; this, together with contractibility of Diff(𝐷2, 𝜕𝐷2), implies that also
Emb𝜕out (𝑊,S) has contractible connected components. Thus, all spaces involved in the above fibration
have contractible connected components; in particular the component Diff(S, 𝜕S)𝜑 intersects the fibre
𝔭−1 (𝑊 ⊂ S) � Diff(𝑌, 𝜕𝑌 ) in a connected or empty subspace, and the representative Φ of 𝜑 witnesses
that this intersection is non-empty, hence contractible, in particular connected.

For each path component 𝑃 ⊆ 𝑌 , the diffeomorphism Φ restricts to Φ|𝑃 : 𝑃 → 𝑃, giving an element
𝜑𝑃 ∈ Γ(𝑃, 𝜕𝑃).

Definition 3.1. Two path components P and 𝑃′ of Y are similar if there is a diffeomorphism Ξ : 𝑃 → 𝑃′

preserving the boundary parametrisation and such that 𝜑𝑃 = (𝜑𝑃′ )Ξ. Note that the path components of
𝜕𝑃 are not equipped with a preferred order, as well as the path components of 𝜕𝑃′; yet Definition 2.2
is meaningful here. See also Remark 2.5.

Notation 3.2. We write 𝑌 =
∐𝑟
𝑖=1

∐𝑠𝑖
𝑗=1 𝑌𝑖, 𝑗 , where 𝑌1,1, . . . , 𝑌𝑟 ,𝑠𝑟 ⊆ 𝑌 are the connected components

of Y and 𝑌𝑖, 𝑗 is similar to 𝑌𝑖′, 𝑗′ if and only if 𝑖 = 𝑖′. We also let 𝑌𝑖 :=
∐𝑠𝑖

𝑗=1 𝑌𝑖, 𝑗 . Here 𝑟 � 0 is the number
of similarity classes of components of Y (it can be 0 if Y is empty, i.e., if 𝜑 is the identity mapping
class), whereas 𝑠𝑖 � 1 is the number of components of Y belonging to the ith similarity class.

For each 1 � 𝑖 � 𝑟 , there are unique 𝑔𝑖 � 0 and 𝑛𝑖 � 1 such that 𝑌𝑖, 𝑗 is of type Σ𝑔𝑖 ,𝑛𝑖 . We denote by
𝜑𝑖, 𝑗 ∈ Γ(𝑌𝑖, 𝑗 , 𝜕𝑌𝑖, 𝑗 ) the class represented by the restriction Φ|𝑌𝑖, 𝑗 , Moreover, we fix diffeomorphisms
Ξ𝑖, 𝑗 : 𝑌𝑖, 𝑗 → Σ𝑔𝑖 ,𝑛𝑖 and assume that Ξ𝑖, 𝑗 preserves the boundary parametrisation.

The conjugation by Ξ𝑖, 𝑗 induces an identification Γ(𝑌𝑖, 𝑗 , 𝜕𝑌𝑖, 𝑗 ) → Γ𝑔𝑖 ,𝑛𝑖 , under which 𝜑𝑖, 𝑗 corre-
sponds to some element �̄�𝑖, 𝑗 := (𝜑𝑖, 𝑗 )

Ξ𝑖, 𝑗 ∈ Γ𝑔𝑖 ,𝑛𝑖 . Up to replacing Ξ𝑖, 𝑗 by another diffeomorphism
𝑌𝑖, 𝑗 → Σ𝑔𝑖 ,𝑛𝑖 , we can assume that �̄�𝑖, 𝑗 ∈ Γ𝑔,𝑛 coincides with 𝔤(�̄�𝑖, 𝑗 ): that is, it is the representative of
its own conjugacy class (see Notation 2.8). Note that the diffeomorphism replacing Ξ𝑖, 𝑗 is not required
to induce the same bijection of sets of boundary components as Ξ𝑖, 𝑗 . It can be helpful to remark that
𝜋0 (𝜕𝑌𝑖, 𝑗 ) is not equipped a priori with a preferred order, and only after choosing Ξ𝑖, 𝑗 , we obtain an
order on 𝜋0 (𝜕𝑌𝑖, 𝑗 ) by pulling back the canonical order on 𝜋0 (𝜕Σ𝑔𝑖 ,𝑛𝑖 ). Under the assumption that the
diffeomorphisms Ξ𝑖, 𝑗 are well-chosen, we also have �̄�𝑖, 𝑗 = �̄�𝑖, 𝑗′ for all 1 � 𝑖 � 𝑟 and 1 � 𝑗 , 𝑗 ′ � 𝑠𝑖 .
We therefore write �̄�𝑖 := �̄�𝑖, 𝑗 .

Note that, counting the components of 𝜕𝑌 , we obtain ℎ =
∑𝑟
𝑖=1 𝑛𝑖 · 𝑠𝑖 .

Lemma 3.3. In the situation above, for each 1 � 𝑖 � 𝑟 and 1 � 𝑗 � 𝑠𝑖 , we have that 𝜑𝑖, 𝑗 ∈ Γ(𝑌𝑖, 𝑗 , 𝜕𝑌𝑖, 𝑗 )
is 𝜕-irreducible.

Proof. Suppose that there is an essential arc 𝛽 ⊂ 𝑌𝑖, 𝑗 (that is, the endpoints of 𝛽 are on 𝜕𝑌𝑖, 𝑗 ) that is
fixed up to isotopy by 𝜑𝑖, 𝑗 . Then we can isotope Φ relative to S\𝑌𝑖, 𝑗 so that Φ fixes 𝛽 pointwise; without
loss of generality, we assume that Φ already fixes 𝛽 pointwise.
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We can extend 𝛽 to an arc 𝛼 ⊂ S with endpoints on 𝜕S by joining the endpoints of 𝛽 inside W with
𝜕S. Then Φ fixes 𝛼 pointwise. By Lemma 2.20, we can isotope 𝛼 into the region W. This implies that 𝛼
is not in minimal position with respect to 𝜕𝑌𝑖, 𝑗 , and therefore 𝛼 must form a bigon with the multicurve
𝜕𝑌𝑖, 𝑗 . Since 𝛼 intersects 𝜕𝑌𝑖, 𝑗 in exactly two points, namely the endpoints of 𝛽, there must be a bigon
with one side equal to 𝛽 and the other contained in 𝜕𝑌𝑖, 𝑗 . This bigon is contained in 𝑌𝑖, 𝑗 , contradicting
the assumption that 𝛽 is essential in 𝑌𝑖, 𝑗 . �

3.2. The group �̃� (𝜑) and its relation to 𝑍 (𝜑, Γ(S, 𝜕S ))

In this subsection, we introduce a certain group �̃� (𝜑) built out of small mapping class groups and
symmetric groups. The peculiarity of �̃� (𝜑) is that it admits a natural map 𝜀 : �̃� (𝜑) → 𝑍 (𝜑, Γ(S, 𝜕S)) ⊂
Γ(S, 𝜕S). In the next subsection, we will identify the kernel of 𝜀, and we will prove in the final subsection
that 𝜀 is surjective.

Recall that 𝜑𝑌 ∈ Γ(𝑌, 𝜕𝑌 ) denotes the mapping class represented by Φ|𝑌 . We consider the centraliser
𝑍 (𝜑𝑌 ) ⊂ Γ(𝑌 ) of 𝜑𝑌 in the extended mapping class group Γ(𝑌 ) using the natural inclusion Γ(𝑌, 𝜕𝑌 ) ⊂
Γ(𝑌 ). Note that Γ(𝑌 ) admits a natural map to 𝔖ℎ � 𝔖𝜋0 (𝜕𝑌 ) given by the action of mapping classes on
boundary components. This map restricts to a map 𝑍 (𝜑𝑌 ) →𝔖ℎ .

Similarly, we can consider the extended mapping class group Γ𝔖ℎ (𝑊) that contains mapping classes
of W that fix 𝜕out𝑊 = 𝜕S pointwise but may permute the h incoming boundary components of W: here
we identify 𝔖ℎ � 𝔖𝜋0 (𝜕in𝑊 ) ⊂ 𝔖𝜋0 (𝜕out𝑊 ) ×𝔖𝜋0 (𝜕in𝑊 ) .

Definition 3.4. We define �̃� (𝜑) as the fibre product

�̃� (𝜑) := Γ𝔖ℎ (𝑊) ×𝔖ℎ 𝑍 (𝜑𝑌 ).

Gluing Y and W along 𝜕𝑌 = 𝜕in𝑊 yields a map of groups

𝜀 : Γ𝔖ℎ (𝑊) ×𝔖ℎ Γ(𝑌 ) → Γ(S, 𝜕S).

Explicitly, for a couple of mapping classes (𝜓𝑊 , 𝜓𝑌 ), we choose representatives Ψ𝑊 : 𝑊 → 𝑊 and
Ψ𝑌 : 𝑌 → 𝑌 . The fact that 𝜓𝑊 and 𝜓𝑌 project to the same permutation of 𝜋0 (𝜕

in𝑊) = 𝜋0 (𝜕𝑌 ) �
{1, . . . , ℎ}, together with the fact that both Ψ𝑊 and Ψ𝑌 preserve the boundary parametrisation, implies
that Ψ𝑌 |𝜕𝑌 = Ψ𝑊 |𝜕in𝑊 , and hence we can glue the two diffeomorphisms to a diffeomorphism of S (we
skip all details about smoothing the output homeomorphism near the gluing curves).

Lemma 3.5. The restriction 𝜀 = 𝜀 |�̃� (𝜑) has image inside 𝑍 (𝜑, Γ(S, 𝜕S)) ⊂ Γ(S, 𝜕S).

Proof. Note that (1𝑊 , 𝜑𝑌 ) is a central element of �̃� (𝜑): indeed, given a pair (𝜓𝑊 , 𝜓𝑌 ) ∈ �̃� (𝜑), we
have that 𝜓𝑌 ∈ 𝑍 (𝜑𝑌 ), so 𝜓𝑌 commutes with 𝜑𝑌 , and clearly 1𝑊 commutes with 𝜓𝑊 in Γ𝔖ℎ (𝑊).
Applying 𝜀, we obtain that 𝜀(𝜓𝑊 , 𝜓𝑌 ) commutes with 𝜀(1𝑊 , 𝜑𝑌 ) = 𝜑. �

In the following lemma, we decompose 𝑍 (𝜑𝑌 ), which is the second factor appearing in the formula
for �̃� (𝜑).

Lemma 3.6. There is an isomorphism of groups

𝑍 (𝜑𝑌 ) �
𝑟∏
𝑖=1

𝑍 (�̄�𝑖) �𝔖𝑠𝑖 ,

where 𝑍 (�̄�𝑖) ⊂ Γ𝑔𝑖 , (𝑛𝑖 ) is the centraliser in the extended mapping class group, and where
𝑍 (�̄�𝑖) �𝔖𝑠𝑖 =

(
𝑍 (�̄�𝑖)

)𝑠𝑖
�𝔖𝑠𝑖 denotes the wreath product.

Proof. Let 𝜓𝑌 ∈ 𝑍 (𝜑𝑌 ) be a centralising mapping class, and represent 𝜓𝑌 by a diffeomorphism Ψ𝑌
preserving the boundary parametrisation. Furthermore, let 𝑃, 𝑃′ ⊂ 𝑌 be two connected components
with Ψ𝑌 (𝑃) = 𝑃′; then restricting the commutativity of 𝜓𝑌 and 𝜑𝑌 to these two components, we obtain
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the equality 𝜑𝑌 |
Ψ𝑌
𝑃 = 𝜑𝑌 |𝑃′ in Γ(𝑃′, 𝜕𝑃′). This implies that P and 𝑃′ are similar, and using Notation

3.2, we have that each 𝑌𝑖 is Ψ𝑌 -invariant and therefore

𝑍 (𝜑𝑌 ) =
𝑟∏
𝑖=1

𝑍 (𝜑|𝑌𝑖 ),

where 𝜑|𝑌𝑖 is defined using that 𝑌𝑖 is a 𝜑-invariant union of connected components of Y. Now fix
1 � 𝑖 � 𝑟; using the diffeomorphisms Ξ𝑖, 𝑗 for varying 1 � 𝑗 � 𝑠𝑖 , we can identify the surface 𝑌𝑖 with∐

1� 𝑗�𝑠𝑖 Σ𝑔𝑖 ,𝑛𝑖 and thus identify Γ(𝑌𝑖) with Γ𝑔𝑖 , (𝑛𝑖 ) �𝔖𝑠𝑖 . Thus, 𝜑|𝑌𝑖 corresponds to the element

(�̄�𝑖 , . . . , �̄�𝑖) ∈ (Γ𝑔𝑖 , (𝑛𝑖 ) )
𝑠𝑖 ⊂ Γ𝑔𝑖 , (𝑛𝑖 ) �𝔖𝑠𝑖 .

It follows that 𝑍 (𝜑|𝑌𝑖 ) is isomorphic to 𝑍 (�̄�𝑖) �𝔖𝑠𝑖 . �

We conclude the subsection by analysing the actual subgroup of 𝔖ℎ over which the fibre product
�̃� (𝜑) lives. Now we will focus on the case in which W is connected because the exposition is a bit
easier: indeed, the natural map Γ𝔖ℎ (𝑊) →𝔖ℎ is surjective under this hypothesis on W, so we just have
to describe the image of the map 𝑍 (𝜑𝑌 ) →𝔖ℎ.
Notation 3.7. We denote by ℌ𝑖 ⊂ 𝔖𝑛𝑖 the image of 𝑍 (�̄�𝑖) under the natural map Γ𝑔𝑖 , (𝑛𝑖 ) →𝔖𝑛𝑖 .

The proof of Lemma 3.6 shows that the image of 𝑍 (𝜑𝑌 ) → 𝔖ℎ � 𝔖𝜋0 (𝜕𝑌 ) is the subgroup∏
𝑖 ℌ𝑖 �𝔖𝑠𝑖 consisting of those permutations of the set 𝜋0 (𝜕𝑌 ) that preserve each subset 𝜋0 (𝜕𝑌𝑖) for

each 1 � 𝑖 � 𝑟 , and send each subset 𝜋0 (𝜕𝑌𝑖, 𝑗 ) to some subset 𝜋0 (𝜕𝑌𝑖, 𝑗′ ) in a way that, under the
identifications 𝜋0 (𝜕𝑌𝑖, 𝑗 ) � {1, . . . , 𝑛𝑖} � 𝜋0 (𝜕𝑌𝑖, 𝑗′ ), gives a permutation in 𝔖𝑛𝑖 , which can also be
attained by projecting an element �̄�𝑖 ∈ 𝑍 (�̄�𝑖).

3.3. The kernel of 𝜀

Recall the gluing homomorphism 𝜀 : Γ𝔖ℎ (𝑊) ×𝔖ℎ Γ(𝑌 ) → Γ(S, 𝜕S) from the previous subsection. We
proceed by identifying the kernel of 𝜀. Note that 𝜀 has its image in the subgroup Γ(S, 𝜕S)[𝑐1 ,...,𝑐ℎ ] of
Γ(S, 𝜕S) containing all mapping classes 𝜓 that preserve the cut locus [𝑐1, . . . , 𝑐ℎ] of 𝜑: that is, send
each oriented homotopy class of a curve 𝑐𝑖 to the oriented homotopy class of some (possibly different)
curve 𝑐 𝑗 . If (𝜓𝑊 , 𝜓𝑌 ) ∈ Γ𝔖ℎ (𝑊) ×𝔖ℎ Γ(𝑌 ) belongs to the kernel of 𝜀, then in particular 𝜀(𝜓𝑊 , 𝜓𝑌 ) acts
trivially on the components of the cut locus. It follows that both 𝜓𝑊 and 𝜓𝑌 project to the identity element
in𝔖ℎ: that is, (𝜓𝑊 , 𝜓𝑌 ) is in fact contained in the subgroup Γ(𝑊, 𝜕𝑊)×Γ(𝑌, 𝜕𝑌 ) of Γ𝔖ℎ (𝑊)×𝔖ℎ Γ(𝑌 ).
Hence the kernel of 𝜀 coincides with the kernel of the restriction of 𝜀 to Γ(𝑊, 𝜕𝑊) × Γ(𝑌, 𝜕𝑌 ).

We can now use [7, Thm. 3.18], in the version for disconnected surfaces: since no component of W
or Y is a disc, the kernel of

𝜀 : Γ(𝑊, 𝜕𝑊) × Γ(𝑌, 𝜕𝑌 ) → Γ(S, 𝜕S)

is generated by the couples (𝐷𝑐𝑖 , 𝐷−1
𝑐𝑖 ), where 𝐷𝑐𝑖 denotes the Dehn twist about the curve 𝑐𝑖 .

Since each component of W has at least one outgoing boundary, whereas the curves 𝑐𝑖 are incoming
for W, we can apply [7, Lem. 3.17] to the first coordinates of the elements (𝐷𝑐𝑖 , 𝐷−1

𝑐𝑖 ) and conclude that
they generate a subgroup of Γ(𝑊, 𝜕𝑊) × Γ(𝑌, 𝜕𝑌 ) isomorphic to Zℎ . Finally, we note that the elements
(𝐷𝑐𝑖 , 𝐷−1

𝑐𝑖 ) belong to the subgroup �̃� (𝜑), as 𝐷−1
𝑐𝑖 ∈ Γ(𝑌, 𝜕𝑌 ), being the inverse of a boundary twist, is a

central element and in particular it commutes with 𝜑𝑌 . It follows that the kernel of 𝜀 is the free abelian
group of rank h generated by the elements (𝐷𝑐𝑖 , 𝐷−1

𝑐𝑖 ).

