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ON THE BOUNDARY SPECTRUM IN BANACH ALGEBRAS

S. MOUTON

We investigate some properties of the set Sa(a) = {A € C: A—a € 8S} (which we
call the boundary spectrum of a) where 3S denotes the topological boundary of the
set S of all non-invertible elements of a Banach algebra A, and where ¢ is an element
of A.

1. INTRODUCTION AND PRELIMINARIES

Let A be a complex Banach algebra with unit 1. We shall denote the spectrum
of an element ¢ in A by o(a) and the spectral radius of a in 4 by r(a) (or by o(a, A)
and r{a, A) respectively, if the particular Banach algebra needs to be emphasized). The
distance from an element o € C to a subset E of C will be denoted by d(a, E), and 6(a)
(or 8(a, A), if necessary) will indicate the distance d(0,0(a)) from 0 to the spectrum of
a. If X € C, then we shall write A for the element A1 in A. We recall that if a ¢ o{a),
then d(a,0(a)) = 1/(1"(((1 - a)‘l)) ([1, Theorem 3.3.5]).

If E is a subset of a metric space X, then JxE denotes the topological boundary of
E and inty E the topological interior of E relative to X. For an r > 0 and an element
z in X, the notation By(z,e) will be used to denote the open ball relative to X with
centre z and radius €. (If the choice of a metric space X is clear, the subscript X will be
dropped.)

In this paper we consider the set Ss(a) = {A € C: A —a € 8S} (or Ss(a, A), if
the particular Banach algebra needs to be emphasized) where S (or Sy, if necessary)
denotes the set of all non-invertible elements of A. Some properties of this set are
investigated: in particular the relationship between Ss(a, A) and S3(a, B) where B is a
closed subalgebra of a Banach algebra A such that B contains the unit of A, and the
relationship between Sp(a, A) and S3(Ta, B) where B is another Banach algebra and
T : A — B a homomorphism. Finally, some results involving the boundary spectrum
Ss(a) of a positive element a in an ordered Banach algebra are obtained.
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2. BOUNDARY SPECTRUM

Let A be a complex Banach algebra with unit 1 and let S be the set of all non-
invertible elements of A. Then S is a closed subset of A. Define, for a € A, the set Sp(a)
in the complex plane as follows:

Ss(a) ={re€C:A-a€dS}
We shall call this set the boundary spectrum of a in A. Also define, for a € A,
r1(a) =sup{|\| : A € Bo(a)}

and
r2(a) = sup{|\| : X € Ss(a)}.

PROPOSITION 2.1. Let A be a Banach algebra and a € A. Then do(a)
C Ss(a) C o(a); and therefore 1(a) = r2(a) = r(a), and if a & o(a), then d(a,80(a))
= d(a, Ss(a)) = d(e, o(a)).

Proor: To prove that do(a) C Ss(a), let A € do(a) and £ > 0. Then there exist a
A € B(M\€)No(a) and a )y € B(A, )N (C\o(a)). If by = A\; —a and b, = A; — a, then
by € S, b, & S and by,b, € B(A — a,e). Therefore A — a € 389, so that A € Sp(a). This
proves that do(a) C Ss(a), and since S is closed, 8S C S, so that Sp(a) C o(a). 0

It follows from Proposition 2.1 that, for every a € A, the set Sp(a) is non-empty.
Since @S is closed, Sp(a) is closed, and since S(a) is contained in the spectrum of a, it
is bounded as well; in fact, Sp(a) C {A € C: |A| < r(a)}. Therefore Ss(a) is a compact
set.

In general, do(a) # Sp(a). We proceed to illustrate this with an example.

