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SOME RESULTS FOR VACATION SYSTEMS
WITH SOJOURN TIME LIMITS
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Abstract

In this paper we deal with an M/G/1 vacation system with the sojourn time (wait plus
service) limit and two typical vacation rules, i.e. multiple and single vacation rules. Using
the level crossing approach, explicit expressions for the steady-state distributions of the
virtual waiting times are obtained in vacation systems with exponential and constant
service times, a general vacation time, and two vacation rules.

Keywords: Sojourn time limit; vacation system; balking; level crossing; integral equation

2010 Mathematics Subject Classification: Primary 45D05; 60G17; 60K25

1. Introduction

Single-server queues with service vacations arise as models of many computer, commu-
nication, and production systems. A wide class of such vacation models has been studied
extensively in the applied probability literature. We consider an M/G/1 vacation model with
the sojourn time limit. An M/G/1 model with server vacations and limited sojourn time was
studied in Takine and Hasegawa (1990) under a different rule for customers staying for service.
A stochastic process of the unfinished work in an M/G/1 vacation model with finite capacity
for the workload, which is equivalent to their model with limited sojourn time, was also studied
in van der Duyn Schouten (1978). To the author’s knowledge, only these two papers deal with
the vacation model with the sojourn time limit. The single-server queue with limited sojourn
time and constant service time was studied in Hokstad (1979); however, server vacations were
not considered. Related references on the single-server queue with limited waiting time are
provided in Takine and Hasegawa (1990).

Using the level crossing approach pioneered by Brill in 1974 (see Brill (2008)), we derive
the steady-state probability density functions of the virtual waiting times for both the multiple
and single vacation rules as described below. We describe our mathematical model in detail.
Customers arrive at a queue according to a Poisson process with rate λ. They are served by a
single server in order of arrival (first-in–first-out (FIFO) discipline), where the service time of a
customer is denoted by H . They cannot stay in the system longer than an interval of length T .
We assume that the sojourn times of arriving customers are known by a system manager, at
their arrival instants, and they are refused entry to the system if their sojourn time � exceeds
the interval T , i.e. � > T . (The system manager may utilize a reneging rule before starting
service for the rejected customers). If the queue becomes empty at the end of a service period,
the server takes a vacation with vacation time V , (i.e. the so-called exhaustive service vacation).
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We consider the following two typical vacation rules.

(i) If the system is empty upon the server’s return from a vacation, another vacation begins
immediately. If the system is not empty upon the server’s return, the server starts servicing
again (multiple vacation (MV) rule).

(ii) If the system is empty upon the server’s return from a vacation, the server does not take
another vacation and waits for a new arrival. If the system is not empty upon the server’s
return, the server starts servicing again, i.e. the server takes exactly one vacation (single
vacation (SV) rule).

The service time H and the vacation time V are independent and identically distributed
random variables. Given a nonnegative-valued random variable F , we denote its distribution
function (DF) by F(t), its probability density function (PDF) by f (t), its Laplace–Stieltjes
transform (LST) by F ∗(s), and its finite first and mth moments of the DF by f and f (m), m =
2, 3, . . . , respectively. We define F̄ (t) := 1 − F(t) for t ≥ 0 and ρ := λh.

2. Level crossing analysis

We first consider a sample path (sample function) Wt of the virtual workload process {Wt }
of the M/G/1 queueing system with sojourn time limit and vacation times, where Wt represents
the virtual workload (W) at a time t ≥ 0. The virtual workload is defined as the sum of the
unfinished workload in the system and the remaining vacation time, that is, W represents the
virtual waiting time under the FIFO discipline. Figures 1 and 2 show typical sample paths
of {Wt } for the MV and the SV rules, respectively. The virtual workload process {Wt } is a
stochastic process with independent cycles defined as an interval between successive vacation
starting epochs, in which the expected length of a cycle is denoted by E(C). Throughout this
section, we assume that the system is in equilibrium. We denote by W(x) the steady-state DF
of the virtual waiting time W , and assume that W(x) is differentiable for x > 0. We formulate
the level crossing formula (balance equation) in (4) and (5) below. We assume that the service
time H has an exponential distribution, i.e. H(t) = 1 − e−µt .