3.4. Surjectivity of 𝜀

We now prove that the map 𝜀 : �̃� (𝜑) → 𝑍 (𝜑, Γ(S, 𝜕S)) is surjective. In order to do so, let 𝜓 ∈

𝑍 (𝜑, Γ(S, 𝜕S)) ⊂ Γ(S, 𝜕S) be a centralising mapping class (see Definition 2.7). Then, by Lemma 2.22,
𝜓 preserves the cut locus of 𝜑.
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We can fix a representative Ψ : S → S of 𝜓 that permutes the curves 𝑐1, . . . , 𝑐ℎ preserving their
parametrisation. In particular, Ψ restricts to a diffeomorphism of W and of Y, respectively. Moreover,
Ψ fixes pointwise 𝜕S = 𝜕out𝑊 , and both Ψ|𝑊 and Ψ|𝑌 are diffeomorphisms preserving the boundary
parametrisation of W and Y, respectively. Consider now the mapping class 𝜑𝑌 ∈ Γ(𝑌, 𝜕𝑌 ) represented
by Φ|𝑌 , and note that also (Ψ|𝑌 ) ◦ (Φ|𝑌 ) ◦ (Ψ−1 |𝑌 ) represents a mapping class in Γ(𝑌, 𝜕𝑌 ), which we
denote by 𝜑Ψ |𝑌

𝑌 .
We claim that 𝜑𝑌 = 𝜑Ψ |𝑌

𝑌 holds in Γ(𝑌, 𝜕𝑌 ). To see this, note that gluing with the identity in Γ(𝑊, 𝜕𝑊)

gives a map 𝜆S
𝑌 : Γ(𝑌, 𝜕𝑌 ) → Γ(S, 𝜕S), which is injective by [7, Thm. 3.18]; the claim follows from

the observation that 𝜆S
𝑌 (𝜑

Ψ |𝑌
𝑌 ) = 𝜑Ψ, which by the hypothesis on Ψ is equal to 𝜑 = 𝜆S

𝑌 (𝜑𝑌 ).
It follows that Ψ|𝑌 represents a mapping class 𝜓𝑌 ∈ Γ(𝑌 ) that belongs to 𝑍 (𝜑𝑌 ). Similarly, Ψ|𝑊

represents a class in Γ𝔖ℎ (𝑊), and it is clear that 𝜓𝑊 and 𝜓𝑌 project to the same element of 𝔖ℎ: that
is, the couple (𝜓𝑊 , 𝜓𝑌 ) gives an element of �̃� (𝜑). It is also evident that 𝜀(𝜓𝑊 , 𝜓𝑌 ) = 𝜓. This implies
that 𝜀 is surjective. Putting together the discussion of this and the previous subsections, we conclude
the following.
Proposition 3.8. Let 𝑔 � 0, 𝑛 � 1, let S be a surface of type Σ𝑔,𝑛, let 𝜑 ∈ Γ(S, 𝜕S), let 𝑐1, . . . , 𝑐ℎ be a
system of oriented curves representing the cut locus of 𝜑, and let W and Y be the corresponding white
and yellow regions of S, using Notation 3.2. Then there is an isomorphism of groups induced by 𝜀

�̃� (𝜑)/Zℎ =
(
Γ𝔖ℎ (𝑊) ×𝔖ℎ

∏
𝑖 𝑍 (�̄�𝑖) �𝔖𝑠𝑖

) /
Zℎ

�
−→ 𝑍 (𝜑, Γ(S, 𝜕S)),

where Zℎ is the free abelian group generated by the elements (𝐷𝑐𝑖 , 𝐷−1
𝑐𝑖 ). If, moreover, W is connected,

we can use Notation 3.7 and rewrite the isomorphism as(
Γ

∏
𝑖 ℌ𝑖 �𝔖𝑠𝑖 (𝑊) ×

∏
𝑖 ℌ𝑖 �𝔖𝑠𝑖

∏
𝑖 𝑍 (�̄�𝑖) �𝔖𝑠𝑖

)/
Zℎ

�
−→ 𝑍 (𝜑, Γ(S, 𝜕S)).

4. Generalities on coloured operads

In this section, we establish the operadic framework that we will use in the rest of the article. The reader
who is well-acquainted with the language of coloured operads may skip this interlude and go directly to
Section 5.

4.1. Notation and diagram categories

By ‘space’, we mean a topological space that is compactly generated and has the weak Hausdorff
property. Let Top be the category of spaces; it is Cartesian closed, complete, and cocomplete.

For a topologically enriched category I and two objects 𝑘, 𝑛 ∈ ob(I), we denote by I
(𝑘
𝑛

)
the space of

morphisms from k to n, and we denote the identity of n by 1𝑛 ∈ I
(𝑛
𝑛

)
.

Notation 4.1. Let Inj be the small category with objects 𝑟 = {1, . . . , 𝑟} for all non-negative integers
𝑟 ∈ {0, 1, 2, . . . }, and with morphisms 𝑟 → 𝑟 ′ being all injective maps of finite sets. Moreover, let
𝚺 ⊆ Inj be the subcategory of all bijective maps.

The category Inj is spanned by two sorts of maps: on the one hand, permutations 𝜏 ∈ 𝔖𝑟 , which
constitute the category𝚺, and on the other hand, the top cofaces 𝑑𝑟 : 𝑟 − 1 → 𝑟 , where for each 1 � 𝑖 � 𝑟 ,
we denote by 𝑑𝑖 the unique strictly monotone function whose image does not contain the element 𝑖 ∈ 𝑟 .
Whenever we apply a contravariant functor to Inj, we write 𝑑𝑖 := (𝑑𝑖)∗.
Notation 4.2. Let N be a fixed set, 𝑟 � 0, and let 𝐾 = (𝑘1, . . . , 𝑘𝑟 ) be a tuple of elements of N. We
write #𝐾 := 𝑟 for the length of K. If 𝑢 : 𝑠 ↩→ 𝑟 is a map in Inj, we write 𝑢∗𝐾 :=

(
𝑘𝑢 (1) , . . . , 𝑘𝑢 (𝑠)

)
. If

𝑿 := (𝑋𝑛)𝑛∈𝑁 is a family of objects in a category with finite products, we write 𝑿 (𝐾) := 𝑋𝑘1 ×· · ·×𝑋𝑘𝑟 ;
For tuples 𝐾 = (𝑘1, . . . , 𝑘𝑟 ) and 𝐾 ′ = (𝑘 ′

1, . . . , 𝑘 ′
𝑟 ′ ) of elements of N, we denote by Inj

(𝐾
𝐾 ′

)
⊂ Inj

(𝑟
𝑟 ′

)
the subset of all 𝑢 : 𝑟 ↩→ 𝑟 ′ with 𝑢∗𝐾 ′ = 𝐾 , and we write 𝚺

(𝐾
𝐾 ′

)
:= Inj

(𝐾
𝐾 ′

)
∩ 𝚺

(𝑟
𝑟 ′

)
.
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Definition 4.3. Let N be an index set and let 𝑮 := (𝐺𝑛)𝑛∈𝑁 be a family of topological groups. We
define the wreath product 𝑮 � Inj as the following topologically enriched category:

1. the objects of 𝑮 � Inj are all tuples 𝐾 = (𝑘1, . . . , 𝑘𝑟 ) with 𝑟 � 0 and 𝑘𝑖 ∈ 𝑁;
2. for two tuples K and 𝐾 ′, we define (𝑮 � Inj)

(𝐾
𝐾 ′

)
= 𝑮 (𝐾) × Inj

(𝐾
𝐾 ′

)
: that is, a morphism 𝐾 → 𝐾 ′ in

𝑮 �Inj is a pair (𝜸, 𝑢) consisting of a tuple 𝜸 ∈ 𝑮 (𝐾) and an injection 𝑢 : 𝑟 ↩→ 𝑟 ′ satisfying 𝐾 = 𝑢∗𝐾 ′;
3. we let (𝜸′, 𝑢′) ◦ (𝜸, 𝑢) := (𝑢∗𝜸′ · 𝜸, 𝑢′ ◦ 𝑢), where 𝑢∗𝜸′ = (𝛾′

𝑢 (1) , . . . , 𝛾′
𝑢 (𝑟 )

), and ‘·’ denotes
component-wise multiplication.

For each tuple K, we define 𝑮 [𝐾] ⊆ 𝑮 � Inj as the full subcategory spanned by objects of the form 𝜏∗𝐾
for 𝜏 ∈ 𝔖𝑟 . Moreover, we let 𝑮 � 𝚺 be the subgroupoid with morphism spaces given by 𝑮 (𝐾) × 𝚺

(𝐾
𝐾 ′

)
.

If (𝐺𝑛)𝑛∈𝑁 is the trivial sequence 𝐺𝑛 = 1 of groups, then we write 𝑁 � Inj for the wreath product,
and we also write 𝑁 � 𝚺, respectively 𝑁 [𝐾] for the corresponding subgroupoids.

Example 4.4. If 𝑿 = (𝑋𝑛)𝑛∈𝑁 is a sequence of spaces, then we obtain a functor

𝑿 : 𝑁 � 𝚺 → Top, 𝐾 ↦→ 𝑿 (𝐾) = 𝑋𝑘1 × · · · × 𝑋𝑘𝑟 .

Construction 4.5. Let 𝑿 := (𝑋𝑛)𝑛∈𝑁 be a family of based spaces, together with based left actions of 𝐺𝑛

on 𝑋𝑛 for each 𝑛 ∈ 𝑁 . Then the functor from Example 4.4 can be extended to a functor 𝑮 � Inj → Top
as follows. For each injective map 𝑢 : 𝑟 ↩→ 𝑟 ′, each fibre has at most one element; therefore we obtain
an extension 𝑁 � Inj → Top by

𝑢∗(𝑥1, . . . , 𝑥𝑟 ) := (𝑥𝑢−1 (1) , . . . , 𝑥𝑢−1 (𝑟 ′) ),

where we define 𝑥∅ to be the basepoint.
Moreover, 𝑮 (𝐾) acts on 𝑿 (𝐾) component-wise, so for a morphism (𝜸, 𝑢) in 𝑮 � Inj, we can define

(𝜸, 𝑢)∗(𝑥) := 𝑢∗(𝜸 · 𝑥).

Definition 4.6. Let I be a small and topologically enriched category and let 𝐻 : Iop × I → Top be a
functor. Then we define the coend to be the coequaliser

∫ 𝑐∈I
𝐻 (𝑐, 𝑐) := coeq

( ∐
𝑐,𝑐′

I
( 𝑐
𝑐′
)
× 𝐻 (𝑐′, 𝑐)

∐
𝑐

𝐻 (𝑐, 𝑐)
( 𝑓 ,𝑥) ↦→𝐻 ( 𝑓 ,1𝑐) (𝑥)

( 𝑓 ,𝑥) ↦→𝐻 (1𝑐′ , 𝑓 ) (𝑥)

)
.

4.2. Coloured operads

We assume that the reader is familiar with the classical notion of an operad, as it is for example presented
in [15]; in particular, the visualisation of operations by trees is taken for granted.

We will give a brief introduction to the notion of a coloured operad mostly for the purpose of fixing
the notation we will use later. For a detailed introduction to coloured operads, we refer the reader to [28].

Definition 4.7. Let N be a fixed set. An N-coloured operad is a family of functors𝒪
(−
𝑛

)
: (𝑁 �𝚺)op → Top

for each 𝑛 ∈ 𝑁 , together with:

1. choices of identities 1𝑛 ∈ 𝒪
(𝑛
𝑛

)
;

2. composition maps for each 𝑛, 𝑘𝑖 , 𝑙𝑖 𝑗 ∈ 𝑁 , which are of the form

𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

)
×

𝑟∏
𝑖=1

𝒪
(𝑙𝑖1 ,...,𝑙𝑖𝑠𝑖

𝑘𝑖

)
→ 𝒪

(𝑙11 ,...,𝑙𝑟𝑠𝑟
𝑛

)
, (𝜇; 𝜇′

1, . . . , 𝜇′
𝑟 ) ↦→ 𝜇 ◦ (𝜇′

1, . . . , 𝜇′
𝑟 );

such that the usual coherence axioms from [28, §11.2] are satisfied. For 𝜇 ∈ 𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

)
, we will call n

the output, (𝑘1, . . . , 𝑘𝑟 ) the input profile, and #𝜇 := 𝑟 the arity of 𝜇. For the first few values of r, we
call 𝜇 nullary, unary, respectively binary if 𝜇 has arity 0, 1, respectively 2. For the empty tuple, we will
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write 𝒪
(
𝑛

)
for the space of nullaries. We say that 𝒪 is𝔖-free if for each 𝐾 = (𝑘1, . . . , 𝑘𝑟 ), the subgroup

𝔖𝐾 ⊆ 𝔖𝑟 , which fixes the tuple K acts freely on 𝒪
(𝐾
𝑛

)
.

We call 𝒪 monochromatic if 𝑁 = ∗ is just a singleton. In this case, we also write𝒪(𝑟) := 𝒪
(∗,...,∗

∗

)
for

the space of r-ary operations. For an N-coloured operad 𝒪 and a fixed colour 𝑛 ∈ 𝑁 , we also consider
the monochromatic operad 𝒪 |𝑛 with operation spaces (𝒪 |𝑛) (𝑟) := 𝒪

(𝑛,...,𝑛
𝑛

)
.

Additionally, we will use the short notation for ‘partial’ composition: for 𝜇 ∈ 𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

)
and 𝜇′ ∈

𝒪
(𝑙1 ,...,𝑙𝑠

𝑘𝑖

)
, we will write

𝜇 ◦𝑖 𝜇′ := 𝜇 ◦ (1𝑘1 , . . . , 1𝑘𝑖−1 , 𝜇′, 1𝑘𝑖+1 , . . . , 1𝑘𝑟 ) ∈ 𝒪
(𝑘1 ,...,𝑘𝑖−1 ,𝑙1 ,...,𝑙𝑠 ,𝑘𝑖+1 ,...,𝑘𝑟

𝑛

)
.

Example 4.8. 1. The little d-discs operads 𝒟𝑑 for 1 � 𝑑 � ∞ are examples of monochromatic operads.
In our setting, we put 𝒟𝑑 (0) = {𝔳}, the single nullary operation given by an empty configuration of
discs (thus, 𝔳 stands for ‘void’).

2. Each small topologically enriched category I is a coloured operad with colour set ob(I) and only
unaries.

Definition 4.9. Let 𝒪 be an N-coloured operad. An 𝒪-algebra is an N-indexed family 𝑿 := (𝑋𝑛)𝑛∈𝑁 of
spaces, together with maps

𝒪
(𝐾
𝑛

)
× 𝑿 (𝐾) → 𝑋𝑛, (𝜇; 𝑥1, . . . , 𝑥𝑟 ) ↦→ 𝜇(𝑥1, . . . , 𝑥𝑟 )

such that the usual coherence axioms from [28, §13] are satisfied.
A morphism 𝑓 : 𝑿 → 𝑿 ′ of 𝒪-algebras is a family ( 𝑓𝑛 : 𝑋𝑛 → 𝑋 ′

𝑛)𝑛∈𝑁 of maps satisfying
𝑓𝑛 (𝜇(𝑥1, . . . , 𝑥𝑟 )) = 𝜇( 𝑓𝑘1 (𝑥1), . . . , 𝑓𝑘𝑟 (𝑥𝑟 )) for all operations 𝜇 and all elements 𝑥𝑖 . This gives rise to
the category 𝒪-Alg.

Example 4.10. For each N-coloured operad 𝒪, we have an 𝒪-algebra by the family (𝒪
(
𝑛

)
)𝑛∈𝑁 . This

algebra is initial in 𝒪-Alg by construction, so we call it the initial 𝒪-algebra. For 1 � 𝑑 � ∞, the initial
𝒟𝑑-algebra is just a single point.

Definition 4.11. For a fixed colour set N, a morphism 𝜌 : 𝒫 → 𝒪 of N-coloured operads is a family
𝜌−
𝑛 : 𝒫

(−
𝑛

)
⇒ 𝒪

(−
𝑛

)
of transformations such that we have, abbreviating 𝜌 := 𝜌𝐾𝑛 for all K and n,

1. 𝜌(1𝒫
𝑛 ) = 1𝒪𝑛 for each 𝑛 ∈ 𝑁;

2. 𝜌(𝜇) ◦ (𝜌(𝜇′
1), . . . , 𝜌(𝜇′

𝑟 )) = 𝜌(𝜇 ◦ (𝜇′
1, . . . , 𝜇′

𝑟 )).

Each operad morphism 𝜌 : 𝒫 → 𝒪 gives rise to a base-change adjunction

𝜌! : 𝒪-Alg� 𝒫-Alg : 𝜌∗

as follows: each 𝒪-algebra is a 𝒫-algebra by restriction. For the converse, we consider the absolute
adjunction 𝐹𝒪 : Top𝑁 � 𝒪-Alg :𝑈𝒪, where 𝑈𝒪 just forgets the action, and where for each N-indexed
family 𝑿 of spaces, we define 𝐹𝒪 (𝑿)𝑛 :=

∫ 𝐾 ∈𝑁 �𝚺
𝒪

(𝐾
𝑛

)
× 𝑿 (𝐾). Then each 𝒫-algebra 𝑿 can be

presented as the reflexive coequaliser of 𝐹𝒫𝑈𝒫𝐹𝒫𝑈𝒫𝑿 ⇒ 𝐹𝒫𝑈𝒫𝑿, whence the induced 𝒪-algebra
𝜌!𝑿 is the reflexive coequaliser of 𝐹𝒪𝑈𝒫𝐹𝒫𝑈𝒫𝑿 ⇒ 𝐹𝒪𝑈𝒫𝑿, compare [2, §4].

Intuitively, 𝜌!𝑿 is a quotient of the free 𝒪-algebra over 𝑿 by the existing 𝒫-action on 𝑿. This
adjunction clearly respects compositions: if 𝜌 : 𝒬 → 𝒫 and 𝜌′ : 𝒫 → 𝒪 are two morphisms of N-
coloured operads, then we clearly have (𝜌′ ◦ 𝜌)∗ = 𝜌∗ ◦ 𝜌′∗, so by the uniqueness of left adjoints, we also
have (𝜌′ ◦ 𝜌)! � 𝜌′

! ◦ 𝜌!. When 𝜌 is clear from the context, we also write 𝐹𝒪
𝒫

: 𝒫-Alg � 𝒪-Alg :𝑈𝒪
𝒫

for the base-change adjunction.
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2 11 2 1

1 4 2 3

Figure 5. An element in ℳ
(2,1,2

4
)
. Note that the colours green, yellow and red only indicate which

inputs belong together, while the actual ‘colours’ of the inputs are 2, 1 and 2, respectively.

4.3. The coloured surface operad

We define an N�1-coloured operad ℳ, which is a ‘coloured’ version of Tillmann’s surface operad [26];
see Figure 5.

We first recall Segal’s cobordism category M [25], which is a topologically enriched category:
objects of M are non-negative integers 𝑛 � 0; a morphism from n to 𝑛′ is represented by a (possibly
disconnected) Riemann surface W with n incoming and 𝑛′ outgoing boundary components; the surface
W is equipped with a choice of collar neighbourhoods 𝑈in

𝜕𝑊 and 𝑈in
𝜕𝑊 of 𝜕in𝑊 and 𝜕out𝑊 , respectively;

these neighbourhoods are equipped with:

1. a holomorphic parametrisation �̃�in : {1, . . . , 𝑛} × 𝑆1 × [0; 1) → 𝑈in
𝜕𝑊 ; and

2. an antiholomorphic parametrisation �̃�out : {1, . . . , 𝑛′} × 𝑆1 × [0; 1) → 𝑈out
𝜕𝑊

.