ExXAMPLE 2.2. ([1, Remark 1, p.56]) Let I2(Z) be the Hilbert space of all bilateral
square-summable sequences and {e, : n € Z} the orthonormal basis where, for each
integer n, the vector e, is (..., €1, (&), &, .. .), where &, = 1 and &; = O for all integers 5
different from n. (In this case, the term in round brackets indicates the one corresponding
to index zero.) Let T, R : [2(Z) — I2(Z) be the weighted shifts

0 if n=-1
Te, = if n
eny1 if nF~1

and

e if n=-1
Re,, =
{0 if n# -1

Then 0 € o(T) and o(T + AR) is contained in the unit circle for all A # 0.
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Moreover, if 0 < |A| < 1, then A is an eigenvalue of T. Indeed, if {; = 0 for all
j € Nu{0} and £_; = Xi~! for all j € N, then the (non-zero) element (..., £_y, (&), &1, - )
of I2(Z) is in the kernel of T' — AI.

(The above facts about the operators T and R also follow from ([3, Problem 84]).)

EXAMPLE 2.3. Let [2(Z) be the Hilbert space of all bilateral square-summable se-
quences, A the Banach algebra £(1?(Z)) of all bounded linear operators on [*(Z) and
T the element of A defined in Example 2.2. Then 9o (T') is properly contained in Sy(T).

PROOF: Let (A;) be a sequence different from zero converging to zero, R the operator
defined in Example 2.2 and T,, = T + AyR (n € N). Then ||T, — T|| — 0. Moreover,
by Example 2.2, each T, is invertible and T is not invertible. Hence T' € 8S. Therefore
—T € 08, and so 0 € S3(T). However, Example 2.2 together with the remark thereafter
imply that 0 is an interior point of o(T"), and so 0 & 9o(T). 0

We recall the following well-known property of boundary points of the set of invertible
(or non-invertible) elements:

THEOREM 2.4. ([10, Theorem 2.5, p. 397]) Let A be a Banach algebra and
a € A. Ifa € 38, then a is a topological divisor of zero.

From the above theorem we immediately obtain the following property of the bound-
ary spectrum of a:

COROLLARY 2.5. Let A be a Banach algebra and a € A. If A € Sy(a), then
A — a is a topological divisor of zero.

LEMMA 2.6. Let A be a Banach algebra, a € 3S and d an invertible element.
Then ad € 8S and da € 3S.

ProorF: If a € 35S and d is invertible, then for each ¢ > 0 there exist elements
¢ € SNB (a, (e/||d|[)) and c; € (A\S)NB (a, (e/lld")) It follows that c;d € SNB(ad, €)
and cyd € (A\S) N B(ad, €). Hence ad € 885, and similarly da € 8S. 1|

It follows from Lemma 2.6 that a € 35 if and only if Aa € 88, for all A #0.

PROPOSITION 2.7. Let a be an invertible element of a Banach algebra A.
Then Sp(a~") = (Sa(a)) ™.

PROOF: For any A # 0 and any invertible element a € A we have A —a~!
= Aa—(1/A))at. Soif A € Ss(a™!), then A(a—(1/A))a™? € 8S. It follows from Lemma
2.6 that a — (1/)) € 8S, so that 1/A € Sp(a). We have proved that Sp(a~) C (Ss(a)) ™"
for all invertible elements a, and therefore also (Sa(a))_1 C Ss(a~?) for all invertible
a. 1

Further mapping properties of S will be investigated in a future paper.

Let B be a closed subalgebra of a Banach algebra A such that B contains the unit
element 1 of A. It is well known that if a € B, then do(a, B) C 80(a, A) ([1, Theorem
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3.2.13]). We shall show that Sp(a, B) C Ss(a, A) holds as well. In order to do this, we
need the following results, some of which are interesting in their own right.

THEOREM 2.8. ([1, Theorem 3.2.13 (i)]) Let B be a closed subalgebra of a Ba-
nach algebra A such that B contains the unit element 1 of A. Then B\Sp is the union
of all components of BN (A\S4) containing points of B\Ss.

LEMMA 2.9. Let B be a closed subalgebra of a Banach algebra A such that B
contains the unit element 1 of A. If E is a subset of A, then 9gE C 94 F.

THEOREM 2.10. Let B be a closed subalgebra of a Banach algebra A such that
B contains the unit element 1 of A. Then Sg is the union of S, and all the components
of BN (A\S,) containing points of Sp.