Theorem 1. For the M/M/1 MV system with limited sojourn time (T ), w(x), x > 0, and W(0)

are given by

w(x) =
{

λvω0(x), x < T,

λvV̄ (x), x ≥ T ,
(1)

ω0(x) := ρ(1 − e−µ(T −x))e−(λ−µ)(T −x) exp{−ρe−µ(T −x)}�(x) + V̄ (x),

�(x) := µe(λ−µ)T

∫ x

0
e−(λ−µ)yV̄ (y) exp{−ρe−µ(T −y)} dy, (2)

λv :=
(∫ T

0+
ω0(x) dx +

∫ ∞

T

V̄ (x) dx

)−1

,

W(0) = 0. (3)

Proof. The level crossing formula is given by

w(x) =

⎧⎪⎪⎨
⎪⎪⎩

λvV̄ (x) + λW(0)[H̄ (x) − H̄ (T )]
+ λ

∫ x

0+
[H̄ (x − y) − H̄ (T − y)]w(y) dy, 0 < x < T , (4)

λvV̄ (x), x ≥ T . (5)
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Figure 1: A sample path Wt for the MV rule.
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Figure 2: A sample path Wt for the SV rule.

The left-hand side of (4) represents the rate at which Wt downcrosses a level x > 0, while the
right-hand side represents the rate at which Wt jumps from below x to above x > 0. The first
term on the right-hand side of (4) corresponds to the case where the server takes vacations, i.e.
a vacation (customer) brings to the system the workload V and then Wt jumps from below x to
above x. The second and third terms correspond to the case where an ordinary customer brings
to the system the workload H and then Wt jumps from below x to above x; see Figure 1. The
minus terms, H̄ (T ) and H̄ (T −y), correspond to the case where arriving customers are rejected
entry to the system because their sojourn time � = W + H > T (such arrivals with service
time H are shown in Figure 1 using dash-arrowed lines). This argument can also be applied to
(5). Note here that W(0) = 0 for the MV rule, and the arrival rate of vacation customers (λv)
is yet unknown. It follows from (4) and H̄ (x) = e−µx that

w(x) = λvV̄ (x) + λ(e−µx − e−µT )

∫ x

0+
eµyw(y) dy.

Setting g′
0(y) := eµyw(y), we obtain

g′
0(x) = λveµxV̄ (x) + λ(1 − eµ(x−T ))g0(x),
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where we have set g0(0+) = 0. Furthermore, setting z := e−µ(T −x) and g(z) := g0(x), we
obtain the following first-order differential equation for g(z), 1 > z > e−µT :

g′(z) + ρ

(
1 − 1

z

)
g(z) = q(z), q(z) := λv

µ
eµT V̄

(
T + 1

µ
log z

)
.

Taking account of the boundary condition g0(0+) = 0, the solution is expressed as

g(z) = zρe−ρz

∫ z

e−µT

y−ρeρyq(y) dy.

Consequently, using the relation w(x) = g′
0(x)e−µx, 0 < x < T , we obtain (1) and (2), where

λv is yet unknown. For x ≥ T , w(x) is given by (5), directly. The arrival rate λv of vacation
customers should be determined from the normalization condition

W(0) +
∫ T

0+
w(x) dx +

∫ ∞

T

w(x) dx = 1, (6)

which concludes the proof.

Theorem 2. For the M/M/1 SV system with limited sojourn time (T ), w(x), x > 0, and W(0)

are given by

w(x) =
{

λvω0(x), x < T,

λvV̄ (x), x ≥ T ,

ω0(x) := ρ(1 − e−µ(T −x))e−(λ−µ)(T −x) exp{−ρe−µ(T −x)}�(x) + V̄ (x)

+ q0(e
−µx − e−µT ),

�(x) := µe(λ−µ)T

∫ x

0
e−(λ−µ)y[V̄ (y) + q0(e

−µy − e−µT )] exp{−ρe−µ(T −y)} dy,

q0 := V ∗(λ), (7)

λv :=
(

q0

λ
+

∫ T

0+
ω0(x) dx +

∫ ∞

T

V̄ (x) dx

)−1

,

W(0) = λv

q0

λ
. (8)

Proof. For the SV system, the level crossing formula is also given by (4) and (5). Further-
more, using the property of the regenerative process {Wt } (see, e.g. Asmussen (2003, pp. 168–
171)), we have

λv = 1

E(C)
, W(0) = (1/λ)q0 + 0 × (1 − q0)

E(C)
, (9)

where 1/λ represents the mean nonbusy period, in which Wt = 0 and q0 is the probability that
during a vacation no customers arrive; see Figure 2. Using the same argument as in the proof
of Theorem 1, we obtain the following differential equation for g(z), 1 > z > e−µT :

g′(z) + ρ

(
1 − 1

z

)
g(z) = q(z), q(z) := λv

µ

[
eµT V̄

(
T + 1

µ
log z

)
+q0

(
1

z
− 1

)]
.