Note that restricting �̃�in and �̃�out to {1, . . . , 𝑛} × 𝑆1 × 0 and {1, . . . , 𝑛′} × 𝑆1 × 0, respectively, we obtain
parametrisations of 𝜕in𝑊 and 𝜕out𝑊 , respectively, as in Notation 2.1.

The space of morphisms M
(𝑛
𝑛′
)

is the moduli space of conformal classes of such Riemann surfaces
W, considered up to biholomorphism compatible with the choice of parametrised collar neighbourhoods
of the incoming and outgoing boundary. We usually denote by (𝑊, �̃�) a morphism, or shortly by W
when it is not necessary to mention the parametrisation of the collar neighbourhood of the boundary;
here �̃� : {1, . . . , 𝑛 + 𝑛′} × 𝑆1 × [0; 1) → 𝑊 is obtained by concatenation of �̃�in and �̃�out.

The composition of two morphisms (𝑊, �̃�) : 𝑛 → 𝑛′ and (𝑊 ′, �̃�′) : 𝑛′ → 𝑛′′ is given by gluing the
Riemann surfaces 𝑊 \ 𝜕out𝑊 and 𝑊 ′ \ 𝜕in𝑊 ′, using the identification 𝑈out

𝜕𝑊
\ 𝜕out𝑊 � 𝑈in

𝜕𝑊 ′ \ 𝜕in𝑊 ′

given by

�̃�out( 𝑗 , 𝜁 , 𝑡) ≡ (�̃�′)in( 𝑗 , 𝜁 , 1 − 𝑡),

for all 1 � 𝑗 � 𝑛′, 𝜁 ∈ 𝑆1 and 0 < 𝑡 < 1. The resulting surface 𝑊 ′′ is also endowed with collar
neighbourhoods of the incoming and outgoing boundaries whose parametrisations are given by �̃�in and
(�̃�′)out, respectively. The identity of 𝑛 ∈ M is described in Construction 4.13.

Definition 4.12. For each 𝑛 � 1, the Lie group 𝑇𝑛 �𝔖𝑛 = (𝑆1)𝑛 �𝔖𝑛 will be denoted by 𝑅𝑛.

We can regard 𝑅𝑛 as a kind of twisted torus; it is the isometry group of
∐
𝑛 𝑆1.

Construction 4.13. We can embed 𝑅𝑛 in the endomorphism space M
(𝑛
𝑛

)
; see Figure 6: given an element

(𝑧1, . . . , 𝑧𝑛, 𝜎) ∈ 𝑅𝑛, we consider the morphism (𝑊, �̃�) : 𝑛 → 𝑛 given by the following:

1. as a Riemann surface, W is {1, . . . , 𝑛} × 𝑆1 × [0; 1], with the canonical Riemann structure;
2. we let 𝑈in

𝜕𝑊
= 𝑊 \ 𝜕out𝑊 , and �̃�in : {1, . . . , 𝑛} × 𝑆1 × [0; 1) ↩→ 𝑊 is the canonical inclusion;

3. we let 𝑈out
𝜕𝑊

= 𝑊 \ 𝜕in𝑊 , and let �̃�out : {1, . . . , 𝑛} × 𝑆1 × [0; 1) ↩→ 𝑊 be

�̃�out( 𝑗 , 𝜁 , 𝑡) =
(
𝜎−1 ( 𝑗), 𝑧 𝑗 · 𝜁, 1 − 𝑡

)
.
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( 1 ) =

(1) ( )

1 1

1

1

Figure 6. An instance of 𝑅𝑛 ↩→ M
(𝑛
𝑛

)
.

This assignment embeds in fact 𝑅𝑛 as a group into the automorphisms of 𝑛 ∈ M; in particu-
lar, the identity of n can be described as the image of the unit of 𝑅𝑛 along the embedding; see
Figure 6.

Consider now the subcategory M𝜕 ⊆ M containing all objects and those cobordisms W whose
components have non-empty outgoing boundary. In detail, for fixed 𝑘, 𝑛 � 0, the morphism space
M𝜕 (𝑘, 𝑛) looks as follows: 𝜋0 (M𝜕 (𝑘, 𝑛)) is indexed by the number 1 � 𝑙 � 𝑛 of path components,
an unordered partition {1, . . . , 𝑛} = 𝒏1 	 · · · 	 𝒏𝑙 into non-empty subsets with min(𝒏 𝑗 ) < min(𝒏 𝑗+1),
an ordered partition {1, . . . , 𝑘} = 𝒌1 	 · · · 	 𝒌𝑙 into possibly empty sets, and genera 𝑔1, . . . , 𝑔𝑙 � 0.
If we let 𝑛 𝑗 := #𝒏 𝑗 and 𝑘 𝑗 := #𝒌 𝑗 , then the corresponding path component is homotopy equivalent to
𝔐𝑔1 ,𝑘1+𝑛1 × · · · ×𝔐𝑔𝑙 ,𝑘𝑙+𝑛𝑙 , by restricting collar parametrisations to boundary parametrisations.

Let 𝑛, 𝑛′ ∈ M𝜕, and note that the embedding 𝑅𝑛 ⊂ M
(𝑛
𝑛

)
has image inside M𝜕

(𝑛
𝑛

)
. In the following

lemma, we consider the right action of 𝑅𝑛 on M𝜕

( 𝑛
𝑛′
)

by precomposition.

Lemma 4.14. The group 𝑅𝑛 acts freely on the space M𝜕
(𝑛
𝑛′
)
.

Proof. Let (𝑊, �̃�) : 𝑛 → 𝑛′ be a morphism in M
(𝑛
𝑛′
)
, let (𝑧1, . . . , 𝑧𝑛, 𝜎) ∈ 𝑅𝑛, and suppose that

(𝑊, �̃�) = (𝑊, �̃�) ◦ (𝑧1, . . . , 𝑧𝑛, 𝜎). Note that the morphism (𝑊, �̃�) · (𝑧1, . . . , 𝑧𝑛, 𝜎) is represented by
the pair (𝑊 ′, �̃�′), where:

1. 𝑊 ′ = 𝑊 and (�̃�′)out = �̃�out;
2. (�̃�′)in is the postcomposition of �̃�in : {1, . . . , 𝑛} × 𝑆1 × [0; 1) → 𝑊 with the automorphism of

{1, . . . , 𝑛} × 𝑆1 × [0; 1) given by ( 𝑗 , 𝜁 , 𝑡) ↦→ (𝜎−1 ( 𝑗), 𝑧 𝑗 · 𝜁, 𝑡).

If 𝜓 : 𝑊 → 𝑊 ′ is a diffeomorphism exhibiting the equivalence of (𝑊, �̃�) and (𝑊 ′, �̃�′) in M𝜕

(𝑛
𝑛′
)
, then

the first two conditions imply that 𝜓 restricts to the identity of 𝑈out
𝜕𝑊

: that is, on the image of �̃�out. Since
𝜓 is a holomorphic map, it must be the identity on a closed and open subset of W; since each connected
component of W has non-empty outgoing boundary, and thus intersects 𝑈out

𝜕𝑊
, we conclude that 𝜓 must

be the identity of W.
It then follows that the automorphism of {1, . . . , 𝑛}×𝑆1×[0; 1) given by ( 𝑗 , 𝜁 , 𝑡) ↦→ (𝜎−1( 𝑗), 𝑧 𝑗 ·𝜁, 𝑡)

is in fact the identity of {1, . . . , 𝑛} × 𝑆1 × [0; 1), and this implies that (𝑧1, . . . , 𝑧𝑛, 𝜎) is the identity of
𝑅𝑛, as desired. �

Definition 4.15. We consider M𝜕 as a symmetric monoidal category with monoidal sum being the
disjoint union; since the monoidal sum behaves as the usual sum of natural numbers on objects, we have
an associated coloured operad ℳ with colours N�1 = {1, 2, . . . } and

ℳ
(𝑘1 ,...,𝑘𝑟

𝑛

)
:= M𝜕

(𝑘1+···+𝑘𝑟
𝑛

)
.

Note that the restriction ℳ |1 to the colour 1 is exactly Tillmann’s surface operad [26]. For each ℳ-
algebra 𝑿 = (𝑋𝑛)𝑛�1, the space 𝑋1 is an algebra over the classical surface operad ℳ |1.
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Example 4.16. In contrast to the little disc operads, the initial ℳ-algebra is non-trivial: for instance, its
colour-1 part ℳ

(
1
)

homotopy equivalent to the familiar collection of moduli spaces

ℳ
(
1
)
= M𝜕

(0
1
)
�

∐
𝑔�0

𝔐𝑔,1.

4.4. Tensor products and based operads

Definition 4.17. In [3, §II.3], Boardman and Vogt constructed a tensor product for operads. We are only
interested in the following special case: let 𝒜 be a monochromatic operad and I be a small, topologically
enriched category with object set N. Then 𝒜 ⊗ I is an N-coloured operad with operation spaces

(𝒜 ⊗ I)
(𝑘1 ,...,𝑘𝑟

𝑛

)
= 𝒜(𝑟) ×

𝑟∏
𝑖=1

I
(𝑘𝑖
𝑛

)
,

together with the following structure, where we denote operations in 𝒜 ⊗ I by 𝜇 ⊗ (𝜈1, . . . , 𝜈𝑟 ) with
𝜇 ∈ 𝒜(𝑟) and 𝜈𝑖 ∈ I

(𝑘𝑖
𝑛

)
:

1. symmetric actions 𝜏∗(𝜇 ⊗ (𝜈1, . . . , 𝜈𝑟 )) = (𝜏∗𝜇) ⊗ (𝜈𝜏 (1) , . . . , 𝜈𝜏 (𝑟 ) );
2. identities (1𝒜 , 1I

𝑛);
3. compositions

(𝜇 ⊗ (𝜈1, . . . , 𝜈𝑟 )) ◦
(
𝜇1 ⊗ (𝜈1,1, . . . , 𝜈1,𝑠1), . . . , 𝜇𝑟 ⊗ (𝜈𝑟 ,1, . . . , 𝜈𝑟 ,𝑠𝑟 )

)
:= (𝜇 ◦ (𝜇1, . . . , 𝜇𝑟 )) ⊗

(
𝜈1 ◦ 𝜈1,1, . . . , 𝜈1 ◦ 𝜈1,𝑠1 , . . . , 𝜈𝑟 ◦ 𝜈𝑟 ,1, . . . , 𝜈𝑟 ◦ 𝜈𝑟 ,𝑠𝑟

)
.

For 𝑛 ∈ 𝑁 , we also abbreviate 𝜇 ⊗ 𝑛 := 𝜇 ⊗ (1𝑛, . . . , 1𝑛) ∈ (𝒜 ⊗ I)
(𝑛,...,𝑛

𝑛

)
. Note that (𝒜 ⊗ I)-algebras

are the same as enriched functors I → 𝒜-Alg.
This construction is bifunctorial: if 𝜌1 : 𝒜 → 𝒜′ is a morphism of operads and 𝜌2 : I → I′ is a

functor that is the identity on objects, then we get a morphism 𝜌1 ⊗ 𝜌2 : 𝒜 ⊗ I → 𝒜′ ⊗ I′.

Example 4.18. Regard N as the discrete category with objects N. Then we get

(𝒜 ⊗ 𝑁)
(𝑘1 ,...,𝑘𝑟

𝑛

)
=

{
𝒜(𝑟) for 𝑘1 = · · · = 𝑘𝑟 = 𝑛

∅ else,

and (𝒜 ⊗ 𝑁)-algebras are just N-indexed families of 𝒜-algebras. One example that will be of particular
importance for us later is the operad 𝒟1 ⊗ 𝑁 , which has a copy of the little 1-discs operad 𝒟1 in each
colour 𝑛 ∈ 𝑁 .

Definition 4.19. Consider the monochromatic operad ℬ with only two operations, namely the identity
ℬ(1) = {1} and a single nullary ℬ(0) = {𝔳}. Then (ℬ ⊗ 𝑁)-algebras are the same as families
𝑿 = (𝑋𝑛)𝑛∈𝑁 of based spaces.

A based N-coloured operad is an N-coloured operad𝒪, together with an operad morphism ℬ⊗𝑁 →

𝒪. A morphism of based N-coloured operads is an operad map 𝜌 : 𝒪 → 𝒫 commuting with the two
maps from ℬ ⊗ 𝑁 .

Remark 4.20. 1. A based N-coloured operad is the same as an N-coloured operad 𝒪, together with a
choice of nullary operation 𝔳𝑛 ∈ 𝒪

(
𝑛

)
for each colour 𝑛 ∈ 𝑁 , and a morphism 𝜌 : 𝒪 → 𝒫 of based

operads has to additionally satisfy 𝜌(𝔳𝒪𝑛 ) = 𝜌(𝔳𝒫𝑛 ).
2. The nullaries 𝔳𝑛 of a based operad can be used to ‘block’ inputs by precomposition with them. More

precisely, for each input profile 𝐾 = (𝑘1, . . . , 𝑘𝑟 ) and 1 � 𝑖 � 𝑟 , we have a map

𝑑𝑖 : 𝒪
(𝐾
𝑛

)
→ 𝒪

(𝑑𝑖𝐾
𝑛

)
, 𝜇 ↦→ 𝜇 ◦𝑖 𝔳𝑘𝑖 .
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In this way the functors 𝒪
(−
𝑛

)
: (𝑁 �𝚺)op → Top can be extended to 𝒪

(−
𝑛

)
: (𝑁 � Inj)op → Top. Using

these functors, one can give a concise description of the free 𝒪-algebra over a family 𝑿 := (𝑋𝑛)𝑛∈𝑁
of based spaces: for each 𝑛 ∈ 𝑁 , we have

𝐹𝒪
ℬ⊗𝑁 (𝑿)𝑛 �

∫ 𝐾 ∈𝑁 �Inj
𝒪

(𝐾
𝑛

)
× 𝑿 (𝐾).

Example 4.21. 1. The little discs operads 𝒟𝑑 have precisely one nullary operation and are thus canon-
ically based. The same applies to 𝒟𝑑 ⊗ 𝑁 for each colour set N.

2. For each small and topologically enriched category I, the tensor product ℬ ⊗ I differs from I only
by the single nullary operation 𝔳𝑛 ∈ (ℬ ⊗ I)

(
𝑛

)
for each colour n. Note that (ℬ ⊗ I)-algebras are

precisely functors I → Top∗ to the category of based topological spaces.
3. As a particular case of the previous example, let 𝑮 = (𝐺𝑛)𝑛∈𝑁 be a sequence of groups, and consider

𝑮 as a groupoid. Then a (ℬ ⊗ 𝑮)-algebra is a sequence of based spaces (𝑋𝑛)𝑛∈𝑁 with a basepoint-
preserving left action of 𝐺𝑛 on 𝑋𝑛 for all 𝑛 ∈ 𝑁 .

5. Infinite loop spaces from coloured operads with homological stability

In this section, we address the following problem: if𝒪 is an N-coloured operad with homological stability
(which will be made precise soon), I is a topological category together with a map ℬ ⊗ I → 𝒪, and if
𝑿 = (𝑋𝑛)𝑛∈𝑁 an (ℬ ⊗ I)-algebra, what can we say about the homotopy type of 𝐹𝒪

𝒢
(𝑿)? By answering

this question, we extend the methods from [1, §5], where the monochromatic and non-relative case was
treated: that is, I = 𝑁 = ∗, so ℬ ⊗ I = ℬ.

We briefly summarise the strategy of [1, §5]: in a first step, a notion of (monochromatic) ‘operad
with homological stability’ is introduced: such an operad 𝒪 comes in particular with a morphism of
operads 𝚤 : 𝒟1 → 𝒪, satisfying the weak homotopy commutativity condition, which demands that
𝚤(𝒟1(2)) ⊆ 𝒪(2) lies in a single path component1; hence it makes sense to consider group completions
of 𝒪-algebras.

In a second step, the authors of [1] focus on operads with homological stability𝒪, which come with a
map 𝜋 : 𝒪 → 𝒟∞ of operads under 𝒟1. Thus, we have for each based space X two maps of 𝒪-algebras:
1. 𝐹𝒪

ℬ
(𝑋) → 𝐹𝒪

ℬ
(∗) = 𝒪(0) induced by 𝑋 → ∗;

2. 𝐹𝒪
ℬ
(𝑋) → 𝜋∗𝐹𝒟∞

ℬ
(𝑋), the unit of the base-change adjunction.

Intuitively, the first map forgets the space X, while the second map forgets the operad 𝒪. In [1, Thm.
5.4], it is shown that the product map induces a weak equivalence Ω𝐵𝐹𝒪

ℬ
(𝑋) → Ω𝐵𝒪(0) × Ω∞Σ∞𝑋

on group completions, after identifying the group completion of 𝐹𝒟∞

ℬ
(𝑋) with Ω∞Σ∞𝑋 .

Finally, an operad with homological stability 𝒪 admits a replacement by another operad with ho-
mological stability 𝒪′ := 𝒪 × 𝒟∞, which has a comparison map 𝜋 : 𝒪′ → 𝒟∞, and under mild extra
assumptions, the free algebras 𝐹𝒪

ℬ
(𝑋) and 𝐹𝒪′

ℬ
(𝑋) are equivalent as 𝐴∞-algebras and thus have equiv-

alent group completions.

5.1. Coloured operads with homological stability

Definition 5.1. An operad under 𝒟1 is an N-coloured operad 𝒪 together with an operad morphism
𝚤 : 𝒟1 ⊗ 𝑁 → 𝒪 satisfying the weak homotopy commutativity condition levelwise, meaning that
𝚤((𝒟1 ⊗ 𝑁)

(𝑛,𝑛
𝑛

)
) ⊆ 𝒪

(𝑛,𝑛
𝑛

)
is contained in a single path component.

1. If 𝒪 is an operad under 𝒟1, then 𝒪 is based by 𝔳𝑛 := 𝚤(𝔳 ⊗ 𝑛) ∈ 𝒪
(
𝑛

)
. This gives rise to the input

blocking maps

𝛽 : 𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

)
→ 𝒪

(
𝑛

)
, 𝜇 ↦→ 𝜇(𝔳𝑘1 , . . . , 𝔳𝑘𝑟 ).

