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Abstract. Magnetic fields are a distinctive feature of accretion disc plasmas around compact
objects (i.e., black holes and neutron stars) and they play a decisive role in their dynamical
evolution. A fundamental theoretical question related with this concerns investigation of the so-
called gravitational MHD dynamo effect, responsible for the self-generation of magnetic fields in
these systems. Experimental observations and theoretical models, based on fluid MHD descrip-
tions of various types support the conjecture that accretion discs should be characterized by
coherent and slowly time-varying magnetic fields with both poloidal and toroidal components.
However, the precise origin of these magnetic structures and their interaction with the disc
plasmas is currently unclear. The aim of this paper is to address this problem in the context
of kinetic theory. The starting point is the investigation of a general class of Vlasov-Maxwell
kinetic equilibria for axi-symmetric collisionless magnetized plasmas characterized by tempera-
ture anisotropy and mainly toroidal flow velocity. Retaining finite Larmor-radius effects in the
calculation of the fluid fields, we show how these configurations are capable of sustaining both
toroidal and poloidal current densities. As a result, we suggest the possible existence of a ki-
netic dynamo effect, which can generate a stationary toroidal magnetic field in the disc even
without any net radial accretion flow. The results presented may have important implications
for equilibrium solutions and stability analysis of accretion disc dynamics.
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1. Introduction: magnetic fields in accretion discs
In this paper basic issues concerned with the origin and the structure of magnetic fields

in accretion disc (AD) plasmas are discussed, with particular reference to the dynamo
phenomenon which leads to the self-generation of the magnetic field appearing in these
systems. More precisely, we address the problem of the generation of both the poloidal
and toroidal components of the AD magnetic field as a consequence of plasma currents
produced purely by collisionless and quasi-stationary kinetic mechanisms.

Experimental observations and theoretical models based on fluid MHD descriptions
suggest that accretion discs should be characterized by coherent and slowly time-varying
magnetic fields with both poloidal and toroidal components (see for example Frank et al.,
2002 and Szuszkiewicz & Miller, 2001). An interesting development within this context
has been the work by Coppi (2005) and Coppi & Rousseau (2006), who showed that
stationary magnetic configurations in AD plasmas, for both low and high magnetic en-
ergy densities, can exhibit complex magnetic structures characterized locally by plasma
rings with closed nested magnetic surfaces. However, even the most sophisticated fluid
models are still not able to give a satisfactory explanation for all of the complexity of
the phenomena arising in these systems. In particular, the precise origin of these mag-
netic structures and their interaction with the disc plasmas remains unclear. This is
especially true for what concerns the toroidal magnetic field. Usually it is thought that
such fields are the result of non-stationary processes associated with some ongoing in-
stabilities in the plasma (possibly the same ones responsible for the accretion), but the
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actual mechanisms for their generation are still a matter of debate. In contrast with
these fluid descriptions, the aim of this paper is to address this problem in the context
of kinetic theory, which can provide a description of the plasma dynamics at a more
fundamental level (Cremaschini et al., 2008 and 2010). The work is based on results pre-
sented in a recent paper by Cremaschini et al. , (2010), concerning the investigation of a
general class of asymptotic (i.e., quasi-stationary) Vlasov-Maxwell kinetic equilibria for
axi-symmetric collisionless magnetized plasmas characterized by temperature anisotropy
and mainly toroidal flow velocity. Note that what is meant here by the term “equilib-
rium”is in general a stationary-flow solution. Retaining finite Larmor-radius effects in the
calculation of the fluid fields, we show how these configurations are capable of sustaining
both toroidal and poloidal current densities. As a result, for these configurations of the
magnetic field, we conjecture the possible existence of a quasi-stationary kinetic dynamo
effect which can generate a stationary toroidal magnetic field in the disc even without
any net radial accretion flow. The theory presented is of interest for improving our under-
standing of magnetic fields in accretion discs, concerning both their local structure and
generation mechanisms. These results may also have important implications for further
studies of the equilibrium solutions and the stability analysis of accretion disc dynamics.