Hence, λv is given by (7), which follows from (6), (9), and the same argument as in the proof
of Theorem 1. Equation (9) leads to (8).
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We assume hereafter that H is constant, i.e. H(t) = 0 (t < h) and H(t) = 1 (t ≥ h).

Theorem 3. For the M/D/1 MV system with limited sojourn time (T ), w(x), x > 0, and W(0)

are given by

w(x) =
{

λvωk(x) for x ∈ Ik, k = 0, 1, . . . , n + 1, x < T ,

λvV̄ (x) for x ≥ T ,
(10)

where the Ik, k = 0, 1, . . . , n + 1 (n ≥ 1), are given in (16) and (17) below, the ωk(x), k =
0, 1, . . . , n + 1, are defined by

ωk(x) := V̄ (x) + λ[ϕk(x) − ϕk−1(x − h)], k = 0, 1, . . . , n − 1, (11)

ωn(x) := V̄ (x) + λ[ϕn−1(T − h) − ϕn−2(x − h)], (12)

ωn+1(x) := V̄ (x) + λ[ϕn−1(T − h) − ϕn−1(x − h)], (13)

with the ϕk(x), k = 0, 1, . . . , n − 1, recursively obtained from (22) below and ϕ−1(x) ≡ 0,
and

λv :=
(

ϕn−1(T − h) +
∫ nh

T −h

ωn(x) dx +
∫ T

nh

ωn+1(x) dx +
∫ ∞

T

V̄ (x) dx

)−1

, (14)

W(0) = 0. (15)

Proof. For the M/D/1 vacation system (MV), the level crossing formula is given by (4) and
(5). To obtain the solution of (4) and (5), we start by dividing [0, T ) into n+2 subintervals, i.e.

Ik := {x : kh ≤ x < (k + 1)h}, k = 0, 1, . . . , n − 2, (16a)

In−1 := {x : (n − 1)h ≤ x < T − h}, (16b)

In := {x : T − h ≤ x < nh}, (16c)

In+1 := {x : nh ≤ x < T }, (16d)

where n is an integer satisfying

nh ≤ T < (n + 1)h. (17)

Here the n = 0 case is of no interest. The n = 1 case requires a separate treatment, so we first
assume that n ≥ 2. Now we introduce

Wk(x) := W(x) for x ∈ Ik, k = 0, 1, . . . , n + 1, (18)

and let wk(x) be the value of w(x) for x ∈ Ik . Equation (4) gives, for x ∈ I0,

w0(x) = λvV̄ (x) + λW(0) + λW0(x),

that is,

W0(x) = λvϕ0(x), ϕ0(x) := eλx

∫ x

0
e−λyV̄ (y) dy, (19)

where we have used the fact that W(0) = 0 for the MV rule. From (4) we consecutively obtain
the following first-order differential equation for Wk(x), x ∈ Ik, k = 1, 2, . . . , n − 1:

wk(x) = λvV̄ (x) + λ[Wk(x) − Wk−1(x − h)]
= λvV̄ (x) + λ[Wk(x) − λvϕk−1(x − h)], (20)
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that is,
dWk(x)

dx
− λWk(x) = λv[V̄ (x) − λϕk−1(x − h)].

Using the boundary condition Wk(kh) = Wk−1(kh), the solution is given by

Wk(x) = λvϕk(x), k = 1, 2, . . . , n − 1, (21)

ϕk(x) = eλ(x−kh)ϕk−1(kh) + eλx

∫ x

kh

e−λy[V̄ (y) − λϕk−1(y − h)] dy. (22)

Furthermore, from (4) we obtain

wn(x) = λvV̄ (x) + λ[Wn−1(T − h) − Wn−2(x − h)] = λvϕn(x), x ∈ In, (23)

where
ϕn(x) := V̄ (x) + λ[ϕn−1(T − h) − ϕn−2(x − h)],

and

wn+1(x) = λvV̄ (x) + λ[Wn−1(T − h) − Wn−1(x − h)] = λvϕn+1(x), x ∈ In+1, (24)

where
ϕn+1(x) := V̄ (x) + λ[ϕn−1(T − h) − ϕn−1(x − h)].