1In principle, any 𝐴∞-operad would suffice; we restrict to 𝒟1 for simplicity.
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3

12

1

1

1
1

Figure 7. An instance of 𝚤ℳ : (𝒟2 ⊗ N�1)
(𝑛,𝑛,𝑛

𝑛

)
→ ℳ

(𝑛,𝑛,𝑛
𝑛

)
.

1 2 1 2 1 2

Figure 8. The three generators 𝑒1
2, 𝑒2

2 and 𝑒1,2
2 of 𝜋0 (ℳ

(
2
)
).

2. If 𝒪 is an operad under 𝒟1, then each 𝒪-algebra 𝑴 is levelwise an H-commutative 𝒟1-algebra, so
for each 𝑛 ∈ 𝑁 , the set 𝜋0 (𝑀𝑛) is an abelian monoid whose (unique) binary operation we denote
by ‘�’; there is a bar construction of 𝑀𝑛, and by the group completion theorem [18], we have an
isomorphism 𝐻•(Ω𝐵𝑀𝑛) � 𝐻•(𝑀𝑛) [𝜋0(𝑀𝑛)

−1].

A morphism 𝜌 : 𝒪 → 𝒪′ of operads 𝚤 : 𝒟1 ⊗ 𝑁 → 𝒪 and 𝚤′ : 𝒟1 ⊗ 𝑁 → 𝒪′ under 𝒟1 is a morphism of
operads such that 𝜌 ◦ 𝚤 = 𝚤′ holds. In that case, for each 𝒪′-algebra 𝑿, the levelwise group completions
of the 𝒪′-algebra 𝑿 and of the 𝒪-algebra 𝜌∗(𝑿) coincide, as they only depend on the 𝒟1 ⊗ 𝑁-structure.

Notation 5.2. Let 𝚤 : 𝒟1 ⊗ 𝑁 → 𝒪 be an operad under 𝒟1. We fix an operation 𝔭 ∈ 𝒟1(2), and we
abbreviate 𝜇 � 𝜇′ := 𝚤(𝔭 ⊗ 𝑛) ◦ (𝜇, 𝜇′) for operations 𝜇 ∈ 𝒪

(𝐾
𝑛

)
and 𝜇′ ∈ 𝒪

(𝐾 ′

𝑛

)
If (𝑀𝑛)𝑛∈𝑁 is an

𝒪-algebra and 𝑥, 𝑥 ′ ∈ 𝑀𝑛, then we also write 𝑥 � 𝑥 ′ := 𝚤(𝔭 ⊗ 𝑛) (𝑥, 𝑥 ′).

The notation ‘�’ is pictorially inspired by the following example:

Example 5.3. Recall Definition 4.15 and Example 4.18. We have a map of operads 𝚤ℳ : 𝒟2 ⊗ N�1 →

ℳ given by applying the classical inclusion of 𝒟2 into Tillmann’s surface operad level-wise; see
Figure 7. This morphism restricts to a map 𝒟1 ⊗ N�1 → ℳ of operads satisfying the weak homotopy
commutativity condition and thus turns ℳ into an operad under 𝒟1.

The input blocking maps 𝛽 : ℳ
(𝐾
𝑛

)
→ ℳ

(
𝑛

)
are induced by capping each ingoing boundary curve

with a disc, and the abelian monoid 𝜋0 (ℳ
(
𝑛

)
) contains all isomorphism types of surfaces S with n

ordered outgoing boundary curves and no incoming boundary curve with S possibly disconnected, such
that each path component of S has non-empty boundary. The addition on 𝜋0 (ℳ

(
𝑛

)
) is given by gluing

n pairs of pants; the neutral element is given by an ordered collection of n discs. The abelian monoid
𝜋0 (ℳ

(
𝑛

)
) is finitely generated: for instance, it can be generated by the following elements 𝑒𝑖𝑛 and 𝑒𝑖, 𝑗𝑛 ;

see Figure 8:

1. For 1 � 𝑖 � 𝑛, we let 𝑒𝑖𝑛 be the isomorphism type of surfaces with n path components, such that the
component carrying the i th boundary curve has genus 1, whereas all others components are discs.

2. For each 1 � 𝑖 < 𝑗 � 𝑛, we let 𝑒𝑖, 𝑗𝑛 be the isomorphism type of surfaces with 𝑛− 1 path components,
all of genus 0, such that one component is a cylinder carrying the i th and the j th boundary curve.

Construction 5.4 (Stable operation space). We call an N-coloured operad 𝒪 under 𝒟1 admissibly
graded if for each 𝑛 ∈ 𝑁 , the abelian monoid 𝜋0 (𝒪

(
𝑛

)
) is finitely generated and, for each source profile

(𝑘1, . . . , 𝑘𝑟 ), the degree map

|·| : 𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

) 𝛽
−→ 𝒪

(
𝑛

)
→ 𝜋0 (𝒪

(
𝑛

)
), 𝜇 ↦→ |𝜇 | = 𝜋0 (𝛽(𝜇))
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is surjective.2 In this case we write for each 𝛿 ∈ 𝜋0 (𝒪
(
𝑛

)
)

𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

) 𝛿 :=
{
𝜇 ∈ 𝒪

(𝑘1 ,...,𝑘𝑟
𝑛

)
; |𝜇 | = 𝛿

}
≠ ∅.

We choose for each 𝑛 ∈ 𝑁 a finite generating set 𝐸𝑛 ⊆ 𝜋0 (𝒪
(
𝑛

)
) and let 𝑒𝑛 be the sum of all elements

from 𝐸𝑛. If we fix a nullary operation 𝑒𝑛 ∈ 𝒪
(
𝑛

)
with |𝑒𝑛 | = 𝑒𝑛, called propagator, then we obtain for

each component 𝛿 ∈ 𝜋0 (𝒪
(
𝑛

)
) and each input profile 𝐾 a stabilising map

stab : 𝒪
(𝐾
𝑛

) 𝛿
→ 𝒪

(𝐾
𝑛

) 𝛿�𝑒𝑛
, 𝜇 ↦→ 𝜇 � 𝑒𝑛.

From this, we can form the space of stable operations from K to n,

𝒪
(𝐾
𝑛

)∞ := hocolim
(
𝒪

(𝐾
𝑛

)0
𝒪

(𝐾
𝑛

)𝑒𝑛
𝒪

(𝐾
𝑛

)2𝑒𝑛
· · ·

stab stab stab
)
.

Definition 5.5. Let𝒪 be an N-coloured operad under 𝒟1, which is admissibly graded. By the associativ-
ity of the operadic composition, input blocking and stabilisation commute: that is, for each 𝛿, the square

𝒪
(𝑘1 ,...,𝑘𝑟

𝑛

) 𝛿
𝒪

(𝑘1 ,...,𝑘𝑟
𝑛

) 𝛿�𝑒𝑛

𝒪
(
𝑛

) 𝛿
𝒪

(
𝑛

) 𝛿�𝑒𝑛 .

stab

𝛽 𝛽

stab

commutes. Hence we obtain a stable input blocking 𝛽𝐾𝑛 : 𝒪
(𝐾
𝑛

)∞
→ 𝒪

(
𝑛

)∞ for each input profile K,
which depends, up to homotopy, only on the path component from which the propagator is chosen: that
is, on the choice of generating set 𝐸𝑛.

We call 𝒪 an operad with homological stability if there is a choice of generating sets such that all
stable input blockings 𝛽𝐾𝑛 induce isomorphisms in integral homology.

Example 5.6. The coloured surface operad ℳ is admissibly graded, and we may use the generating
sets from Example 5.3.

It is even an operad with homological stability: here we use that multiplying with the propagator
automatically yields a connected cobordism and increases the genus by at least one; see Figure 9, so
the stable input blocking is the capping map 𝔐∞,𝑛+𝑘1+···+𝑘𝑟 → 𝔐∞,𝑛 between stable moduli spaces of
Riemann surfaces: this is a homology equivalence by Harer’s stability theorem [11].

5.2. Derived base-change and a splitting result

Recall that we want to establish an analogue of [1, Thm. 5.4] for the coloured case and relative case:
that is, we want to consider relatively free algebras, relative to a map 𝒫 → 𝒪 of based operads, where
we will soon restrict to the case 𝒫 = ℬ ⊗ I for an enriched category I.

The most convenient setting for such a discussion does not use the strict functor 𝐹𝒪
𝒫

, but a homo-
topically better behaved one, which we denote by �̃�𝒪

𝒫
. This simplifies many point-set issues, and with

regard to our original problem, it will turn out to be equivalent to the space we want to understand.
The functor �̃�𝒪

𝒫
can be constructed by considering the model structure on the categories of 𝒪- and

𝒫-algebras as in [2], but we decided to give an explicit description. Here we assume that the reader is
familiar with monads and their two-sided bar constructions, as introduced in [17].

2In the monochromatic setting, the degree map is automatically surjective: by the weak homotopy commutativity condition,
𝜋0 (𝒪) contains the commutative operad 𝒞ℴ𝓂, and if we write 𝒞ℴ𝓂(𝑟 ) = {𝜇𝑟 }, then 𝛽 (𝜇𝑟+1 ◦1 𝛿) = 𝜇1 ◦ 𝛿 = 1 ◦ 𝛿 = 𝛿 for
each 𝛿 ∈ 𝜋0 (𝒪 (0)) . For the coloured case, though, it seems necessary to additionally assume this property.

https://doi.org/10.1017/fms.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.29


24 Andrea Bianchi et al.

˜2

2

1 2

2 11

Figure 9. A single stabilisation step on ℳ
(2,1

2
)
. Note that |𝑒2 | = 𝑒1

2 � 𝑒2
2 � 𝑒1,2

2 is the isomorphism class
of surfaces of type Σ2,2.

Construction 5.7. Let 𝒫 → 𝒪 be a morphism of based N-coloured operads. Then we obtain monads
O := 𝑈𝒪

ℬ⊗𝑁 𝐹𝒪
ℬ⊗𝑁 and P := 𝑈𝒫

ℬ⊗𝑁 𝐹𝒫
ℬ⊗𝑁 on Top𝑁∗ , and O is a left P-functor by the transformation

OP ⇒ O2 ⇒ O. For each 𝒫-algebra 𝑿, we consider the two-sided bar construction 𝐵•(O,P, 𝑿)
with p-simplices 𝐵𝑝 (O,P, 𝑿) = OP𝑝𝑈𝒫

ℬ⊗𝑁 𝑿, which is an N-coloured simplicial space, and define the
derived free algebra �̃�𝒪

𝒫 (𝑿) := |𝐵•(O,P, 𝑿) | to be its levelwise geometric realisation. Then �̃�𝒪
𝒫 (𝑿) is

itself an 𝒪-algebra with multiplication

O|𝐵•(O,P, 𝑿) | � |𝐵•(O
2,P, 𝑿) | → |𝐵•(O,P, 𝑿) |,

where the first identification is due to [17, Lem. 9.7] and the last map is given by |𝐵•(𝜅,P, 𝑿) |
for the operadic composition 𝜅 : O2 ⇒ O. Second, we have a morphism �̃�𝒪

𝒫 (𝑿) → 𝐹𝒪
𝒫 (𝑿) of 𝒪-

algebras, by noticing that 𝐹𝒪
𝒫 (𝑿) is the reflexive coequaliser of 𝐵1 (O,P, 𝑿) ⇒ 𝐵0(O,P, 𝑿); see

Definition 4.11.

Before stating our main theorem, let us fix once and for all the point-set requirements we want to
assume:

Setting 5.8. Throughout this section, we consider the following:

1. Let 𝒪 be an N-coloured 𝔖-free operad with homological stability such that, additionally, the inclu-
sions {1𝑛} ↩→ 𝒪

(𝑛
𝑛

)
are cofibrations.

2. Let I be a topologically enriched category with object set N such that the inclusions {1𝑛} ↩→ I
(𝑛
𝑛

)
are cofibrations. We assume that there is a map ℬ ⊗ I → 𝒪 of based N-coloured operads.

3. Let 𝑿 = (𝑋𝑛)𝑛∈𝑁 be an (ℬ ⊗ I)-algebra, or in other words, an enriched functor 𝑋• : I → Top∗, and
we assume that each 𝑋𝑛 is well-based.

Moreover, we assume that all involved spaces are Hausdorff.

Of course, the example we have in mind is 𝒪 being the surface operad ℳ and I being the family
𝑹 = (𝑅𝑛)𝑛�1 of twisted tori. We want to show the following theorem:

Theorem 5.9 (Splitting theorem). In the above Setting 5.8, we have, for each 𝑛 ∈ 𝑁 , a weak equivalence
of loop spaces

Ω𝐵�̃�𝒪
ℬ⊗I(𝑿)𝑛 � Ω𝐵𝒪

(
𝑛

)
×Ω∞Σ∞hocolimI (𝑋•).

The proof of Theorem 5.9 will occupy the rest of this section. Let us start by establishing a map that
compares the two sides. To do so, we start by constructing an N-coloured version of the 𝐸∞-operad 𝒟∞

and show that we can, without loss of generality, assume that there is a comparison map from 𝒪 to it:
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Construction 5.10. For each colour set N, we consider the chaotic category 𝐸𝑁 with object set N and
morphism spaces (𝐸𝑁)

(𝑘
𝑛

)
= ∗ for all 𝑘, 𝑛 ∈ 𝑁 . We consider the category 𝒟∞ ⊗ 𝐸𝑁 .

Lemma 5.11. For the proof of Theorem 5.9, we can without loss of generality assume a map 𝜋 : 𝒪 →

𝒟∞ ⊗ 𝐸𝑁 such that the diagram

ℬ ⊗ 𝑁 ℬ ⊗ I

𝒟1 ⊗ 𝑁 𝒪

𝒟∞ ⊗ 𝐸𝑁

𝜋

commutes, where all arrows apart from 𝜋 are either given or induced by the canonical maps ℬ →

𝒟1 → 𝒟∞ and 𝑁 → I → 𝐸𝑁 .

Proof. The commutativity of the square is part of the general setting: recall that we assumed that
ℬ⊗I → 𝒪 is a map of based operads, and𝒪 is canonically based as an operad under𝒟1. To establish the
map 𝜋, we replace𝒪 by a slightly larger operad: if we consider the product operad𝒪′ := 𝒪×(𝒟∞⊗𝐸𝑁),
together with:

◦ the diagonal inclusion 𝒟1 ⊗ 𝑁 → 𝒪′,
◦ the diagonal inclusion ℬ ⊗ I → 𝒪′,
◦ the second projection 𝒪′ → 𝒟∞ ⊗ 𝐸𝑁 ,

then the above diagram clearly commutes with 𝒪 instead of 𝒪′. Moreover, note that each operation
space of 𝒟∞ ⊗ 𝐸𝑁 is contractible: hence 𝒪′ is again admissibly graded with 𝜋0 (𝒪

′
(
𝑛

)
) = 𝜋0 (𝒪

(
𝑛

)
) and

𝒪′ is again an operad with homological stability, satisfying 𝒪′
(
𝑛

)
= 𝒪

(
𝑛

)
.

Finally, the first projection 𝒪′ → 𝒪 induces a morphism of monads O′ ⇒ O and hence a map
�̃�𝒪′

ℬ⊗I (𝑿) → 𝑈𝒪
𝒪′ �̃�𝒪

ℬ⊗I(𝑿) of 𝒪′-algebras, which is in particular a map of 𝐴∞-algebras. If we denote
by I the monad for ℬ ⊗ I, then we can easily see that, since 𝒪 is 𝔖-free, each 𝑋𝑛 is well-based, and
every space is Hausdorff, the simplicial map 𝐵•(O

′, I, 𝑿) → 𝐵•(O, I, 𝑿) is levelwise an equivalence.
Second, both simplicial spaces are proper in the sense of [17, §11], by using that the inclusions of the
identities are cofibrations. Therefore, by [16, Thm. A.4], the induced map on the geometric realisations
�̃�𝒪′

ℬ⊗I (𝑿) and �̃�𝒪
ℬ⊗I (𝑿) is again an equivalence, whence their group completions are equivalent as loop

spaces. �

Using the lemma, we obtain, as in the monochromatic case, two maps:

1. The map 𝑿 → ∗ to ∗ = (∗)𝑛∈𝑁 induces a map �̃�𝒪
ℬ⊗I (𝑿) → �̃�𝒪

ℬ⊗I (∗) of 𝒪-algebras, which is in
particular a map of levelwise 𝐴∞-algebras.

2. The morphism 𝒪 → 𝒟∞ ⊗ 𝐸𝑁 induces a map �̃�𝒪
ℬ⊗I (𝑿) → �̃�𝒟∞⊗𝐸𝑁

ℬ⊗I (𝑿) of levelwise 𝐴∞-algebras.

The two targets can be identified with the following spaces:

Lemma 5.12. For each 𝑛 ∈ 𝑁 , we have equivalences of 𝐴∞-algebras

�̃�𝒪
ℬ⊗I (∗)𝑛 � 𝒪

(
𝑛

)
,

�̃�𝒟∞⊗𝐸𝑁
ℬ⊗I (𝑿)𝑛 � 𝐹𝒟∞

ℬ (hocolimI(𝑋•)).

Proof. For the first equivalence, we note that since (ℬ ⊗ I)
(
𝑛

)
= ∗, we have 𝐹ℬ⊗I

ℬ⊗𝑁 (∗)𝑛 = ∗. Now
consider the natural map

�̃�𝒪
ℬ⊗I(∗) = �̃�𝒪

ℬ⊗I (𝐹
ℬ⊗I
ℬ⊗𝑁 (∗)) → 𝐹𝒪

ℬ⊗I (𝐹
ℬ⊗I
ℬ⊗𝑁 (∗)) = 𝐹𝒪

ℬ⊗𝑁 (∗) = 𝒪
(
𝑛

)
.
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This map arises from the augmentation 𝐵• := 𝐵•(O, I, I(∗)) → 𝐵−1 := O(∗), which has a (colour-wise)
extra degeneracy 𝑠−1 : 𝐵𝑝 → 𝐵𝑝+1 from the unit of I and hence is an equivalence by [23, Cor. 4.5.2].