Proor: Clearly S4 C Sp. If z € Sg and z & S,, then z € BN (A\S4), so that
z is contained in a component of B N (A\S,4) which contains points of Sg. Hence Sp is
contained in the union of S4 and all the components of B N (A\S,) containing points of
Sp.

Conversely, let 2 be a component of B N (A\S,) which contains points of Sp. If
Q € Sg, then Q is a component of BN (A\S4) which contains a point of B\Sg. Theorem
2.8 implies that Q@ C B\Sg, which contradicts the fact that Q contains points of Sg.
Hence 2 C Sp. 0

The following result was proved in [2)], using the fact that boundary points of the set

of invertible elements of a Banach algebra are topological divisors of zero (see Theorem
2.4) and therefore permanently singular. We provide an alternative proof.

THEOREM 2.11. ([2, Corollary 18, p. 14]) Let B be a closed subalgebra of a
Banach algebra A such that B contains the unit element 1 of A. Then 35Sg C 8454.

Proor: To prove that 95Sp C 0pS4, suppose that £ & 85S,4. If z € B, then
z € 0pSp, so suppose that £ € B. Then there exists an ¢ > 0 such that either (i)
Bp(z,€) C Sa or (ii) Bp(z,€) € B\S4. Since S4 C Sp, case (i) implies that Bg(z,¢)
C Sp, so that £ & OpSp, so suppose that Bp(z,¢) is contained in a component § of
BN (A\S,). If Q contains points of Sz, then by Theorem 2.10, 2 is contained in Sg,
so that z & 0pSp. If 2 contains no points of Sp, then 2 C B\Sp, so that once again,
z ¢ aBS B-

We have proved that 3pSp C 9p.54. Together with Lemma 2.9 the result follows. 1]

COROLLARY 2.12. Let B be a closed subalgebra of a Banach algebra A such
that B contains the unit element 1 of A. Ifa € B, then Sg(a, B) C Ss(a, A).

ProOOF: If A € Sy(a, B), then A — a € 9pSp. It follows from Theorem 2.11 that
A —a € 848,, so that A € Ss(a, 4). 0

Now we consider the situation where A and B are Banach algebras (with B not
necessarily a subalgebra of A) and T : A - B a homomorphism, and investigate the
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relationship between Ss(a, A) and Ss(Ta, B), where a € A. We first establish some
properties involving TS, and S, and T(84S4) and 85Sp. The proof of the next lemma
is trivial:

LEMMA 2.13. Let A and B be Banach algebras and T : A —+ B a homomor-
phism. Then the following hold:

1. T8 C S,4.
2. IfT is surjective, then Sp C TS,.
3. IfT is bijective, then T~'Sp = S4 and TS4 = Sg.

THEOREM 2.14. Let A and B be Banach algebras and T : A — B a continuous
isomorphism. Then T(34S4) = 35S5. ' _

PROOF: If £ € 8454, then there exist sequences (z,) in S, and (y,) in A\S4 such
that z, — z and y, — «. It follows from Lemma 2.13 (3) that Ty, € B\Sp and
Tz, € Sg. Since T is continuous, Tz, — Tz and Ty, — Tz. Hence Tz € JpS5.

Conversely, if y € 05Sg, say y = Tz with £ € A, then there exist sequences (z,) in
Sp and (w,) in B\Sp such that z, — y and w, — y. It follows from Lemma 2.13 (3)
that z, = Tz, with z, € S4 and that w, € B\TSy, so that w, = Tu, with u, € A\S,.
Since T is bijective, linear and bounded, T ! exists and is linear and bounded (by the
Bounded Inverse Theorem), which implies that z, — = and u, — z. Since (z,) is in S4
and (u,) is in A\Sj, it follows that € 84S54. 0

In the following result ker T will denote the kernel of T'. '

THEOREM 2.15. Let A and B be Banach algebras, T : A — B a continuous
isomorphism and a € A. Then

Ss(a, A) = S5(Ta,B) = | J Ss(a+b,A).
beker T

Proor: If A € Ss(a, A), then A — a € 8,54, so that Theorem 2.14 implies that
A—=Ta=T(\ - a) € 9gSp, and so A € S3(Ta, B).

