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1. Introduction. It is well known that when the characteristic p ( # 0) of a field divides the
order of a finite group, the group algebra possesses a non-trivial radical and that, if p does
not divide the order of the group, the group algebra is semi-simple. A group algebra has a
centre, a basis for which consists of the class-sums. The radical may be contained in this
centre; we obtain necessary and sufficient conditions for this to happen.

Notations. If G is a group and if H is a subgroup of G, then we denote the order of H
and the index of H in G by | H | and \ G : H\ respectively. G' and G" are the first and second
derived groups of G and e is the identity of G. We consider all group algebras over a fixed
algebraically closed field K of characteristic p, A (G) being the group algebra of G over K and
N(G) being the corresponding radical. Z[A (G)] is the centre of A (G). If / is a linear subspace
of A (G), its dimension is written as dim /.

Before stating our main result, let us recall the definition and some properties of Frobenius
groups (Cf. [2, p. 587]). A group G containing a subgroup Q which is its own normalizer and
which has trivial intersection with any distinct conjugate is said to be a Frobenius group. By
a celebrated theorem of Frobenius the elements of G not in any conjugate of Q, together with e,
form a normal subgroup M called the regular subgroup of G for the subgroup Q. The inner
automorphism of G induced by an element of G not in M induces a regular automorphism
of M. Thus we have G= QM, QnM = {e} and if, for xeG, Qnx'^Qx ?={e}, then xeQ.
If as Q (a =/= e), then every element of M may be written in the form x'1a'lxa (xeM). To
show this it is sufficient to prove that the cardinal number of {x'1a'1xa | xeM} is equal to
| M |, and this follows from the remark that, if

x~ia~lxa = y~ia~lya (x,yeM),

then

a~i(xy~l)a = xy~l,

and this implies that

xy~l = e

from which we have that

x = y.

We remark here for future reference that, if Q is abelian, then M = G'.
We prove the following theorem.

THEOREM. Let G be a group. Then N(G) £ Z\_A{Gj\ if and only ifG is of one of the following
three types:
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(i) G has order prime to p.
(ii) G is abelian.

(iii) If P is a p-Sylow subgroup of G, then G'P is a Frobenius group with G' as the regular
subgroup of G'P under the inner automorphisms induced by elements of P.

It is clearly sufficient to prove the following lemma.

LEMMA 1. Let Gbea non-abelian group whose order is divisible by p. Then N(G) £ Z[A (G)]
if and only if condition (iii) of the theorem is satisfied.

2. Lemmas on group algebras. Since the lemmas in this section are either known or easy
to prove, only outlines of proofs are given.

LEMMA 2. Let G be a group and H a normal subgroup of index n. Let I be an ideal of A (H)
such that x~1Ix = I (xeG). Let I generate an ideal J of A(G). Then, if

G = Hai u Ha2 u ... u Han (at = e)

is a coset decomposition, we have:
(i) / = /a1+/a2+ ... +Ian.
(ii) dim J =n dim /.

(iii) I = JnA(H).
(iv) J is nilpotent if and only if I is nilpotent.

Proof. To prove (i) it is sufficient to show that Iax + Ia2+ ... +Ian is an ideal of A(G).
Now, if x eG, we have

xaK = hax (heH, X = 1(K), 1 ̂  A g n),
aKx = h'av (h' eH,v = V(K), l<Lv^n).

Thus

x(IaK) = (xIx~l)xaK = IxaK = Ihax £ Iak,
(IaK)x = I(aKx) = Ih'a, £ la,.

Hence Ia1+Ia2+ ... Ian is an ideal of A (G). (ii) and (iii) follow from (i).
Since / is invariant under inner automorphisms of G, we may verify that if p > 0, then

+ ... +Fan,

from which (iv) follows.

COROLLARY, (i) N(H) c N(G).

(ii) N(H) = N(G)nA(H).

Proof, (i) follows by observing that N(H) is necessarily invariant under all automor-
phisms of A (H). (ii) follows from (i).

LEMMA 3. Let G be a group. Let xeA(G) be such that (e-g)x = 0 for all geG. Then

x = k^y (XeK).
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m

Proof. Let G have elements gug2, ... ,gm. Let x = £ Avgv (AveiC, v = 1, 2, ... , m).
v = l

Then

v = l v = l

Letting g run over the elements of G and comparing coefficients, we obtain the result.

LEMMA 4. Let G = PM be a group, where M is a normal subgroup and P is a p-Sylow
subgroup of G such that PnM = {e}. Let I be the subspace of A(G) spanned by elements of the

form | £ x Ve—s) (seP). Then I is a nilpotent ideal of dimension \ P \ — 1.

Proof. A straightforward verification will show that / is an ideal of dimension | P \ — 1.
We observe that in fact [4, p. 176]

1 =( i>) N(p)
and consequently / is nilpotent.

LEMMA 5. Let J be the ideal of A (G) generated by £ x. Then J e Z[A (G)].
xeC

Proof. J is spanned, as a linear subspace of A (G), by elements of the form vl £ x 1 (v e G).
\xeG' )

But, if ueG, we have

u(v y X) = (UV)(Y x] = (y x)(uv)

and the lemma is proved.
We require also some results based on the modular representation theory of groups [1].

Let G be a group with a normal subgroup H of prime index q. Let R be an irreducible repre-
sentation of H over K and let R* be the representation of G induced by R. Either R* is irre-
ducible or R* has, as irreducible constituents, q irreducible representations of G each of which
when restricted to H is equivalent to R. If q # p, these q irreducible representations are in-
equivalent as representations of G, but ifq = p, the p irreducible representations are equivalent
representations of G. If we sum the squares of the degrees of the distinct irreducible repre-
sentations of G and H we obtain finally:

LEMMA 6. Let G be a group with a normal subgroup H of prime index q.
(i) Ifq ^ p, then dim N{G) = q dim N{H).
(ii) Jfq=p, then dim N(G) ^ p dim N(H) + (p -1).