For the second equivalence, we start with the general observation that for a sequence 𝒬 → 𝒫 → 𝒪

of N-coloured operads, we have a levelwise equivalence of 𝒪-algebras among the derived algebras
�̃�𝒪
𝒬 (𝑿) � �̃�𝒪

𝒫 (�̃�𝒫
𝒬 (𝑿)): by construction, the left side is the geometric realisation of the bisimplicial

space with 𝐵𝑝,𝑞 = OP𝑝+1Q𝑞𝑿. If we first realise each 𝐵𝑝,•, then we obtain a simplicial space �̃�• with
�̃�𝑝 = |𝐵•(OP𝑝+1,Q, 𝑿) |. Again, we have an augmentation map �̃�• → �̃�−1 := |𝐵•(O,Q, 𝑿) |, which
admits an extra degeneracy by the unit of P, whence the induced map |𝐵•,• | � |�̃�• | → �̃�−1 is an
equivalence, as desired. In our case, we obtain for each 𝑛 ∈ 𝑁 an equivalence of 𝒟∞-algebras

�̃�𝒟∞⊗𝐸𝑁
ℬ⊗I (𝑿)𝑛 � �̃�𝒟∞⊗𝐸𝑁

ℬ⊗𝐸𝑁 (�̃�ℬ⊗𝐸𝑁
ℬ⊗I (𝑿))𝑛 � 𝐹𝒟∞

ℬ (hocolimI(𝑋•)),

where for the last equivalence, we use that �̃�ℬ⊗𝐸𝑁
ℬ⊗I (𝑿) is, when regarded as a functor 𝐸𝑁 → Top∗,

the constant diagram with value hocolimI (𝑿), and �̃�𝒟∞⊗𝐸𝑁
ℬ⊗𝐸𝑁 is equivalent to the postcomposition with

𝐹𝒟∞
ℬ , using that the natural map �̃�𝒟∞

ℬ (𝑋) → 𝐹𝒟∞
ℬ (𝑋) is an equivalence for each based space X, as the

underlying simplicial space is constant. �

Putting everything together, we get, for each 𝑛 ∈ 𝑁 , a map of 𝐴∞-algebras

�̃�𝒪
ℬ⊗I (𝑿) → 𝒪

(
𝑛

)
× 𝐹𝒟∞

ℬ (hocolimI (𝑋•)),

which, after group completion, gives us the map from Theorem 5.9. In the next subsection, we will
show that it is an equivalence and, by doing so, prove the theorem.

5.3. Proof of the splitting theorem

For the proof of Theorem 5.9, we denote the monads associated with 𝒪, respectively 𝒟∞ ⊗ 𝐸𝑁 by O,
respectively D, and we also write O(𝑿)𝑛, respectively D(𝑿)𝑛 for the nth level.

Since permuting and blocking inputs preserve the degree of the operations, we get, for each colour
𝑛 ∈ 𝑁 and each degree 𝛿 ∈ 𝜋0 (𝒪

(
𝑛

)
), a functor 𝒪

(−
𝑛

) 𝛿 : (𝑁 � Inj)op → Top. This gives rise to a
decomposition

O(𝑿)𝑛 =
∐
𝛿

O(𝑿) 𝛿𝑛 with O(𝑿) 𝛿𝑛 :=
∫ 𝐾 ∈𝑁 �Inj

𝒪
(𝐾
𝑛

) 𝛿
× 𝑿 (𝐾).

We denote by 𝑥𝑛 = [𝑒𝑛; ()] ∈ O(𝑿)𝑒𝑛𝑛 the image of the propagator and define, in analogy with
Construction 5.4,

O(𝑿)∞𝑛 := hocolim
(
O(𝑿)0

𝑛 O(𝑿)𝑒𝑛𝑛 O(𝑿)2𝑒𝑛
𝑛 · · ·

−��̃�𝑛 −��̃�𝑛 −��̃�𝑛
)
.

Again, we have two relevant maps:

1. The map 𝑓 : O(𝑿) → O(∗) decomposes into maps 𝑓 𝛿𝑛 : O(𝑿) 𝛿𝑛 → O(∗) 𝛿𝑛 , which are compatible
with stabilisations. Thus, we get a map between the mapping telescopes 𝑓 ∞𝑛 : O(𝑿)∞𝑛 → O(∗)∞𝑛 .

2. The map of 𝒪-algebras 𝜂 : O(𝑿) → D(𝑿) restricts to maps of spaces 𝜂𝛿𝑛 : O(𝑿) 𝛿𝑛 → D(𝑿)𝑛, and
the triangle

O(𝑿) 𝛿𝑛 O(𝑿) 𝛿�𝑒𝑛
𝑛

D(𝑿)𝑛
𝜂 𝛿𝑛

−��̃�𝑛

𝜂 𝛿�𝑒𝑛
𝑛

is H-commutative, whence we obtain a map from the mapping telescope 𝜂∞𝑛 : O(𝑿)∞𝑛 → D(𝑿)𝑛.
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Lemma 5.13 (Key Lemma). For each colour 𝑛 ∈ 𝑁 , the product map

( 𝑓 ∞𝑛 , 𝜂∞𝑛 ) : O∞
𝑛 (𝑿) → O(∗)∞𝑛 × D(𝑿)𝑛

is a homology equivalence.

Let us first prove Theorem 5.9 using the Key Lemma 5.13.

Proof of Theorem 5.9. Let us abbreviate Õ := �̃�𝒪
ℬ⊗I and D̃ := �̃�𝒟∞⊗𝐸𝑁

ℬ⊗I . Then we have to show that the
map ( 𝑓 , 𝜂) : Õ(𝑿) → Õ(∗) × D̃(𝑿) from the previous section is levelwise an equivalence.

To this aim, we study the stabilisations for Õ: as before, restricting the operation spaces of 𝒪 gives
rise to a grading of each level 𝐵•(O, I, 𝑿)𝑛, and we denote the components by 𝐵•(O, I, 𝑿) 𝛿𝑛 and their
realisation by Õ(𝑿) 𝛿𝑛 . Adding the propagator gives rise to maps 𝐵•(O, I, 𝑿) 𝛿𝑛 → 𝐵•(O, I, 𝑿) 𝛿�𝑒𝑛

𝑛 of
simplicial spaces and thus also to maps Õ(𝑿) 𝛿𝑛 → Õ(𝑿) 𝛿�𝑒𝑛

𝑛 . We denote the colimits by 𝐵•(O, I, 𝑿)∞𝑛
and Õ(𝑿)∞𝑛 ; then clearly Õ(𝑿)∞𝑛 � |𝐵•(O, I, 𝑿)∞𝑛 |.

Again, we obtain a product map ( 𝑓 ∞𝑛 , 𝜂∞𝑛 ) : Õ(𝑿)∞𝑛 → Õ(∗)∞𝑛 × D̃(𝑿)𝑛, and we claim that it is a
homology equivalence: since we have seen already that the simplicial spaces are proper, we can invoke
the spectral sequence for the geometric realisation from [24, Prop. A1], whence it is enough to see that,
for each dimension 𝑝 � 0 and each 𝑛 ∈ 𝑁 , the map 𝐵𝑝 (O, I, 𝑿)∞𝑛 → 𝐵𝑝 (O, I, ∗)∞𝑛 × 𝐵𝑝 (D, I, 𝑿)𝑛 is a
homology equivalence. As we have 𝐵𝑝 (O, I, ∗)∞𝑛 = O(∗)∞𝑛 , the map in question is exactly the map from
the Key Lemma 5.13 for the sequence I𝑝𝑿. This shows the subclaim.

The rest of the proof is a combinatorially enhanced variation of the first part of the proof of [1, Thm.
5.4] that uses the classical group completion theorem: let us denote by 𝒆𝑛 ∈ 𝜋0 (Õ(∗)𝑛 × D̃(𝑿)𝑛) the
component of the 0-simplex (𝑒𝑛, [𝔳;∅]): that is, the propagator and the unit, and by 𝒙𝑛 ∈ 𝜋0 (Õ(𝑿)𝑛)
the component of the 0-simplex 𝑥𝑛. By a classical telescope argument, the subclaim implies that the map

𝐻•( 𝑓𝑛, 𝜂𝑛) : 𝐻•(Õ(𝑿)𝑛) [𝒙
−1
𝑛 ] → 𝐻•(Õ(∗)𝑛 × D̃(𝑿)𝑛) [𝒆

−1
𝑛 ]

that is induced by the map of Pontrjagin rings is an isomorphism.
Now recall that all input blocking maps 𝛽𝐾𝑛 : 𝒪

(𝐾
𝑛

)
→ 𝜋0 (𝒪

(
𝑛

)
) are assumed to be surjective. Then

( 𝑓𝑛, 𝜂𝑛)∗ : 𝜋0 (Õ(𝑿)𝑛) → 𝜋0 (Õ(∗)𝑛 × D̃(𝑿)𝑛) is surjective as well, so under the above map, the
multiplicative submonoid 𝜋0 (Õ(𝑿)𝑛) is sent surjectively onto the the submonoid 𝜋0 (Õ(∗)𝑛 × D̃(𝑿)𝑛).
Therefore, we can localise further, with respect to the multiplicative submonoids of all path components
on both sides, still obtaining an isomorphism. We get a diagram

𝐻•(Õ(𝑿)𝑛) [𝒙
−1
𝑛 ] 𝐻•(Õ(∗)𝑛 × D̃(𝑿)𝑛) [𝒆

−1
𝑛 ]

𝐻•(Õ(𝑿)𝑛) [𝜋
−1
0 ] 𝐻•(Õ(∗)𝑛 × D̃(𝑿)𝑛) [𝜋

−1
0 ]

𝐻•(Ω𝐵Õ(𝑿)𝑛) 𝐻•(Ω𝐵Õ(∗)𝑛 ×Ω𝐵D̃(𝑿)𝑛),

𝐻• ( 𝑓𝑛 ,𝜂𝑛)

�

𝐻• ( 𝑓𝑛 ,𝜂𝑛)

�

𝐻• (Ω𝐵 ( 𝑓𝑛 ,𝜂𝑛))

�

where the vertical isomorphisms between the second and the third row follow from the group completion
theorem [18] for 𝒟1-algebras. This shows that Ω𝐵( 𝑓𝑛, 𝜂𝑛) is a homology equivalence of loop spaces
and thus a weak equivalence. �

The pending proof of Key Lemma 5.13 requires some further preparation. Recall from Definition
4.3 that for each tuple K, we denote by 𝑁 [𝐾] ⊆ 𝑁 � Inj the full subgroupoid spanned by all objects of
the form 𝜏∗𝐾 . For an input profile K and an output 𝑛 ∈ 𝑁 , recall the stable operation spaces 𝒪

(𝐾
𝑛

)∞.
Since input permutation and precomposition commutes with stabilisation, these spaces assemble, for
each 𝑛 ∈ 𝑁 and each tuple K, into a functor 𝒪

(−
𝑛

)∞ : 𝑁 [𝐾]op → Top.
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Now let 𝑸 : 𝑁 [𝐾] → Top be any functor. Again, we have two maps: first, for each tuple 𝐿 = 𝜏∗𝐾
and each 𝑛 ∈ 𝑁 , we have the stable input block map 𝒪

(𝐿
𝑛

)∞
× 𝑸(𝐿) → 𝒪

(
𝑛

)∞, which ignores the
factor 𝑸(𝐿). These maps define a natural transformation of functors from𝒪

(−
𝑛

)∞
×𝑸(−) to the constant

functor 𝑁 [𝐾]op × 𝑁 [𝐾] → Top with value 𝒪
(
𝑛

)∞, so we get

𝛼1 :
∫ 𝐿

𝒪
(𝐿
𝑛

)∞
× 𝑸(𝐿) → 𝒪

(
𝑛

)∞
.

Second, the morphism 𝜋 : 𝒪 → 𝒟∞ ⊗ 𝐸𝑁 gives, for each 𝑛 ∈ 𝑁 , rise to a natural transformation
𝒪∞

(−
𝑛

)
⇒ (𝒟∞ ⊗ 𝐸𝑁)

(
𝑛

)
of functors 𝑁 [𝐾]op → Top, so we obtain a map, where L ranges in 𝑁 [𝐾],

𝛼2 :
∫ 𝐿

𝒪
(𝐿
𝑛

)∞
× 𝑸(𝐿) →

∫ 𝐿

(𝒟∞ ⊗ 𝐸𝑁)
(𝐿
𝑛

)
× 𝑸(𝐿) � 𝒟∞ ×𝔖𝑟

∐
𝐿=𝜏∗𝐾

𝑸(𝐿).

The following lemma is a coloured version of [1, Lem. 5.2]:

Lemma 5.14. The product map 𝛼𝑸 := (𝛼1, 𝛼2) is a homology equivalence:

𝛼𝑸 :
∫ 𝐿∈𝑁 [𝐾 ]

𝒪
(𝐿
𝑛

)∞
× 𝑸(𝐿) → 𝒪

(
𝑛

)∞
×𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿∈𝑁 [𝐾 ]

𝑸(𝐿).

Proof. Since 𝒟∞(𝑟) is contractible, the sequence

𝒪
(𝐿
𝑛

)∞
𝒪

(𝐿
𝑛

)∞
× 𝑸(𝐿) 𝒟∞(𝑟) × 𝑸(𝐿)

𝜋×id

induces a split long exact sequence of homotopy groups for each 𝐿 = 𝜏∗𝐾 and each choice of basepoint.
If we take for the total space and the base space the disjoint union over all such L, the common fibre for
each component is 𝒪

(𝐿
𝑛

)∞
� 𝒪

(𝐾
𝑛

)∞. If we moreover quotient by the free and compatible𝔖𝑟 -actions on
total space and base space, we finally obtain a long exact sequence of homotopy groups that is induced by

𝒪
(𝐾
𝑛

)∞
→

∫ 𝐿

𝒪
(𝐿
𝑛

)∞
× 𝑸(𝐿) → 𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿=𝜏∗𝐾

𝑸(𝐿).

Now the product map 𝛼𝑸 is the composition of the two middle vertical maps in the following (3 × 3)-
diagram, where we abbreviate 𝔖 := 𝔖𝑟 ,

𝒪
(𝐾
𝑛

)∞ ∫ 𝐿
𝒪

(𝐿
𝑛

)∞
× 𝑸(𝐿) 𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿 𝑸(𝐿)

𝒪
(𝐾
𝑛

)∞ ∫ 𝐿
(
𝒪

(𝐿
𝑛

)∞
× (𝒟∞ ⊗ 𝐸𝑁)

(𝐿
𝑛

) )
× 𝑸(𝐿) 𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿 𝑸(𝐿)

𝒪
(
𝑛

)∞
𝒪

(
𝑛

)∞
×𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿 𝑸(𝐿) 𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿 𝑸(𝐿).

∫ 𝐿
(id, 𝜋)×id

𝛽𝐾𝑛
∫ 𝐿

(𝛽𝐿𝑛 ×id)×id

Here the top-left square commutes up to homotopy, and all other squares commute strictly. We have
already seen that the top row induces a long exact sequence on homotopy groups, and the second row
is clearly a fibration. By the 5-lemma, the first middle vertical map is a weak equivalence. Similarly, we
know that both the second and third rows are fibrations, so we obtain a morphism between the associated
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Serre spectral sequences in homology. Since 𝒪 is an operad with homological stability, the map 𝛽𝐾𝑛
between the fibres is a homology equivalence, so by a standard comparison argument [27, 5.2.12], the
second middle vertical map is also a homology equivalence. �

Now we have everything together to prove the Key Lemma 5.13.

Proof of the Key Lemma 5.13. Recall that, after identifying the stable spaces O(∗)∞𝑛 with 𝒪
(
𝑛

)∞, our
aim is to show that the map

𝑞 := ( 𝑓 ∞𝑛 , 𝜂∞𝑛 ) : O(𝑿)∞𝑛 → 𝒪
(
𝑛

)∞
× D(𝑿)𝑛

induces isomorphisms on homology. If we denote by (𝑁 � Inj)�𝑟 the full subcategory of 𝑁 � Inj with
objects tuples of length at most r, then the two sides of q are exhaustively filtered by 𝐹−1 = 𝐹 ′

−1 = ∅ and

𝐹𝑟 :=
∫ 𝐾 ∈(𝑁 �Inj)�𝑟

𝒪
(𝐾
𝑛

)∞
× 𝑿 (𝐾)

respectively 𝐹 ′
𝑟 := 𝒪

(
𝑛

)∞
×

∫ 𝐾 ∈(𝑁 �Inj)�𝑟
(𝒟∞ ⊗ 𝐸𝑁)

(𝐾
𝑛

)
× 𝑿 (𝐾),

and the map q is filtration-preserving. Let us fix a system 𝑆𝑟 ⊆ 𝑁𝑟 of representatives for unordered
tuples and set 𝑸(𝐾) := 𝑋𝑘1 ∧ · · · ∧ 𝑋𝑘𝑟 . Then the filtration quotients are of the form

𝐹𝑟/𝐹𝑟−1 �
∨
𝐾 ∈𝑆𝑟

∫ 𝐿∈𝑁 [𝐾 ]

𝒪
(𝐿
𝑛

)∞
+
∧ 𝑸(𝐿)

𝐹 ′
𝑟/𝐹 ′

𝑟−1 �
∨
𝐾 ∈𝑆𝑟

𝒪
(
𝑛

)∞
+
∧𝒟∞(𝑟)+ ∧𝔖𝑟

∨
𝐿=𝜏∗𝐾

𝑸(𝐿),

and the map 𝑞𝑟 : 𝐹𝑟/𝐹𝑟−1 → 𝐹 ′
𝑟/𝐹 ′

𝑟−1 between the filtration quotients splits as a bouquet 𝑞𝑟 =∨
𝐾∈𝑆𝑟 𝑞𝐾 . We show that each 𝑞𝐾 is a homology equivalence; then it follows that also the map 𝑞𝑟

between the filtration quotients is a homology equivalence, so by applying a comparison argument [27,
5.2.12] to the morphism of spectral sequences assigned to the filtration-preserving map q, we get that q
itself is a homology equivalence.