If A € Sp(a + b, A) for some b € kerT, then A — Ta = T(\A ~a - b) € 35S5p, by
Theorem 2.14, so that A € Sy(Ta, B).

We have proved that

Sa(a, A) € Sp(Ta,B) and | J Ss(a+b,A) C Se(Ta, B).
beker T

If A € Sp(Ta,B), then T(A —a) = A — Te € 95Sp, so that Theorem 2.14 implies
that T(A — a) € T(8aS4). The injectivity of T implies that A — a € 9454, so that
A € Sp(a, A). Since 0 € ker T, we obtain the following inclusions:

Ss(Ta, B) C Ss(a, A) € | J Ss(a+b,4)
bEker T

Hence the results follow. a
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3. APPLICATIONS IN ORDERED BANACH ALGEBRAS

In this section we investigate certain results in ordered Banach algebras involving
the boundary spectrum. From ([9, Section 3]) we recall that an algebra cone C of a
complex Banach algebra A with unit 1 is a subset of A containing 1 which is closed under
the following operations: addition, positive scalar multiplication, and multiplication. If
A has an algebra cone C, then A, or more specifically (A, C), is called an ordered Banach
algebra (OBA). If, in addition, C N —C = {0}, then C is called proper.

An algebra cone C of A induces an ordering “<” on A in the following way:

a<bifandonlyifb—aecC

(where a,b € A). This ordering is reflexive and transitive. Furthermore, C is proper if
and only if the ordering has the additional property of being antisymmetric. Considering
the ordering that C induces we find that C = {a € A: a > 0} and therefore we call the
elements of C positive.

An algebra cone C of A is called closed if it is a closed subset of A. Furthermore, C
is said to be normal if there exists a constant o > 0 such that it follows from 0 < a < b
in A that |ja]| < a|b||. It is well known that if C is normal, then C is proper. If C
has the property that if a € C and a is invertible, then a~! € C, then C is said to be
inverse-closed. If B is a Banach algebra such that 1 € B C A, then C N B is an algebra
cone of B, and hence (B,C N B) is an OBA.

In [9, 8], and later in [4, 5, 6, 7], some spectral theory of positive elements in
ordered Banach algebras was developed. In particular, we recall the following results:

THEOREM 3.1. ([9, Theorem 4.1(1)]) Let (A,C) be an OBA with C normal. If
a,b € A such that 0 < a < b, then r(a) < r(b).

We refer to the above property by saying that the spectral radius in (A4, C) is mono-
tone.

THEOREM 3.2. ([9, Theorem 5.2]) Let (A,C) be an OBA with C closed and
such that the spectral radius in (A, C) is monotone. If a € C, then r(a) € o(a).

Using the boundary spectrum we obtain the following (slightly stronger) analogues
of Theorem 3.2 and ([6, Theorem 3.3]):

PROPOSITION 3.3. Let (A,C) be an OBA with C closed and such that the
spectral radius in (A, C) is monotone. If a € C, then r(a) € Ss(a).

PROOF: If a € C, then by Theorem 3.2 r(a) € o(a). Hence r(a) € do(a) and so
r(a) € Ss(a). ' ' ' :

PROPOSITION 3.4. Let (A,C) be an OBA with C closed and inverse-closed,
and such that the spectral radius in (A,C) is monotone. If a is an invertible element of
C, then 4(a) € Ss(a).
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PRrOOF: If a € C and a is invertible, then a~! € C, since C is inverse-closed.
Proposition 3.3 implies that r(a~!) € Ss(a™!). Hence r{a~!) = 1/X, for some Xy € Ss(a),
by Proposition 2.7. Since r(a~!) = 1/(6(a)), the result follows.