2. Basic assumptions and notation
For what concerns the notation adopted and the basic assumptions about the AD

plasma and the magnetic field configuration, we refer to the paper by Cremaschini et al. ,
(2010). The same holds also for the meaning of the dimensionless parameters ε, εM , δ
and δT s used in constructing the asymptotic kinetic theory and its relevant expansions.
For the sake of clarity, we recall that the present analysis is restricted to the particular
situation where the equilibrium magnetic field B admits, at least locally, a family of
nested axi-symmetric closed toroidal magnetic surfaces {ψ(r)} ≡ {ψ(r) = const.}, where
ψ denotes the poloidal magnetic flux of B (see Coppi (2005), Coppi & Rousseau (2006)
for a proof of the possible existence of such configurations in the context of astrophysical
accretion discs; see also Cremaschini et al. , (2010) for further discussion of this). In this
situation, a set of magnetic coordinates (ψ,ϕ, ϑ) can be defined locally, where ϑ is a
curvilinear angle-like coordinate on the magnetic surfaces ψ(r) = const. In particular,
we shall assume that the magnetic field is slowly varying in time and of the form

B ≡ ∇× A = Bself (r, εM t) + Bext(r, εM t), (2.1)

where Bself and Bext denote the self-generated magnetic field produced by the AD
plasma and a non-vanishing external magnetic field produced by the central object. We
also take the self field to be the dominant component, while Bself and Bext are defined as

Bself = I(r, εM t)∇ϕ + ∇ψp(r, εM t) ×∇ϕ, (2.2)
Bext = ∇ψD (r, εM t) ×∇ϕ, (2.3)

where BT ≡ I(r, εM t)∇ϕ and BP ≡ ∇ψp(r, εM t) × ∇ϕ are the toroidal and poloidal
components of the self-field.

3. Asymptotic stationary solution and analytical expansion
In this section we briefly summarize the solution for the asymptotic stationary kinetic

distribution function (KDF) for the case considered here, and its appropriate analytic
expansion for describing strongly magnetized collisionless AD plasmas in which the tem-
perature is anisotropic (Cremaschini et al., 2010). An extended treatment can be found
in Cremaschini et al. (2010). A convenient solution for the KDF in this configuration is
given by

f̂∗s =
ηs

(2π/Ms)
3/2 (

T‖∗s

)1/2
T̂⊥s

exp

{
−H∗s

T‖∗s
− m′

sB
′

∆̂Ts

}
, (3.1)
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which we refer to as the Generalized bi-Maxwellian KDF, where 1
∆̂T s

≡ 1
T̂⊥s

− 1
T‖∗s

, with

the following kinetic constraints (Cremaschini, 2010): ηs

T̂⊥s
= β̂∗s(ψ∗s), T‖∗s = T‖∗s(ψ∗s),

B ′

∆̂T s

= α̂∗s(ψ∗s) and H∗s = Es− Zs e
c ψ∗sΩs(ψ∗s). Here ψ∗s is proportional to the canonical

momentum, Es is the total particle energy and m′
s is the gyrokinetic magnetic moment.

Then, for strongly magnetized AD plasmas a convenient analytical expansion for f̂∗s can
be made in terms of the small dimensionless parameter ε. Retaining only the leading-
order expression for the guiding-center magnetic moment m′

s � µ′
s = Ms w ′2

2B ′ , the following
relation holds to first order in ε: f̂∗s = f̂s [1 + hDs ] + O(εn ), n � 2. Here, the zero order
distribution f̂s is expressed as

f̂s =
ns

(2π/Ms)
3/2 (

T‖s

)1/2
T⊥s

exp

{
−Ms (v − Vs)

2

2T‖s
− Msw

′2

2∆Ts

}
, (3.2)

which we will call the bi-Maxwellian KDF, with 1
∆T s

≡ 1
T⊥s

− 1
T‖s

being related to the tem-
perature anisotropy, while the quantity hDs represents the diamagnetic part of the KDF
f̂∗s , which depends on the thermodynamic forces associated with the gradients of the
fluid fields (Cremaschini et al. , (2010)). As a consequence of the asymptotic expansion,
fluid moments associated to the stationary KDF can be computed analytically. In partic-
ular, the total flow velocity Vtot

s takes on the form ntot
s Vtot

s ≡
∫

dvvf̂∗s � ns [Vs +∆Us ],
where by definition Vs = Ωs(ψ)Reϕ is the leading order term, which is purely toroidal,
while ∆Us represents the self-consistent finite Larmor-radius (FLR) velocity corrections
of first order, with both toroidal and poloidal components (Cremaschini, 2010).