In order to see that each 𝑞𝐾 is indeed a homology equivalence, we use that 𝑿 is well-based and
obtain that the induced maps ∫ 𝐿∈𝑁 [𝐾 ]

𝒪
(𝐿
𝑛

)∞
→

∫ 𝐿∈𝑁 [𝐾 ]

𝒪
(𝐿
𝑛

)∞
× 𝑸(𝐿)

and 𝒟∞(𝑟) ×𝔖𝑟 [𝐾] → 𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿=𝜏∗𝐾

𝑸(𝐿)

are cofibrations, where we write [𝐾] := {𝜏∗𝐾; 𝜏 ∈ 𝔖𝑟 }. If we write 𝛼𝑸 for the product map from
Lemma 5.14 and 𝛼0 for the analogous one for the trivial family ∗ = (∗)𝑛∈𝑁 , then we obtain a morphism
of cofibre sequences (written vertically for space reasons)∫ 𝐿

𝒪
(𝐿
𝑛

)∞
𝒪

(
𝑛

)∞
×𝒟∞(𝑟) ×𝔖𝑟 [𝐾]

∫ 𝐿
𝒪

(𝐿
𝑛

)∞
× 𝑸(𝐿) 𝒪

(
𝑛

)∞
×𝒟∞(𝑟) ×𝔖𝑟

∐
𝐿 𝑸(𝐿)

∫ 𝐿
𝒪

(𝐿
𝑛

)∞
+
∧ 𝑸(𝐿) 𝒪

(
𝑛

)∞
+
∧𝒟∞(𝑟)+ ∧𝔖𝑟

∨
𝐿𝑸(𝐿),

𝛼0

𝛼𝑸

𝑞𝐾
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where L ranges in 𝑁 [𝐾]. By Lemma 5.14, 𝛼0 and 𝛼𝑸 induce isomorphisms in homology, so by the
5-lemma applied to the long exact sequence associated to the cofibre sequence, we obtain that also 𝑞𝐾
is a homology equivalence. �

6. Λ𝔐∗,1 as a relatively free algebra

In this section, we combine the insights from the previous sections: we translate the results of Section 2
and Section 3, which are expressed in terms of groups, into the analogous results in terms of classifying
spaces.

This will lead to Theorem 6.5, expressing Λ𝔐∗,1 as the colour-1 part of a relatively free ℳ-algebra,
with generators an algebra over the family of twisted tori, which depends on 𝜕-irreducible mapping
classes. Using the results of Section 4 and Section 5, we deduce the identification from Theorem 1.1.

6.1. Recollections from Section 2 and Section 4

Recall Definition 2.14 and Definition 2.19, let S be a surface of type Σ𝑔,𝑛 for some 𝑔 � 0 and 𝑛 � 1, and
note that a mapping class 𝜑 ∈ Γ(S, 𝜕S) is 𝜕-irreducible if and only if the cut locus of 𝜑 is equal to [𝜕S]:
that is, it is the collection of oriented isotopy classes of all boundary curves of S. Note in particular the
following special cases:

◦ if S is a cylinder, [𝜕S] contains two isotopy classes, as the two curves of 𝜕S are not isotopic as
oriented curves; the mapping class 1 ∈ Γ(S, 𝜕S) has empty cut locus, and every other mapping
class is 𝜕-irreducible and has cut locus equal to [𝜕S];

◦ if S is a disc, [𝜕S] contains one isotopy class (of a null-homotopic curve); the unique mapping class
1 ∈ Γ(S, 𝜕S) has empty cut locus and was declared not to be 𝜕-irreducible.

Alternatively, we saw that 𝜑 is 𝜕-irreducible if and only if the white part 𝑊 ⊂ S deformation retracts
onto 𝜕out𝑊 = 𝜕S. Being 𝜕-irreducible is an invariant of conjugacy classes in Γ(S, 𝜕S), and in fact even
of conjugacy classes of Γ(S) that are contained in the normal subgroup Γ(S, 𝜕S).

Recall Construction 4.13. We have a similar action of 𝑅𝑛 = 𝑇𝑛 �𝔖𝑛 on the space ℳ
(
𝑛

)
= M𝜕

(0
𝑛

)
by

postcomposition, regarding 𝑅𝑛 ⊂ M𝜕

(𝑛
𝑛

)
. By taking this action pointwise over 𝑆1, we obtain an action

of 𝑅𝑛 on Λℳ
(
𝑛

)
.

Notation 6.1. For 𝑔 � 0 and 𝑛 � 1, we denote by ℳ𝑔,𝑛 ⊂ ℳ
(
𝑛

)
= M𝜕

(0
𝑛

)
the subspace corresponding

to conformal classes (𝑊, �̃�) with W of type Σ𝑔,𝑛

We have a homotopy equivalence ℳ𝑔,𝑛 → 𝔐𝑔,𝑛 given by sending (𝑊, �̃�) to (𝑊, 𝜗), where 𝜗 is
obtained by restricting �̃� to (the preimage of) 𝜕𝑊 . We have therefore a homotopy equivalence

Λℳ𝑔,𝑛 � Λ𝔐𝑔,𝑛 �
∐

[𝜑 ] ∈Conj(Γ𝑔,𝑛)
𝐵𝑍 (𝜑, Γ𝑔,𝑛).

In the following, we will mostly replace the spaces Λ𝔐𝑔,𝑛 by the spaces Λℳ𝑔,𝑛. In particular, we denote

Λℳ∗,1 :=
∐
𝑔�0

Λℳ𝑔,1 � Λ𝔐∗,1,

where the last equivalence is an equivalence of 𝒟2-algebras.

6.2. Action of 𝔖𝑛 on Λℳ𝑔,𝑛

In this subsection, we analyse the action of 𝔖𝑛 on the set of components of Λℳ𝑔,𝑛 and classify the
orbits of this action.
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1 2

1 4

2 3

Figure 10. If we denote by 𝐷𝑖 := 𝐷𝑑𝑖 the Dehn twist along 𝑑𝑖 , then the mapping classes 𝐷1𝐷2𝐷4 and
𝐷1𝐷3𝐷4 are both 𝜕-irreducible in Γ3,2 and not conjugate to each other, but they are conjugate in the
extended mapping class group Γ3, (2) .

Notation 6.2. For a mapping class 𝜑 ∈ Γ𝑔,𝑛, we denote by Λ𝔐𝑔,𝑛 (𝜑) the connected component of
Λ𝔐𝑔,𝑛 corresponding to 𝐵𝑍 (𝜑, Γ𝑔,𝑛). It contains all free loops 𝜆 : 𝑆1 → 𝔐𝑔,𝑛 with the following
property: ifS is a Riemann surface of typeΣ𝑔,𝑛 representing 𝜆(1) and if 𝜑′ ∈ Γ(S, 𝜕S) is the monodromy
of 𝜆, then there is a diffeomorphism Ξ : S → Σ𝑔,𝑛 preserving the parametrisation and the ordering of the
boundary components, with (𝜑′)Ξ = 𝜑 ∈ Γ𝑔,𝑛. We denote by Λℳ𝑔,𝑛 (𝜑) the corresponding component
of Λℳ𝑔,𝑛.

Note that Λℳ𝑔,𝑛 (𝜑) ⊂ Λℳ𝑔,𝑛 is invariant under the action of 𝑇𝑛 ⊂ 𝑅𝑛 but not necessarily under
the action of 𝔖𝑛. We denote by 𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑) ⊂ Λℳ𝑔,𝑛 the orbit of ℳ𝑔,𝑛 (𝜑) under the action of 𝔖𝑛

or, equivalently, under the action of 𝑅𝑛. We have

𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑) =
⋃
𝜑′

Λℳ𝑔,𝑛 (𝜑
′),

where 𝜑′ ranges over all conjugates of 𝜑 in the extended mapping class group Γ𝑔, (𝑛) . Note that these
conjugates still lie in the subgroup Γ𝑔,𝑛 ⊂ Γ𝑔, (𝑛) , which is normal. Note also that Λℳ𝑔,𝑛 (𝜑

′) =
Λℳ𝑔,𝑛 (𝜑) if and only if 𝜑 and 𝜑′ are conjugate not only in Γ𝑔, (𝑛) , but also in Γ𝑔,𝑛: see Figure 10 for an
example that shows the difference.

The subspace of 𝔐𝑔,𝑛 corresponding to 𝔖𝑛 · Λ𝔐𝑔,𝑛 (𝜑) ⊂ Λ𝔐𝑔,𝑛 can be described as follows: it
contains all free loops 𝜆 : 𝑆1 → 𝔐𝑔,𝑛 with the same property as in Notation 6.2, but where Ξ is only
required to preserve the parametrisation, and not necessarily the order, of the boundary components.

Lemma 6.3. Let 𝜑 ∈ Γ𝑔,𝑛, and let ℌ ⊂ 𝔖𝑛 be the image of 𝑍 (𝜑, Γ𝑔, (𝑛) ) under the natural map
Γ𝑔, (𝑛) →𝔖𝑛. Then there is a bijection of 𝔖𝑛-sets

𝜋0
(
𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑)

)
� 𝔖𝑛/ℌ.

Proof. The action of 𝔖𝑛 on 𝜋0 (Λℳ𝑔,𝑛) can be described as follows: given 𝜎 ∈ 𝔖𝑛, we choose a
mapping class 𝜉 ∈ Γ𝑔, (𝑛) , which is sent to 𝜎 under the natural map Γ𝑔, (𝑛) → 𝔖𝑛, and a representative
Ξ of 𝜉; then the component 𝜋0 (Λℳ𝑔,𝑛 (𝜑

′)) is sent by 𝜎 to the component 𝜋0 (Λℳ𝑔,𝑛 ((𝜑
′)Ξ)).

The action of 𝔖𝑛 on 𝜋0 (𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑)) is transitive, so it suffices to check that the stabiliser of
the component Λℳ𝑔,𝑛 (𝜑) is the subgroup ℌ. First, note that an element 𝜎 ∈ ℌ can be lifted to a class
𝜉 ∈ Γ𝑔, (𝑛) that commutes with 𝜑; this implies that ℌ is contained in the stabiliser of Λℳ𝑔,𝑛 (𝜑). Vice
versa, if 𝜎 ∈ 𝔖𝑛 belongs to the stabiliser of Λℳ𝑔,𝑛 (𝜑), then we can choose a lift 𝜉 ∈ Γ𝑔, (𝑛) of 𝜎 and a
representative Ξ such that Λℳ𝑔,𝑛 (𝜑

Ξ) is equal to Λℳ𝑔,𝑛 (𝜑)); this implies that 𝜑Ξ is conjugate to 𝜑 in
Γ𝑔,𝑛: that is, there is a mapping class 𝜉 ∈ Γ𝑔,𝑛 and a representative Ξ̄ with 𝜑Ξ = 𝜑Ξ̄. As a consequence
𝜉−1𝜉 ∈ Γ𝑔, (𝑛) commutes with 𝜑, and since 𝜉−1𝜉 also projects to 𝜎 along the natural map Γ𝑔, (𝑛) →𝔖𝑛,
we conclude that 𝜎 ∈ ℌ. �
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6.3. Relative generators for the ℳ |1-algebra Λℳ∗,1

Definition 6.4. For all 𝑛 � 1 and 𝑔 � 0, we define the space

ℭ𝑔,𝑛 :=
∐

[𝜑 ] ∈Conj(Γ𝑔,𝑛)
𝜕-irreducible

Λℳ𝑔,𝑛 (𝜑).

The action of 𝑅𝑛 on Λℳ𝑔,𝑛 restricts to an action on those path components that constitute ℭ𝑔,𝑛. We
furthermore set, for all 𝑛 � 1,

ℭ𝑛 :=
∐
𝑔�0

ℭ𝑔,𝑛

and obtain a 𝑹-algebra 𝕮 := (ℭ𝑛)𝑛�1, where 𝑹 = (𝑅𝑛)𝑛�1.

To see that the action of 𝑅𝑛 on Λ𝔐𝑔,𝑛 indeed restricts to an action on ℭ𝑔,𝑛, we note that, for every
𝜕-irreducible mapping class 𝜑 ∈ Γ𝑔,𝑛, the entire orbit 𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑) is contained in ℭ𝑔,𝑛. Note also
that, though 𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑) may be disconnected, by Lemma 6.3 the action of 𝑅𝑛 is transitive on the
connected components of 𝔖𝑛 · Λℳ𝑔,𝑛 (𝜑).

We now want to look at the relatively free ℳ-algebra 𝐹ℳ
𝑹 (𝕮). Here we see, levelwise, that for each

𝑛 � 1, we have

𝐹ℳ
𝑹 (𝕮)𝑛 �

∫ (𝑘1 ,...,𝑘𝑟 ) ∈N�1�𝚺

ℳ
(𝑘1 ,...,𝑘𝑟

𝑛

)
×𝑅𝑘1×···×𝑅𝑘𝑟

(
ℭ𝑘1 × · · · × ℭ𝑘𝑟

)
.

Theorem 6.5. There is an equivalence of ℳ |1-algebras

𝐹ℳ
ℬ⊗𝑹 (𝕮+)1 = 𝐹ℳ

𝑹 (𝕮)1 � Λℳ∗,1

The proof of Theorem 6.5 occupies the remainder of this section.
Recall the initial ℳ-algebra (ℳ

(
𝑛

)
)𝑛�1. Note that Λℳ

(
𝑛

)
has several connected components, and

the ones corresponding to connected surfaces form precisely the subspace Λℳ∗,𝑛 :=
∐
𝑔�0 Λℳ𝑔,𝑛. We

therefore have an inclusion of 𝑹-algebras 𝕮 ⊂ (Λℳ
(
𝑛

)
)𝑛�1. This inclusion is adjoint to a morphism

of ℳ-algebras 𝐹ℳ
𝑹 (𝕮) → (Λℳ

(
𝑛

)
)𝑛�1, which can be restricted to a morphism of ℳ |1-algebras

𝜅 : 𝐹ℳ
𝑹 (𝕮)1 → Λℳ

(
1
)
= Λℳ∗,1. It suffices to prove that 𝜅 is a weak equivalence at the level of spaces.

The right-hand side can be decomposed into its connected components as

Λℳ∗,1 =
∐
𝑔�0

[𝜑 ] ∈Conj(Γ𝑔,1)

Λℳ𝑔,1 (𝜑).

Fix 𝑔 � 0 and a mapping class 𝜑 ∈ Γ𝑔,1. Decompose Σ𝑔,1 along a system of curves 𝑐1, . . . , 𝑐ℎ
representing the cut locus of 𝜑, and let W and Y denote the white and the yellow regions. We use
Notation 3.2 and write𝑌 =

∐𝑟
𝑖=1

∐𝑠𝑖
𝑗=1 𝑌𝑖, 𝑗 . Each component𝑌𝑖, 𝑗 of Y is of type Σ𝑔𝑖 ,𝑛𝑖 , and the restriction

𝜑𝑖, 𝑗 ∈ Γ(𝑌𝑖, 𝑗 , 𝜕𝑌𝑖, 𝑗 ) of 𝜑 is conjugated by a suitable diffeomorphism Ξ𝑖, 𝑗 : 𝑌𝑖, 𝑗 → Σ𝑔𝑖 ,𝑛𝑖 to �̄�𝑖 ∈ Γ𝑔𝑖 ,𝑛𝑖 .
Note that W is a connected surface: each component of W touches some component of 𝜕out𝑊 ,

and there is precisely one outgoing boundary component, since 𝜕out𝑊 = 𝜕Σ𝑔,1 � 𝑆1. We denote by
ℳ(𝑊) ⊂ ℳ

(𝑠1×𝑛1 ,...,𝑠𝑟×𝑛𝑟
1

)
the component of the surface type of W, with one outgoing boundary

component and ℎ =
∑
𝑖 𝑠𝑖 · 𝑛𝑖 incoming boundary curves partitioned as follows: for 1 � 𝑖 � 𝑟 and

1 � 𝑗 � 𝑠𝑖 the curves 𝜕𝑌𝑖, 𝑗 ⊂ 𝜕in𝑊 form a piece of the partition, corresponding to an input of colour
𝑛𝑖 . The total number of inputs is thus 𝑠1 + · · · + 𝑠𝑟 . Consider now the following subspace, which a priori
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is a union of connected components of 𝐹ℳ
𝑹 (𝕮)1

𝐹ℳ
𝑹 (𝕮)𝜑 := ℳ(𝑊) ×∏

𝑖 𝑅
𝑠𝑖
𝑛𝑖
�𝔖𝑠𝑖

𝑟∏
𝑖=1

(
𝔖𝑛𝑖 · Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖
= ℳ(𝑊) ×𝑇 ℎ�

∏
𝑖 (𝔖

𝑠𝑖
𝑛𝑖
�𝔖𝑠𝑖 )

𝑟∏
𝑖=1

(
𝔖𝑛𝑖 · Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ⊂ 𝐹ℳ
𝑹 (𝕮)1.

Lemma 6.6. The space 𝐹ℳ
𝑹 (𝕮)𝜑 is connected.

Proof. We observe that ℳ(𝑊) is connected; therefore, in order to prove that 𝐹ℳ
𝑹 (𝕮)𝜑 is connected,

it suffices to check that 𝑇ℎ �
∏𝑟
𝑖=1(𝔖

𝑠𝑖
𝑛𝑖 � 𝔖𝑠𝑖 ) acts transitively on the connected components of∏𝑟

𝑖=1
(
𝔖𝑛𝑖 · Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 .
This reduces to checking that for all 1 � 𝑖 � 𝑟 , the group (𝔖𝑠𝑖

𝑛𝑖 � 𝔖𝑠𝑖 ) acts transitively on the
components of

(
𝔖𝑛𝑖 · Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 , and to this aim it suffices to check that 𝔖𝑛𝑖 acts transitively on
the components of 𝔖𝑛𝑖 · Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖), which is clear by definition. �

Using Notation 3.7, the proof of Lemma 6.6 shows in fact that there is a homeomorphism

𝐹ℳ
𝑹 (𝕮)𝜑 �ℳ(𝑊) ×𝑇 ℎ�

∏
𝑖 (ℌ

𝑠𝑖
𝑖 �𝔖𝑠𝑖 )

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ,
using that ℌ𝑖 ⊆ 𝔖𝑛𝑖 is the stabiliser of the path component Λℳ𝑔,𝑛 (�̄�𝑖) ⊆ ℭ𝑔𝑖 ,𝑛𝑖 . The following
proposition directly implies Theorem 6.5, since 𝐹ℳ

𝑹 (𝕮)𝜑 and Λℳ𝑔,1(𝜑) are the connected components
of 𝐹ℳ

𝑹 (𝕮)1 and Λℳ∗,1.

Proposition 6.7. The map 𝜅 restricts to a homotopy equivalence

𝜅 : 𝐹ℳ
𝑹 (𝕮)𝜑 → Λℳ𝑔,1 (𝜑).

Proof. The space ℳ(𝑊) classifies the group Γ(𝑊, 𝜕𝑊), whereas the product
∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 is a
classifying space for the group

∏
𝑖 (𝑍 (�̄�𝑖 , Γ𝑔𝑖 ,𝑛𝑖 ))

𝑠𝑖 . This implies that there is a homotopy equivalence

ℳ(𝑊) ×

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 � 𝐵

(
Γ(𝑊, 𝜕𝑊) ×

𝑟∏
𝑖=1

(𝑍 (�̄�𝑖 , Γ𝑔𝑖 ,𝑛𝑖 ))
𝑠𝑖

)
.