In the following result B is a subalgebra of A but not necessarily closed in A.

THEOREM 3.5. Let(A,C) be an OBA and B a Banach algebra with1 € B C A.
1. Suppose that the spectral radius in (A,C) is monotone. If0 < a < b
with a,b € B and either 8o(a, B) = 8o(a, A) or Ss(a, B) = Sp(a, A), then

r(a, B) < r(b, B).

2. Suppose that the spectral radius in (B,C N B) is monotone. If 0 £ a < b
with a,b € B and either do (b, B) = do (b, A) or Sy(b, B) = Ss(b, A), then
r(a, A) < r(b, A).

Proor:

1. Since B is a subalgebra of A, we have that o(b,A) C o(b, B), so that
r(b, A) £ r{(b, B). The monotonicity of the spectral radius in (A4, C) im-
plies that r(a, A) < r(b, A). Finally, the assumption that either do(a, B)
= do(a, A) or Sp(a, B) = Ss(a, A) yields r(a, B) = r(a, A), by Proposition
2.1. Combining the results, it follows that r(a, B) < r(b, B).

2. Similarly as in (1), the fact that B is a subalgebra of A, the monotonicity
of the spectral radius in (B, C N B) and the additional assumption imply,
respectively, that r(a, A) < r(a, B), r(a, B) < (b, B) and r(b, B) = r(b, A),
which yield the result. 0

We note that Theorem 3.5 (2) is a stronger version of ([9, Proposition 4.5]).
For our next result we need the following lemma and theorem:

LEMMA 3.6. ([7, Lemma 4.1]) Let A be a Banach algebra, z,y € A and a € C.
If o — z is invertible and r((a — z)~'(z — y)) < 1, then a — y is invertible.

THEOREM 3.7. ({7, Proof of Theorem 4.2]) Let (A,C) be an OBA with C closed
and normal, and let £ € C. Ify € C such that z < y and either zy < yz or yz < zy,
and a is a positive real number such that a > r(z), then

r{la-z) Wy —12)) <r((@a-z) )r(y - 2).

Now let (A,C) be an OBA. Define, for each z € C, an analogue A’(z) of the set
A(z) (defined in ([7, Section 4])) as follows:

Alz)={yeA:z<y, zy<yzoryr<zy and
d(r(y), Se(z)) > d(a, Ss(z)) for all & € Sp(y)}

Then z € A'(z), A'(z) C C and A’(0) = C. Finally, the following theorem is a comple-
mentary result to ([7, Theorem 4.2]):
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THEOREM 3.8. Let (A,C) be an OBA with C closed and normal, and let z € C.
Then Ss(y) C Sa(z) +r(z — y) for all y € A'(z).

PROOF: Let y € A'(z). Then 0 < z < ¥, so that r(z) < r(y), by Theorem 3.1. If
r(z) = 7(y), then d(r(y), Sa(z)) = 0, by Proposition 3.3, so that, by the assumption,
d(a, Ss(z)) = 0 for all @ € Ss(y). This implies that d(a, Ss(z)) < r(z — y) for all
a € Sp(y), so that Sp(y) C Sa(z) +r(z —y).

So suppose that r(z) < r(y), and suppose there exists an a € Ss(y) such that
d(a, Sa(z)) > r(z — y). Proposition 3.3 implies that r(y) € Sp(y) and hence, by the
assumption, we may take & € R* with a > r(z). Since a ¢ o(z), it follows from
Proposition 2.1 that d(a, Ss(z)) = d(e,(z)), so that d(a, Sa(z)) = 1/(r((a - z)“)).
Therefore r((a - z)~!)r(z — y) < 1 with & € R* and o > r(z).

It follows from Theorem 3.7 that r((a — z)~'(y — z)) < 1, so that a & o(y), by
Lemma 3.6. Hence a ¢ Sp(y) — a contradiction. Therefore d(a, Sa(x)) < r(z - y) for
all a € Ss(y), so that Sp(y) € Sa(z) +r(z—y).
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