Equations (11), (12), and (13) are obtained from (20), (23), and (24), respectively.
We have considered only the n ≥ 2 case in (16) and (17). It can also be shown that the

above results hold even for n = 1, by dividing the interval [0, T ) into three subintervals,
I0 := [0, T − h), I1 := [T − h, h), and I2 := [h, T ), and setting ϕ−1(x) ≡ 0, which is
obtained from (19) and (22). Furthermore, for x ≥ T , w(x) is given by (5), directly. The
arrival rate λv should be determined from the normalization condition

Wn−1(T − h) +
∫ nh

T −h

wn(x) dx +
∫ T

nh

wn+1(x) dx +
∫ ∞

T

w(x) dx = 1, (25)

which leads to (14).

Theorem 4. For the M/D/1 SV system with limited sojourn time (T ), w(x), x > 0, and W(0)

are given by

w(x) =
{

λvωk(x) for x ∈ Ik, k = 0, 1, . . . , n + 1, x < T ,

λvV̄ (x) for x ≥ T ,
(26)

where the Ik, k = 0, 1, . . . , n + 1 (n ≥ 1), are given in (16) and (17), the ωk(x), k =
0, 1, . . . , n + 1, are defined by

ωk(x) := V̄ (x) + λ[ϕk(x) − ϕk−1(x − h)], k = 0, 1, . . . , n − 1, (27)

ωn(x) := V̄ (x) + λ[ϕn−1(T − h) − ϕn−2(x − h)], (28)

ωn+1(x) := V̄ (x) + λ[ϕn−1(T − h) − ϕn−1(x − h)], (29)

with the ϕk(x), k = 0, 1, . . . , n−1, recursively obtained from (22) and ϕ−1(x) ≡ q0/λ, q0 :=
V ∗(λ), and

λv :=
(

ϕn−1(T − h) +
∫ nh

T −h

ωn(x) dx +
∫ T

nh

ωn+1(x) dx +
∫ ∞

T

V̄ (x) dx

)−1

, (30)

W(0) = λv

q0

λ
. (31)
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Proof. For the M/D/1 vacation system (SV), the level crossing formula is also given by (4)
and (5). Using Ik, k = 0, 1, . . . , n+1, for [0, T ) defined by (16) together with (17), we obtain
the solution of (4), wk(x), and Wk(x) defined in (18). First we consider the n ≥ 2 case as in
the proof of Theorem 3. Equation (4) gives, for x ∈ I0,

w0(x) = λvV̄ (x) + λW(0) + λ[W0(x) − W0(0+)],
that is,

W0(x) = λvϕ0(x), ϕ0(x) := eλx

(
q0

λ
+

∫ x

0
e−λy[V̄ (y) − q0] dy

)
, (32)

where we have used the fact that W(0) = W0(0+) = λvq0/λ, which is derived from (9) for
the SV rule. As shown in the proof of Theorem 3, we obtain (21) together with (22), (23), and
(24). Equations (27), (28), and (29) are obtained from (20), (23), and (24), respectively.

It can be shown that the above results hold for n = 1, by dividing the interval [0, T ) into three
subintervals, I0 := [0, T −h), I1 := [T −h, h), and I2 := [h, T ), and setting ϕ−1(x) ≡ q0/λ,
which is obtained from (22) and (32). For x ≥ T , w(x) is given by (5). Finally, λv in (30) is
obtained from (25).

Remark 1. The functions W(x) and w(x) exist even for 1 < ρ + ρv(:= λvv) < ∞. (Such
a result has been found for the single-server queue with waiting time limit in Takács (1974)).
Note that all customers without rejection are guaranteed their service completion, that is, they
wait, receive full service, and depart before their sojourn times reach T . It can be seen from the
W(x) and w(x) formulae that the M/D/1 vacation system analyzed in this paper is equivalent
to the vacation system with waiting time limit T − h. Hence, w(x) for the MV rule, i.e. (10),
gives a different expression from w(x) derived in Takine and Hasegawa (1990).