For ℌ :=
∏
𝑖 (ℌ

𝑠𝑖
𝑖 �𝔖𝑠𝑖 ) ⊆ 𝔖ℎ, the compact Lie group 𝑇ℎ � ℌ ⊆ 𝑅𝑛 acts freely on ℳ(𝑊) by Lemma

4.14. Since ℳ(𝑊) ×
∏
𝑖 (Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖))

𝑠𝑖 is a Tychonoff space, [12, Thm. A8viii] ensures that we obtain
a principal fibre bundle

𝑇ℎ�ℌ → ℳ(𝑊) ×

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 → ℳ(𝑊) ×𝑇 ℎ�ℌ

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 .
We will split the fibre bundle in two stages, involving separately the factors ℌ and 𝑇ℎ of the fibre. First,
consider the principal fibre bundle

ℌ → ℳ(𝑊) ×
∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 → ℳ(𝑊) ×ℌ

∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ,
from which we conclude that ℳ(𝑊) ×ℌ

∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 is connected and aspherical.
In fact, ℳ(𝑊) ×ℌ

∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 is a classifying space for the group �̃� (𝜑) introduced in
Definition 3.4: the space ℳ(𝑊) � 𝐵Γ(𝑊, 𝜕𝑊) admits a free action of the finite group ℌ, and the
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quotient ℳ(𝑊)/ℌ is a classifying space for the extended mapping class group Γℌ (𝑊) (see Definition
2.6). Similarly, the homotopy quotient(

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ) � ℌ = 𝐸ℌ ×ℌ

(
𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 )

is a classifying space for 𝑍 (𝜑𝑌 , Γ(𝑌 )), which by Lemma 3.6 is isomorphic to
∏
𝑖 (𝑍 (�̄�𝑖 , Γ𝑔𝑖 , (𝑛𝑖 ) )

𝑠𝑖
�𝔖𝑠𝑖 ).

The balanced product ℳ(𝑊) ×ℌ
∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 is then homotopy equivalent to

ℳ(𝑊) ×ℌ

(
𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 × 𝐸ℌ

)
,

which is a classifying space for �̃� (𝜑). The last step is to consider the fibre bundle (which is no longer a
principal bundle)

𝑇ℎ → ℳ(𝑊) ×ℌ

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 → ℳ(𝑊) ×𝑇 ℎ�ℌ

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 .
Since the fibre and the total space are aspherical, the base space is also aspherical: note that the base is
precisely 𝐹ℳ

𝑹 (𝕮)𝜑 . The above fibre bundle shows that the fundamental group of 𝐹ℳ
𝑹 (𝕮)𝜑 is a quotient

of �̃� (𝜑) by a normal subgroup Zℎ . Consider the gluing map

𝜅 : ℳ(𝑊) ×ℌ

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 → Λℳ𝑔,1(𝜑).

The map induced by 𝜅 on fundamental groups is 𝜀 : �̃�𝜕 (𝜑) → 𝑍𝜕 (𝜑), so by Proposition 3.8, we just
have to identify the kernel of 𝜀 and the subgroup

𝜋1 (𝑇
ℎ) ⊂ 𝜋1

(
ℳ(𝑊) ×ℌ

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ) .

The inclusion of the fibre 𝑇ℎ ↩→ ℳ(𝑊) ×ℌ
∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 lifts to the covering space ℳ(𝑊) ×∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 of the right-hand side and becomes part of the inclusion of the fibre 𝑇ℎ � ℌ ↩→
ℳ(𝑊) ×

∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 of the first principal bundle that we considered above. In particular, the
inclusion 𝜋1 (𝑇

ℎ) ↩→ �̃� (𝜑) = 𝜋1
(
ℳ(𝑊) ×ℌ

∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ) has its image inside

Γ(𝑊, 𝜕𝑊) × 𝑍 (𝜑𝑌 , Γ(𝑌, 𝜕𝑌 )) = 𝜋1

(
ℳ(𝑊) ×

𝑟∏
𝑖=1

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 ) .

Recall 𝑇ℎ is included into ℳ(𝑊) ×
∏
𝑖

(
Λℳ𝑔𝑖 ,𝑛𝑖 (�̄�𝑖)

)𝑠𝑖 as an orbit of the balanced diagonal 𝑇ℎ-action
on the two main factors of the latter space. The action of (𝑧1, . . . , 𝑧ℎ) ∈ 𝑇ℎ is on right on the first
factor, by precomposition with (𝑧1, . . . , 𝑧ℎ) ∈ 𝑅𝑛 ⊂ M𝜕

(ℎ
ℎ

)
, and is on left on the second factor, by

postcomposition with the inverse of (𝑧1, . . . , 𝑧ℎ) ∈ 𝑅𝑛 ⊂ M𝜕

(ℎ
ℎ

)
.

At the level of fundamental groups, the i th generator of 𝜋1 (𝑇
ℎ) � Zℎ is mapped to (𝐷𝑐𝑖 , 𝐷−1

𝑐𝑖 ) ∈

Γ(𝑊, 𝜕𝑊) × 𝑍 (𝜑𝑌 , Γ(𝑌, 𝜕𝑌 )). We saw that these h couples generate the kernel of 𝜀 as a free abelian
group of rank h. �

Putting together Theorem 6.5 and Theorem 5.9, we obtain Theorem 1.1:

Proof of Theorem 1.1. The point-set requirements for our Setting 5.8 are clearly satisfied in the case
𝒪 = ℳ, C = 𝑹, and 𝑿 = 𝕮+. Hence, we can apply Theorem 5.9 and obtain

Ω𝐵�̃�ℳ
ℬ⊗𝑹 (𝕮+)𝑛 � Ω𝐵ℳ

(
𝑛

)
×Ω∞Σ∞hocolim𝑹 (𝕮+).
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Consider the left side first: we claim that 𝜑 : �̃�ℳ
ℬ⊗𝑹

(𝕮+) → 𝐹ℳ
ℬ⊗𝑹

(𝕮+), the map of ℳ-algebras from
the derived relatively free algebra to the actual one is an equivalence: here we use that the basepoints
are isolated, whence the map splits into

∐
𝐾 ∈𝑆 𝜑𝐾 for a system 𝑆 ⊆

∐
𝑟 N

𝑟
�1 of representatives of tuples

with respect to coordinate permutation. If we denote again by 𝑟 (𝑘) � 0 the number of occurrences of
k in the sequence K, then the compact Lie group 𝐺 :=

∏
𝑘�0 𝑅𝑘 �𝔖𝑟𝑘 acts on 𝑌 := ℳ

(𝐾
𝑛

)
×

∏
𝑖 ℭ𝑘𝑖 ,

and 𝜑𝐾 is exactly the map that compares the homotopy quotient of this action with the actual quotient.
However, Y is a Hausdorff space and G acts freely on Y, since ℳ is 𝔖-free and 𝑅𝑘 acts freely on ℳ

by precomposition; see Lemma 4.14. In this situation, [12, Thm. A.7] tells us that the map comparing
the homotopy quotient with the actual quotient is an equivalence. In particular, for 𝑛 = 1, the left side
is equivalent, as a loop space, to the group completion Ω𝐵Λ𝔐∗,1 by Theorem 6.5. Let us now look at
the right side: here we see that

hocolim𝑹 (𝕮+) �
∨
𝑘�1

(ℭ𝑛)+ � 𝑅𝑘 = {∗} 	
∐
𝑘�1

ℭ𝑘 � 𝑅𝑘 ,

where � denotes the homotopy quotient. If we focus again on the case 𝑛 = 1, then we saw in Example
4.16 that the first level of the initial ℳ-algebra, ℳ

(
1
)
, coincides with the old ℳ |1-algebra

∐
𝑔𝔐𝑔,1

whose group completion is accessible by the Madsen–Weiss theorem. Hence, we can replace the factor
Ω𝐵ℳ

(
1
)

by Ω∞MTSO(2). This proves the claim. �

A. General mapping spaces into 𝔐∗,1

In this first appendix, we briefly discuss a variation of Theorem 1.1 for a generic parametrising topo-
logical space X, highlighting the main enhancements that the proof requires.

We chose to restrict ourselves to the case 𝑋 = 𝑆1 throughout the main part of the article because
this special context already presents all the relevant complexity of the problem, and we believe that it is
more instructive to consider the special case first.

A.1. General parametrising spaces X

Our goal is to give a description of Ω𝐵(map(𝑋,𝔐∗,1)) as an infinite loop space. We assume for
simplicity that X has the homotopy type of a connected CW complex.

Let 𝐺 := 𝜋1 (𝑋). For all 𝑔 � 0 and 𝑛 � 1, we replace the space 𝔐𝑔,𝑛 with the homotopy equivalent
space ℳ𝑔,𝑛, which admits an action of the group 𝑅𝑛. Since ℳ𝑔,𝑛 is aspherical, the space map(𝑋,ℳ𝑔,𝑛)

is homotopy equivalent to map(𝐵𝐺,ℳ𝑔,𝑛).
More precisely, let Conj(𝐺 → Γ𝑔,𝑛) be the set of conjugacy classes of homomorphisms 𝐺 → Γ𝑔,𝑛,

where two such homomorphisms 𝜑, 𝜑′ are conjugate if there exists 𝜉 ∈ Γ𝑔,𝑛, represented by Ξ, with
𝜑′ = 𝜑Ξ: then we can identify

map(𝑋,ℳ𝑔,𝑛) =
∐

[𝜑 ] ∈Conj(𝐺→Γ𝑔,𝑛)

map(𝑋,ℳ𝑔,𝑛) (𝜑) �
∐

[𝜑 ] ∈Conj(𝐺→Γ𝑔,𝑛)

𝐵𝑍 (𝜑, Γ𝑔,𝑛),

where 𝑍 (𝜑, Γ𝑔,𝑛) denotes the centraliser of the image of 𝜑 in Γ𝑔,𝑛.

Definition A.1. A homomorphism 𝜑 : 𝐺 → Γ𝑔,𝑛 is called 𝜕-irreducible if it is not the trivial represen-
tation in Γ0,1 and there is no isotopy class of an essential arc 𝛼 ⊂ Σ𝑔,𝑛, which is fixed by the entire
image of 𝜑. Being 𝜕-irreducible is a conjugacy-invariant property of representations. We denote by

ℭ𝑔,𝑛 (𝑋) :=
∐

[𝜑 ] ∈Conj(𝐺→Γ𝑔,𝑛)
𝜕-irreducible

map(𝑋,ℳ𝑔,𝑛) (𝜑).
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For all 𝑛 � 1, there is a natural action of the group 𝑅𝑛 on ℭ𝑔,𝑛 (𝑋), and the analogue of Theorem 1.1
is the following:

Theorem A.2. In the above setting and with the above definitions, there is an equivalence of loop spaces

Ω𝐵(map(𝑋,𝔐∗,1)) � Ω∞MTSO(2) ×Ω∞Σ∞
+

∐
𝑛�1

∐
𝑔�0

ℭ𝑔,𝑛 (𝑋) � 𝑅𝑛.

In order to prove Theorem A.2, the main obstacle is, at the very beginning, to generalise Proposition
2.11 from the context of a single diffeomorphism Φ, representing a single mapping class 𝜑 ∈ Γ(S, 𝜕S),
to the context of a representation 𝜑 : 𝐺 → Γ(S, 𝜕S). This is done as follows:

Proposition A.3. Let 𝛼0, . . . , 𝛼𝑘 , 𝛽 be a collection of essential arcs in a connected surface with non-
empty boundary S satisfying the two properties listed in Proposition 2.11. Let U be a small neighbour-
hood of 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝛽 ∪ 𝜕S ⊂ S in S, let Diff(S, 𝑈) ⊂ Diff (S, 𝜕S) be the group of diffeomorphisms
of S fixing U pointwise, and let Γ(S, 𝑈) be the associated mapping class group.

Then the canonical homomorphism of groups Γ(S, 𝑈) → Γ(S, 𝜕S), induced by the inclusion
Diff (S, 𝑈) ⊂ Diff (S, 𝜕S), is injective. Moreover, a homomorphism 𝜑 : 𝐺 → Γ(S, 𝜕S) lifts to Γ(S, 𝑈)

if and only if for all 𝛾 ∈ 𝐺 the mapping class 𝜑(𝛾) ∈ Γ(S, 𝜕S) fixes up to isotopy each of the arcs
𝛼0, . . . , 𝛼𝑘 and 𝛽.

Proof. Note that U is a connected surface with at least three boundary components, and in particular U
is neither a disc nor an annulus. We can then apply [7, Thm. 3.18] (see also the remark after the cited
Theorem) and conclude that the homomorphism of mapping class groups Γ(S\𝑈, 𝜕 (S\𝑈)) → Γ(S, 𝜕S)
is injective. Composing with the natural isomorphism Γ(S\𝑈, 𝜕 (S\𝑈)) � Γ(S, 𝑈), we obtain precisely
the canonical homomorphism of groups Γ(S, 𝑈) → Γ(S, 𝜕S), which hence is injective.

For the second claim, the injectivity of Γ(S\𝑈, 𝜕 (S\𝑈)) → Γ(S, 𝑈) implies that 𝜑 : 𝐺 → Γ(S, 𝜕S)
lifts to Γ(S, 𝑈) if and only if, for all 𝛾 ∈ 𝐺, the mapping class 𝜑(𝛾) ∈ Γ(S, 𝜕S) lies in the image of
the canonical homomorphism, and Proposition 2.11 ensures that this is equivalent to requiring, for all
𝛾 ∈ 𝐺, that the mapping class 𝜑(𝛾) fixes up to isotopy each of the arcs 𝛼0, . . . , 𝛼𝑘 , and 𝛽. �

For a homomorphism 𝜑 : 𝐺 → Γ(S, 𝜕S), we define the fixed arc complex of 𝜑 as in Definition 2.14,
but we require vertices to be isotopy classes of arcs fixed by every mapping class in the image of 𝜑:
in fact the fixed arc complex of 𝜑 is the intersection of the arc complexes of 𝜑(𝛾) for 𝛾 ranging in G,
where we consider all arc complexes as simplicial subcomplexes of the arc complex of 1 ∈ Γ(S, 𝜕S).

The bound on the dimension of the fixed arc complex of 𝜑 in terms of 𝜒(S) is proved in the same way.
The white-yellow decomposition of S along the cut locus is defined in the same way as in Construction
2.18: by choosing a maximal simplex in the fixed-arc complex of the homomorphism 𝜑. The proof of
Lemma 2.20 can be extended to this generalised context as follows:

Lemma A.4. Let 𝜑 : 𝐺 → Γ(S, 𝜕S), let 𝛼0, . . . , 𝛼𝑘 be arcs representing a maximal simplex in the cut
locus of 𝜑, and let 𝛽 be another arc fixed up to isotopy by 𝜑; then 𝛽 can be isotoped relative to endpoints
to an arc lying in a small neighbourhood U of 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝜕S.

Proof. We assume without loss of generality that 𝛽 is in minimal position with respect to 𝛼0, . . . , 𝛼𝑘 . By
Proposition A.3, we can lift 𝜑 to a homomorphism �̃� : 𝐺 → Γ(S, 𝑈 ′), where𝑈 ′ is a small neighbourhood
of 𝛼0 ∪ · · · ∪𝛼𝑘 ∪ 𝛽∪ 𝜕S. For each 𝛾 ∈ 𝐺, we can thus represent �̃�(𝛾) by a diffeomorphism Φ𝛾 : S → S
fixing U pointwise.

The rest of the proof is the same as for Lemma 2.20: in particular, we use the representatives Φ𝛾 to
check that 𝛽′ and 𝛽′′ are fixed up to isotopy by 𝜑(𝛾) for all 𝛾 ∈ 𝐺. �

The proof of Proposition 2.21 can be repeated word by word in the generalised context, and the
analogue of Lemma 2.22 is the following:

Lemma A.5. Let 𝜓 ∈ Γ(S, 𝜕S) be a mapping class, and let Ψ be a diffeomorphism representing 𝜓.
Moreover, let 𝜑 : 𝐺 → Γ(S, 𝜕S) be a group homomorphism and let [𝑐1, . . . , 𝑐ℎ] be the cut locus of 𝜑.
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Then [Ψ(𝑐1), . . . ,Ψ(𝑐ℎ)] is the cut locus of the conjugate 𝜓𝜑𝜓−1, which is defined by (𝜓𝜑𝜓−1) (𝛾) :=
𝜓 · 𝜑(𝛾) · 𝜓−1. In particular, if the image of 𝜑 commutes with 𝜓, then 𝜓 preserves the cut locus of 𝜑 as
an unordered collection of isotopy classes of oriented simple closed curves.

Proof. The proof is the same as for Lemma 2.22, with the exception that we first lift 𝜑 to a homomorphism
�̃� : 𝐺 → Γ(S, 𝑈), where U is a small neighbourhood of 𝛼0 ∪ · · · ∪ 𝛼𝑘 ∪ 𝜕S, and then we compare this
morphism with the conjugate 𝜓�̃�𝜓−1 : 𝐺 → Γ(S,Ψ(𝑈)). �

This shows that, given a homomorphism 𝜑 : 𝐺 → Γ(S, 𝜕S), we can associate with it a cut locus
𝑐1, . . . , 𝑐ℎ separating S into a white region W and a yellow region Y. We fix a parametrisation by 𝑆1 of
each curve in the cut locus as in Subsection 3.1.

We can also lift uniquely 𝜑 to a morphism �̃� : 𝐺 → Γ(S, 𝑊). For each component 𝑃 ⊂ 𝑌 , we then have
a morphism 𝜑𝑃 : 𝐺 → Γ(𝑃, 𝜕𝑃) obtained by composing �̃� with the restriction Γ(S, 𝑊) → Γ(𝑃, 𝜕𝑃).
Mimicking Definition 3.1, we say that two path components P and 𝑃′ of Y are similar for 𝜑 if there
is a a diffeomorphism Ξ : 𝑃 → 𝑃′ preserving the boundary parametrisations and conjugating the
homomorphism 𝜑𝑃 to 𝜑𝑃′ . We write 𝑌 =

∐𝑟
𝑖=1

∐𝑠𝑖
𝑗=1 𝑌𝑖, 𝑗 as in Notation 3.2, and introduce morphisms

�̄�𝑖, 𝑗 : 𝐺 → Γ𝑔𝑖 ,𝑛𝑖 conjugate to 𝜑𝑌𝑖, 𝑗 in an analogue way.
We denote by 𝜑𝑌 : 𝐺 → Γ(𝑌, 𝜕𝑌 ) the composition of �̃� and the restriction map Γ(S, 𝑊) → Γ(𝑌, 𝜕𝑌 ),

and denote by 𝑍 (𝜑𝑌 ) ⊂ Γ(𝑌 ) the subgroup of elements that commute with the entire image of 𝜑𝑌 .
Definition 3.4 and Lemma 3.5 then carry over to the generalised context.