4. The Ampere equation and the “kinetic dynamo”
In this section we investigate the consequences of the kinetic treatment developed here

concerning magnetic field generation, showing that, besides a self-generated poloidal
magnetic field, the kinetic equilibrium can also sustain a quasi-stationary toroidal field
(kinetic dynamo). This is diamagnetic in origin and is due to the combined effects of FLR
corrections and temperature anisotropies. For seeing this, consider the Ampere equation.
Using the analytic calculation of the fluid fields discussed in the previous section, this
can be written as follows for the self-generated magnetic field:

∇× Bself =
4π

c

∑
s=i,e

qsns [Vs + ∆Us ] . (4.1)

The toroidal component of this equation gives the generalized Grad-Shafranov equation
for the poloidal flux function ψp, which in this approximation becomes:

∂bψp

∂ϑ
+

∂bϑ

∂ψ
= − 4π

Rc
J

∑
s=e,i

qsns [Ωs (ψ) R + ∆ϕs ] , (4.2)

where bψp
≡ ( J

R2 ∇ψp · ∇ϑ) and bϑ ≡ ( J
R2 |∇ψp |2), while J ≡ 1

|∇ψ×∇ϕ·∇ϑ| is the Jacobian
of the coordinate transformations. The remaining terms in Eq.(4.1) give the equation for
the toroidal component of the magnetic field I (ψ ,ϑ)

R . In the same approximation, this is:

∇I(ψ, ϑ) ×∇ϕ =
4π

c

∑
s=i,e

qsns
∆3s

B
∇ψ ×∇ϕ, (4.3)

where ∆3s contains the contributions of the species temperature anisotropies. For con-
sistency with the approximation introduced, in the small inverse aspect ratio ordering,
it follows that ∂I (ψ ,ϑ)

∂ϑ = 0 + O(δk ), i.e., to leading order in δ: I = I(ψ) + O(δk ), with
k � 1. This is the only constraint imposed on the kinetic solution by the Ampere equation
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(Cremaschini et al. 2010), which in turn also requires that the corresponding current den-
sity in Eq. (4.3) is necessarily a flux function. Then, correct to O(ε), O(ε0

M ) and O(δ0),
the differential equation for I(ψ) becomes:

∂I(ψ)
∂ψ

=
4π

c

∑
s=e,i

qsns
∆3s

B
, (4.4)

which uniquely determines an approximate solution for the toroidal magnetic field. This
result is remarkable because it shows that there can exist a stationary kinetic dynamo
effect which generates an equilibrium toroidal magnetic field without requiring any net
accretion and without any possible instability/turbulence phenomena. This new mech-
anism results from poloidal currents arising due to the FLR effects and temperature
anisotropies which are characteristic of the equilibrium KDF for collisionless plasmas.
The self-generation of the stationary magnetic field is purely diamagnetic. In particular,
the toroidal component is associated with the drifts of the plasma away from the flux
surfaces. In the present formulation, possible dissipative phenomena leading to a non-
stationary self field have been ignored. Such dissipative phenomena probably do arise
in practice and could occur both in the local domain where the equilibrium magnetic
surfaces are closed and nested, and elsewhere. Temperature anisotropies are therefore an
important physical property of collisionless AD plasmas, giving a possible mechanism
for producing a stationary toroidal magnetic field. We stress that this effect disappears
altogether in the case of isotropic temperatures.

5. Conclusions
In this paper we have presented a kinetic formulation for the quasi-stationary dynamo

effect, responsible for the self-generation of magnetic fields in accretion discs around
compact objects. The theory, arrived at within the framework of the Vlasov-Maxwell
description, is applicable to non-relativistic axi-symmetric collisionless AD plasmas im-
mersed in both gravitational and magnetic fields, the latter being assumed to admit
locally closed nested poloidal flux surfaces. In particular, it has been shown that a colli-
sionless AD plasma with temperature anisotropy can produce both poloidal and toroidal
asymptotic stationary magnetic fields. For the magnetic field configuration considered
here, this may occur even without any net radial accretion flow. This remarkable conclu-
sion can cast further light on the physical mechanisms responsible for the generation of
magnetic fields in accretion discs and their structure. Finally, these results can also have
important implications for our understanding of the equilibrium properties of accretion
discs and their dynamical stability properties.
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