3. Performance analysis

Using Theorems 1–4 and the PASTA (Poisson Arrivals See Time Averages) property, the
following results for an arbitrary customer are obtained for the MV rule and the SV rule. Let
p denote the blocking probability (or loss probability) that a customer cannot enter the system
upon arrival.

Corollary 1. The blocking probability in the M/M/1 vacation system is given by

p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λv

(
e−µT

∫ T

0+
eµxω0(x) dx +

∫ ∞

T

V̄ (x) dx

)
for the MV rule,

λv

(
q0

λ
e−µT + e−µT

∫ T

0+
eµxω0(x) dx +

∫ ∞

T

V̄ (x) dx

)
for the SV rule,

(33)

where λv and ω0(x) are given in (2) for the MV rule and (7) for the SV rule. In the M/D/1
vacation system,

p = λv

(
ρϕn−1(T − h) +

∫ ∞

T −h

V̄ (x) dx − λ

∫ nh

T −h

ϕn−2(x − h) dx

− λ

∫ T

nh

ϕn−1(x − h) dx

)
for both the MV and SV rules, (34)

where n ≥ 1 is the integer satisfying nh ≤ T < (n+1)h. Here the ϕm(x), m = 0, 1, . . . , n−1,
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are recursively obtained from (22), where ϕ−1(x) ≡ 0 (MV rule) and ϕ−1(x) ≡ q0/λ (SV rule),
and the λv are given by (14) for the MV rule and (30) for the SV rule. The probability of no
delay for a customer without blocking is given by

W(0 | no blocking) =

⎧⎪⎪⎨
⎪⎪⎩

W(0){1 − e−µT }
1 − p

for the M/M/1 vacation system,

W(0)

1 − p
for the M/D/1 vacation system,

(35)

where W(0) = 0 for the MV rule. For the SV rule, W(0) is as given in (8) (M/M/1 vacation
system) and (31) (M/D/1 vacation system).

Proof. By definition we have

p = 1

λ

(
λW(0)H̄ (T ) + λ

∫ T

0+
H̄ (T − y)w(y) dy + λ

∫ ∞

T

w(x) dx

)
,

which leads to (33)–(34). The conditional probability of no delay for a customer without
blocking is given by

W(0 | no blocking) = W(0)H(T )

1 − p
,

which leads to (35).

Corollary 2. For the M/M/1 vacation system, the mth moment, m = 1, 2, . . . , of the conditional
DF of the actual waiting time for a customer without blocking is given by

E(Wm | no blocking) = λv

1 − p

∫ T

0+
xm(1 − e−µ(T −x))ω0(x) dx, (36)

where λv and ω0(x) are given in (2) for the MV rule and (7) for the SV rule. For the M/D/1
vacation system,

E(Wm | no blocking) = λv

1 − p

(n−2∑
k=0

∫ (k+1)h

kh

xm[V̄ (x) + λϕk(x) − λϕk−1(x − h)] dx

+
∫ T −h

(n−1)h

xm[V̄ (x) + λϕn−1(x) − λϕn−2(x − h)] dx

)
,

(37)

where the ϕm(x), m = 0, 1, . . . , n − 1, are recursively obtained from (22), ϕ−1(x) ≡ 0 (MV
rule) and ϕ−1(x) ≡ q0/λ (SV rule), and the λv are given by (14) for the MV rule and (30) for
the SV rule. The empty sum

∑−1
k=0{·} ≡ 0.

Proof. By definition we have

E(Wm | no blocking) = 1

1 − p

∫ T

0
xmH(T − x) dW(x),

which leads to (36) and (37).

https://doi.org/10.1239/jap/1316796906 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796906


Some results for vacation systems with sojourn time limits 687

4. Concluding remarks

For the M/M/1 vacation systems (MV and SV rules) with a general vacation time distribution
and sojourn time limit, explicit expressions for the PDFs of the virtual waiting times have been
derived using the level crossing approach. For the M/D/1 vacation systems (MV and SV rules),
recursive equations have been derived for the PDFs of the virtual waiting times. The level
crossing formula given in (4) and (5) holds for the M/G/1 vacation system with sojourn time
limit. An explicit solution of the Volterra integral equations is an open problem for more general
service time distributions, though the level crossing formula for the M/G/1vacation system (MV
rule) with limited waiting time has been solved explicitly.
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