We may combine these inequalities to obtain:
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LEMMA 7. Let G be a group and H a normal subgroup such that G/H is soluble. Then

dim N(G) = | G : H | dim N(H)

if and only if\G:H\is prime to p.

LEMMA 8. Let G be a group and H a normal subgroup such that G\H is soluble of order
prime to p. Let J be the ideal of A (G) generated by N(H). Then J = N(G).

Proof. By L e m m a 2, / is nilpotent and d i m J = \G: H\ d im N(H). By Lemma 7,
dim N(G) = | G : H | dim N(H). Hence / = N(G).

3. Proof of the theorem.

Sufficiency. LEMMA 9. Let G be a group such that G'P is a Frobenius group with G' as
regular subgroup for the subgroup P, P being ap-Sylow subgroup ofG. Then N(G) £ Z[/4(G)].

Proof. Since G'P is a Frobenius group, [7, p. 128],

dim N(G'P) = IP | - 1 .

Hence, by Lemma 4, N(G'P) is spanned by elements of the form ( Y x)(e—s) (seP).

Now G'P is normal in G and G/G'P is abelian of order prime to p. Hence, by Lemma 8,
N(G) is generated by N(G'P). This implies that N(G) is contained in the ideal J of A (G)
generated by £ .v. By Lemma 5, / £ Z[A{Gj]. This completes the proof.

xeC

Necessity. In this section we assume that we have a group G for which N(G) £ Z[/4 (G)].
We assume that p divides | G \ and that G is non-abelian. Let P be a /7-Sylow subgroup of G.
We show that G'P is a Frobenius group with regular subgroup G'.

LEMMA 10. Let xe G'. Then (e-x)N(G) = {0}.

Proof. Leta,beG. Let weN(G). Then

(ab)w = a(bw) = a{wb) = (wb)a = w(ba) = (ba)w.

Hence

Let xeG ' . Then there exist commutators cu c2, ••• ,cs such that x = CjC2... cs and then

An obvious induction argument completes the proof of the lemma.
Let G' have index r in G and let

G = G'aj u G'a2 u ... u G'a.

be a coset decomposition. Let w e N(G). Then we may write

'), v = 1, 2 , . . . , r).
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Let xeG'. By Lemma 10 we have

r r
V w a = V xw a

v = l v = l

Comparing linear combinations from distinct cosets we have

wvav = xwvav (v = 1, 2, ... , r).

Hence

wv = xwv ( v = l , 2 , ... , r ) .

Thus, by Lemma 3,

Let / be the ideal of A(G') spanned by £ y. Then / is clearly invariant under automor-

phisms of G'. Let J be the ideal of A(G) generated by /. Then we have shown that

N(G) s /.

We now consider two cases.
Case 1. Here we assume that N(G) = / . We wish to show that in fact this case does not

arise.
It follows from Lemma 2 that / i s nilpotent, and this implies that/? divides \ G' \. Further,

by the corollary to Lemma 2, N(G') = / and so dim N(G') = 1. But if | G' | = pbm, (p, m) = 1,
then it is known [7, p. 128] that

dim N(G') ^ pb — 1.

Hence we must have p = 2 and b = 1 and we must also have [7, p. 128] that G' is a Frobenius
group with a subgroup of index 2 as regular subgroup. From our introductory remarks, G"
is the regular subgroup of G'.

If now | G : G' \ is divisible by 2 we would have, by Lemma 7,

dim JV(G) > | G : G' | dim N(G') = \ G : G'\ .

Since this is false by Lemma 2 (ii), | G : G' \ is odd. We then obtain a contradiction on proving
the following lemma.

LEMMA 11. Let H be a group with a normal subgroup Ho of order 2. If HIH0 is abelian
of odd order, then H is abelian.

Proof. By Schur's Theorem [8, p. 162], there exists a subgroup M of index 2. M is
normal in H and isomorphic to H/Ho. Clearly H is the direct product of the abelian groups
Ho and M.

The contradiction to the assumption that N(G) = J arises on letting H = G/G" and
Ho = G'/G".
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Case 2. Here we assume that N(G) # / . Then, by Lemma 2, / is not nilpotent and so p
does not divide | G' |. Thus p divides \G:G'\ and PnG' ={e}. We also have

dim N(G) < dim J = | G : G' | .

But, by Lemma 7, since G'P is normal in G and GjG'P is abelian of order prime to p,

: G ' f ' ' G'P : G ' 'd i m N(GT) = ' dim N(G) < — L _ | G : G' | =
G GT | | G G'P |

dim N(G) < | G G |
G : G T | | G : G'P | I G : G'P |

= | G T : G ' | = | P : P n G ' | = | P | .

On the other hand [7, p. 128],

dim N(G'P)^\P\-1.

Thus

dim N(G'P) = \P\-1.

This implies [7, p. 128] that G'P is a Frobenius group with G' as regular subgroup and with
the elements of P acting as a group of regular automorphisms on G'. This completes the proof
of Lemma 1 and so proves the theorem.

4. Comments. Let G be a group such that G'P is a Frobenius group as above. Since P
is abelian, it follows that P is cyclic (Cf. Remarks in [7]). From the recent work of Thompson
[5, 6] we know that G' is soluble and hence, by Higman [3, p. 322], G' is in fact nilpotent.
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