In Section 3, one only has to replace ‘𝜑 ∈ Γ(S, 𝜕S)’ by ‘homomorphism 𝜑 : 𝐺 → Γ(S, 𝜕S)’, as well
as ‘representative Φ of 𝜑 fixing U’ by ‘the unique lift of 𝜑 to a homomorphism �̃� : 𝐺 → Γ(S, 𝑈)’.

Finally, the discussion of Section 6 generalises straightforwardly to the context of a generic
parametrising space X, leading to Theorem A.2.

A.2. Functoriality in X

Both sides of the equivalence in Theorem A.2 depend on a space X, and the left-hand side can be
regarded as an enriched, contravariant functor from the category of (connected) topological spaces to
the category of loop spaces. In fact, each space Ω𝐵(map(𝑋,𝔐∗,1)) admits a natural infinite loop space
structure, and for a map of spaces 𝑓 : 𝑋 → 𝑋 ′, the corresponding map

Ω𝐵(map( 𝑓 ,𝔐∗,1)) : Ω𝐵(map(𝑋 ′,𝔐∗,1)) → Ω𝐵(map(𝑋,𝔐∗,1))

is defined as the group completion of a map of ℳ |1-algebras, and hence a map of infinite loop spaces.
We can thus consider Ω𝐵(map(−,𝔐∗,1)) as a functor from connected topological spaces to infinite loop
spaces. Now it would be interesting to describe this functor solely in terms of the right-hand side: that
is, to upgrade the assignment 𝑋 ↦→ Ω∞MTSO(2) × Ω∞Σ∞

+

∐
𝑛�1

∐
𝑔�0 ℭ𝑔,𝑛 (𝑋) � 𝑅𝑛 to an enriched

functor from topological spaces to infinite loop spaces, such that the equivalences given by Theorem
A.2, for varying X, assemble into a natural equivalence of functors. We will content ourselves with a
weaker but explicit result about functoriality.

Definition A.6. A map of connected topological spaces 𝑓 : 𝑋 → 𝑋 ′ induces a map of fundamental
groups 𝑓∗ : 𝜋1 (𝑋) → 𝜋1 (𝑋

′), which is defined up to conjugation and which, in turn, allows us to
transform any homomorphism 𝜑 : 𝜋1 (𝑋

′) → Γ𝑔,𝑛 into a homomorphism 𝑓 ∗𝜑 = 𝜑 ◦ 𝑓∗ : 𝜋1 (𝑋) → Γ𝑔,𝑛,
for all 𝑔 � 0 and 𝑛 � 1.

We say that f is 𝜕-faithful if 𝑓 ∗𝜑 is 𝜕-irreducible whenever 𝜑 is 𝜕-irreducible, for all 𝑔 � 0 and
𝑛 � 1. We denote by Top𝜕 the (topologically enriched) category of connected topological spaces that
are homotopy equivalent to a CW complex, with morphisms being 𝜕-faithful continuous maps.

Note that being 𝜕-faithful is a homotopy-invariant property of continuous maps: that is, morphism
spaces in Top𝜕 are obtained by selecting unions of connected components from the morphism spaces
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in Top. Recall Definition A.1: if 𝑓 : 𝑋 → 𝑋 ′ is a 𝜕-faithful map, then we obtain for each 𝑔 � 0 and
𝑛 � 1 a map

ℭ𝑔,𝑛 ( 𝑓 ) : ℭ𝑔,𝑛 (𝑋 ′) → ℭ𝑔,𝑛 (𝑋).

Thus, we can consider ℭ𝑔,𝑛 as a contravariant functor from Top𝜕 to Top, for all 𝑔 � 0 and 𝑛 � 1. Putting
together all values of g and n, and taking the actions of the groups 𝑅𝑛 into account, we can consider ℭ
as a contravariant functor from Top𝜕 to 𝑹-Alg. We can then repeat the proof of Theorem 6.5 and obtain
an equivalence of (contravariant, enriched) functors

𝐹ℳ
𝑹 (ℭ(−))1 � map(−,ℳ∗,1) : Top𝜕 → ℳ |1-Alg.

Composing with the group completion functor, we then obtain the following enriched version of
Theorem A.2.

Theorem A.7. Let Ω-Top and Ω∞-Top denote the (enriched) categories of loop spaces and infinite
loop spaces, respectively. Then there is is a weak equivalence between the following two enriched
contravariant functors from Top𝜕 to Ω-Top:

◦ the functor Ω𝐵(map(−,𝔐∗,1));
◦ the composition of the contravariant functor

Ω∞MTSO(2) ×Ω∞Σ∞
+

∐
𝑛�1

∐
𝑔�0

ℭ𝑔,𝑛 (−) � 𝑅𝑛

from Top𝜕 to Ω∞-Top and the covariant, forgetful functor from Ω∞-Top to Ω-Top.

The weak equivalence of functors assigns to 𝑋 ∈ Top𝜕 the weak equivalence of loop spaces given by
Theorem A.2.

Example A.8. We briefly discuss an example showing why Theorem A.7 cannot be generalised to
an analogue statement concerning the entire category Top of connected topological spaces with the
homotopy type of a CW complex, together with all continuous maps: let X be a connected CW complex
and let 𝑓 : ∗ → 𝑋 be the inclusion of a point. We note that

∐
𝑛�1

∐
𝑔�0 ℭ𝑔,𝑛 (∗) is the empty space,

whenceΩ∞Σ∞
+

∐
𝑛�1

∐
𝑔�0 ℭ𝑔,𝑛 (∗)�𝑅𝑛 is just a point A straightforward generalisation of Theorem A.7

would predict that the following square commutes up to homotopy, where the horizontal isomorphisms
are given by Theorem A.2:

Ω𝐵(map(𝑋,𝔐∗,1)) Ω∞MTSO(2) ×Ω∞Σ∞
+

∐
𝑛�1

∐
𝑔�0 ℭ𝑔,𝑛 (𝑋) � 𝑅𝑛

Ω𝐵(map(∗,𝔐∗,1)) Ω∞MTSO(2).

�

Ω𝐵 (map( 𝑓 ,𝔐∗,1)) prΩ∞MTSO(2)

�

However, we can apply the functor 𝜋0 (−), taking values in groups, as all terms in the previous diagram
are loop spaces. Applying 𝜋0 to the top row, we obtain the group Z ⊕ (

⊕
𝑛�1

⊕
𝑔�0 Z

⊕𝜋0 (ℭ𝑔,𝑛 (𝑋 )) ),
whereas applying 𝜋0 to the bottom row, we obtain the group Z.

After applying 𝜋0, of the left vertical map sends the first summand Z isomorphically onto Z, and the
standard generator of each further summand Z⊕𝜋0 (ℭ𝑔,𝑛 (𝑋 )) to 𝑔 + 𝑛− 1 ∈ Z, while the right vertical map
sends the first summand Z isomorphically onto Z, and each further summand Z⊕𝜋0 (ℭ𝑔,𝑛 (𝑋 )) constantly
to 0.

Note that it suffices to take 𝑋 = 𝑆1 to have 𝜋0 (ℭ𝑔,𝑛 (𝑋)) ≠ ∅ for some choice of g and n and thus to
ensure that the previous example is not void: see Example 2.17.

As an application of Theorem A.7, let 𝑘 ∈ Z \ {0}, and consider the power map (−)𝑘 : 𝑆1 → 𝑆1,
which induces multiplication by k on the fundamental group 𝜋1 (𝑆

1) � Z. The following lemma
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proves that (−)𝑘 is 𝜕-faithful; hence it induces a self map of the infinite loop space Ω∞MTSO(2) ×
Ω∞Σ∞

+

∐
𝑛�1

∐
𝑔�0 ℭ𝑔,𝑛 � 𝑅𝑛 that can be described using Theorem A.7.

Lemma A.9. Let S be a surface of type Σ𝑔,𝑛 for some 𝑔 � 0 and 𝑛 � 1. Let 𝜑 ∈ Γ(S, 𝜕S) be a mapping
class, let 𝑘 ∈ Z \ {0}, and let �̄� be an essential arc in S. Suppose that the isotopy class [�̄�] of �̄� relative
to its endpoints is in the fixed-arc complex of 𝜑𝑘 . Then [�̄�] is in the fixed-arc complex of 𝜑.

Proof. Since the fixed-arc complexes of 𝜑 and 𝜑−1 are equal, we can assume without loss of generality
that 𝑘 � 1. The case 𝑘 = 1 is tautological, so we henceforth assume 𝑘 � 2.

Let 𝑝, 𝑞 ∈ 𝜕S be the endpoints of �̄�, and consider the set Arc(𝑝, 𝑞) of isotopy classes [𝛼] of essential
arcs 𝛼 in S from p to q. An essential arc 𝛼 is a map 𝛼 : [0, 1] → S, but we will abuse notation and
denote by 𝛼 also the image of this map, which is a subset of S.

Let 𝛼 and 𝛽 be two essential arcs from p to q. We say that 𝛼 and 𝛼′ are transverse if they have linearly
independent velocities at each intersection point, including the endpoints p and q. Moreover, we say
that 𝛼 and 𝛼′ are in minimal position away from the endpoints if the number of intersection points of
𝛼 and 𝛼′, excluding p and q, is minimal among all pairs of transverse arcs 𝛼′ and 𝛽′ with 𝛼 ∼ 𝛼′ and
𝛽 ∼ 𝛽′. The bigon criterion applies: 𝛼 and 𝛽 are in minimal position if and only if they do not form
bigons.

In particular, if 𝛼 and 𝛽 are non-isotopic arcs from p to q in minimal position away from the
endpoints, then we can compare the velocities of 𝛼 and 𝛽 at p: these are linearly independent vectors in
𝑇𝑝S pointing inside S: we say that 𝛼 is on right of 𝛽 if the sequence ( 𝑑𝑑𝑡 𝛼(0),

𝑑
𝑑𝑡 𝛽(0)) is a positive basis

of 𝑇𝑝S.
The Alexander method guarantees the following: let 𝛼, 𝛼′, 𝛽, 𝛽′ be four essential arcs in S from p

to q, with 𝛼 ∼ 𝛼′
� 𝛽 ∼ 𝛽′, and suppose that 𝛼 and 𝛽, as well as 𝛼′ and 𝛽′, are in minimal position

away from their endpoints. Then there is an isotopy of S bringing 𝛼 ∪ 𝛽 to 𝛼′ ∪ 𝛽′. In particular, 𝛼 is on
right of 𝛽 if and only if 𝛼′ is on right of 𝛽′. We can now put a total order on Arc(𝑝, 𝑞): for two distinct
isotopy classes [𝛼] and [𝛽], we say that [𝛼] ≺ [𝛽] if, for any two representatives 𝛼 and 𝛽, which are in
minimal position away from the endpoints, 𝛼 is on right of 𝛽.

The action of Γ(S, 𝜕S) on Arc(𝑝, 𝑞) preserves the total order ≺: for this, let Φ be a diffeomorphism
representing 𝜑 ∈ Γ(S, 𝜕S) and assume that Φ fixes a neighbourhood of 𝑝 ∈ 𝜕S pointwise. Moreover,
let 𝛼 and 𝛽 represent classes [𝛼], [𝛽] ∈ Arc(𝑝, 𝑞), and assume that 𝛼 and 𝛽 are in minimal position
away from the endpoints and that 𝛼 is on right of 𝛽, thus witnessing [𝛼] ≺ [𝛽]: then Φ(𝛼) and Φ(𝛽)
are also in minimal position away from the endpoints, and Φ(𝛼) is on right of Φ(𝛽), witnessing that
𝜑([𝛼]) = [Φ(𝛼)] ≺ [Φ(𝛽)] = 𝜑([𝛽]).

Let now [�̄�] be as in the hypothesis of the theorem, and assume for the sake of contradiction that
[�̄�] ≠ 𝜑([�̄�]) ∈ Arc(𝑝, 𝑞): then without loss of generality, we can assume [�̄�] ≺ 𝜑([�̄�]). We then have
a chain of inequalities

[�̄�] ≺ 𝜑([�̄�]) ≺ 𝜑2([�̄�]) ≺ · · · ≺ 𝜑𝑘−1([�̄�]) ≺ 𝜑𝑘 ([�̄�]),

hence [�̄�] ≺ 𝜑𝑘 ([�̄�]), contradicting the hypothesis [�̄�] = 𝜑𝑘 ([�̄�]). �

B. Braid groups, symmetric groups and free loops

In this second appendix, we sketch two results that are parallel to the identification in Theorem 1.1.
The first pertains to automorphisms of surfaces that have no genus but instead punctures; we

thus replace mapping class groups by braid groups. A particular model of the corresponding clas-
sifying space is given by the collection of unordered configuration spaces of the 2-dimensional
disc.

In analogy to that, the collection of configuration spaces of the ∞-dimensional disc is a
model for the classifying space of symmetric groups. We outline the corresponding result for that
setting.
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Figure 11. The left braid is reducible as it is conjugate to a block sum of two braids, whereas the second
one is not.

B.1. Braid groups

First recall that the rth braid group Br𝑟 can be defined as the fundamental group of the unordered
configuration space 𝐶𝑟 (�̊�

2) := �̃�𝑟 (�̊�
2)/𝔖𝑟 of the 2-dimensional disc, where

�̃�𝑟 (�̊�
2) :=

{
(𝑝1, . . . , 𝑝𝑟 ) ∈ �̊�2; 𝑝𝑖 ≠ 𝑝 𝑗 for all 𝑖 ≠ 𝑗

}
.

The contractible topological group Diff𝜕 (𝐷2) of diffeomorphisms of 𝐷2 that are the identity in a
neighbourhood of the boundary acts on 𝐶𝑟 (�̊�

2); the stabiliser of a point 𝑃 := {𝑝1, . . . , 𝑝𝑟 } ∈ C𝑟 (𝐷2)
with respect to this this action is the subgroup Diff𝜕 (𝐷2, 𝑃) of diffeomorphisms that preserve P as a
set. The induced long exact sequence on homotopy groups of the resulting fibration

Diff𝜕 (𝐷2, 𝑃) → Diff𝜕 (𝐷2) → 𝐶𝑟 (�̊�
2)

thus implies that Br𝑟 � 𝜋0 Diff𝜕 (𝐷2, 𝑃), the mapping class group of a genus 0 surface with r (unordered)
punctures. A classical argument by Fadell and Neuwirth [6] shows that the configuration spaces �̃�𝑟 (�̊�

2)
and 𝐶𝑟 (�̊�

2) are aspherical, which implies the well-known result 𝐶𝑟 (�̊�
2) � 𝐵 Br𝑟 .

We remark that Alexander’s theory of arc systems developed in detail for surfaces in Section 2,
Definitions 2.10, 2.14, 2.19, Propositions 2.11 and 2.21, Construction 2.18 and Lemma 2.20 has a
canonical analogue if the surfaces with boundary considered before are replaced by a punctured disc:
now the arcs are required to start and end in 𝜕𝐷2 = 𝑆1 and their interior must lie in �̊�2 \ {𝑝1, . . . , 𝑝𝑟 }.
Most importantly, we can also define the notion of irreducibility of elements of braid groups as follows.

Definition B.1. 1. A braid 𝛾 ∈ Br𝑟 is reducible if there exists an essential arc in �̊�2 \ {𝑝1, . . . , 𝑝𝑟 } that
is fixed by 𝛾; otherwise it is called irreducible. In other words, a braid 𝛾 is reducible if it is conjugate
to a block sum of braids; see Figure 11.

2. Let ℑ𝑟 ⊆ Λ𝐶𝑟 (�̊�
2) = Λ𝐵Br𝑟 denote the subspace of free loops whose corresponding conjugacy

classes in Br𝑟 consist of irreducible elements.

The genus-0 and colour-1 part of ℳ, which coincides with the framed little 2-disc operad 𝒟fr
2 , acts

on the union Λ
∐
𝑟�0 𝐶𝑟 (�̊�

2); the Lie group 𝑅1 � 𝑆1 acts on ℑ :=
∐
𝑟�1 ℑ𝑟 , and analogous to Theorem

6.5 one obtains that

Λ
∐
𝑟�0

𝐶𝑟 (�̊�
2) � 𝐹𝒟fr

2
𝑆1 (ℑ).

The free 𝒟fr
2 -algebra over a given 𝑆1-space is, as a 𝒟2-algebra, equivalent to the free 𝒟2-algebra

over the underlying space without the 𝑆1-action as the operation spaces 𝒟fr
2 (𝑟) and 𝒟2(𝑟) × (𝑆1)𝑟 are

equivalent as free right (𝑆1)𝑟 -spaces, whence the coend construction just cancels the toric factor. We
therefore obtain, after group completion, the following identification.
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Theorem B.2. There is a homotopy equivalence

Ω𝐵Λ
∐
𝑛�1

𝐵 Br𝑟 � Ω2Σ2
+

∐
𝑟�1

∐
[𝛾 ] ∈Conj(Br𝑟 )

irreducible

𝐵𝑍 (𝛾, Br𝑟 ).

B.2. Symmetric groups

We conclude by considering free loop spaces of configuration spaces of an infinite-dimensional disc
�̊�∞. These are classifying spaces of symmetric groups: that is, 𝐶𝑟 (�̊�

∞) � 𝐵𝔖𝑟 . The analogous notion
of irreducibility is even simpler: an element of 𝔖𝑟 (that is, a permutation) is irreducible if and only if it
comprises a single cycle. In this case, its centraliser is cyclic of order r, and as above, one obtains that

Λ
∐
𝑟�0

𝐵𝔖𝑟 � 𝐹𝒟∞

∐
𝑘�1

𝐵(Z/𝑘).

After group completion, we obtain the analogue of Theorem B.2 for symmetric groups [21, Cor. 4.32].

Theorem B.3. There is a homotopy equivalence

Ω𝐵Λ
∐
𝑟�0

𝐵𝔖𝑟 � Ω∞Σ∞
+

∐
𝑘�1

𝐵(Z/𝑘).
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