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ON THE BOUNDARY SPECTRUM IN BANACH ALGEBRAS

S. MOUTON

We investigate some properties of the set Sg(a) = {A € C : A — a € dS} (which we
call the boundary spectrum of a) where dS denotes the topological boundary of the
set S of all non-invertible elements of a Banach algebra A, and where a is an element
of A

1. INTRODUCTION AND PRELIMINARIES

Let A be a complex Banach algebra with unit 1. We shall denote the spectrum
of an element a in A by a(a) and the spectral radius of o in A by r(a) (or by a(a, A)
and r(a, A) respectively, if the particular Banach algebra needs to be emphasized). The
distance from an element a € C to a subset E of C will be denoted by d(a, E), and 5(a)
(or <5(a, A), if necessary) will indicate the distance d(0,a(a)) from 0 to the spectrum of
a. If A € C, then we shall write A for the element Al in A. We recall that if a £ <r(a),
then d(a,a(a)) = l / ( r ( (a - a)"1)) ([1, Theorem 3.3.5]).

If E is a subset of a metric space X, then dxE denotes the topological boundary of
E and int*15 the topological interior of E relative to X. For an r > 0 and an element
x in X, the notation Bx(x, e) will be used to denote the open ball relative to X with
centre x and radius e. (If the choice of a metric space X is clear, the subscript X will be
dropped.)

In this paper we consider the set Sa(a) = {A € C : A — a € dS} (or Sa(a, A), if
the particular Banach algebra needs to be emphasized) where S (or SA, if necessary)
denotes the set of all non-invertible elements of A. Some properties of this set are
investigated: in particular the relationship between Sa(a, A) and Sg(a,B) where B is a
closed subalgebra of a Banach algebra A such that B contains the unit of A, and the
relationship between Sd(a,A) and Sg(Ta,B) where B is another Banach algebra and
T : A —> B a homomorphism. Finally, some results involving the boundary spectrum
Sa{a) of a positive element a in an ordered Banach algebra are obtained.
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2. BOUNDARY SPECTRUM

Let A be a complex Banach algebra with unit 1 and let 5 be the set of all non-
invertible elements of A. Then 5 is a closed subset of A. Define, for a G A, the set Sa(a)
in the complex plane as follows:

Sa{a) = {A G C : A - a G 95}

We shall call this set the boundary spectrum of a in A. Also define, for a £ A,

r!(a)=sup{|A| : A G da(a)}

and
r2(a) = sup{|A| : A G Sa(a)}.

PROPOSITION 2 . 1 . Let A be a Banach algebra and a £ A. Then da{a)
C Sa(a) C a(a); and therefore ri(o) = r2(a) = r(a), and if a £ o{a), then d(a,da(a))
= d(a,Sa(a))=d(a,<r(a)).

PROOF: TO prove that 9<r(a) C Sa{a), let A G da{a) and e > 0. Then there exist a
Ai G B(X, e) D cr(a) and a A2 G B(X, e) D (C\«r(a)). If 6i = Ai — o and 62 = A2 - a, then
61 G 5, bi & S and bi,t>2 £ B(X - a,e). Therefore A - a G 95, so that A G Sd(a). This
proves that da(a) C Sa{a), and since 5 is closed, dS C 5, so that Sa(a) C a(a). D

It follows from Proposition 2.1 that, for every a £ A, the set Sa(a) is non-empty.
Since dS is closed, Sa(a) is closed, and since Sa{a) is contained in the spectrum of a, it
is bounded as well; in fact, Sa(a) C {A G C : |A| < r(a)}. Therefore Sa(a) is a compact
set.

In general, dcr(a) ^ Sa{a). We proceed to illustrate this with an example.

EXAMPLE 2.2. ([1, Remark 1, p.56]) Let Z2(Z) be the Hilbert space of all bilateral
square-summable sequences and {en : n € Z} the orthonormal basis where, for each
integer n, the vector en is (..., £_!, (^0), 6> • • •)> where £„ = 1 and 6 = 0 for all integers i
different from n. (In this case, the term in round brackets indicates the one corresponding
to index zero.) Let T, R : Z2(Z) - • Z2(Z) be the weighted shifts

en+i if n ^ - 1

and
if n = - 1

0 if n ± - 1 .•{:
Then 0 G a(T) and a(T + XR) is contained in the unit circle for all A ^ 0.
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Moreover, if 0 < |A| < 1, then A is an eigenvalue of T. Indeed, if £, = 0 for all
j € NU{O} and f__, = AJ - 1 for all j G N, then the (non-zero) element ( . . . , £_i, (f0), f I , • • •)
of I2(Z) is in the kernel of T - XI.

(The above facts about the operators T and R also follow from ([3, Problem 84]).)

EXAMPLE 2.3. Let Z2(Z) be the Hilbert space of all bilateral square-summable se-
quences, A the Banach algebra C{l2(Z)) of all bounded linear operators on Z2(Z) and
T the element of A denned in Example 2.2. Then da(T) is properly contained in Sg(T).

P R O O F : Let (An) be a sequence different from zero converging to zero, R the operator
defined in Example 2.2 and Tn = T + XnR (n G N). Then \\Tn - T\\ ->• 0. Moreover,
by Example 2.2, each Tn is invertible and T is not invertible. Hence T G dS. Therefore
—T G dS, and so 0 € Sg(T). However, Example 2.2 together with the remark thereafter
imply that 0 is an interior point of <r(T), and so 0 £ da{T). D

We recall the following well-known property of boundary points of the set of invertible
(or non-invertible) elements:

THEOREM 2 . 4 . ([10, Theorem 2.5, p. 397]) Let A be a Banaci algebra and

a € A. Ifa€ dS, then a is a topological divisor of zero.

From the above theorem we immediately obtain the following property of the bound-
ary spectrum of a:

COROLLARY 2 . 5 . Let A be a Banach algebra and a G A. If X £ S9(a), then

X — a is a topological divisor of zero.

LEMMA 2 . 6 . Let A be a Banach algebra, a S dS and d an invertible element.

Then ad € 9 5 and da G dS.

PROOF: If a G 95 and d is invertible, then for each e > 0 there exist elements
C! G 5 f W a , (e/||d||)) andc2 G (A\S)nB(a,(e/\\d\\)Y It follows that cxd G SnB(ad,e)
and c2d G {A\S) D B(ad, e). Hence ad G dS, and similarly da G dS. D

It follows from Lemma 2.6 that a G 95 if and only if Xa G dS, for all A / 0.

PROPOSITION 2 . 7 . Let a be an invertible element of a Banach algebra A.
Then Saia-1) = (5a(a))"1.

PROOF: For any A ^ 0 and any invertible element a G A we have A - a"1

= A(o-(1/A))a-1. So if A G Sofa-1), then A(a-(1/A))a~l G dS. It follows from Lemma
2.6 that a - (I/A) G dS, so that I/A G Sd(a). We have proved that Safa-1) C (5a(o))~1

for all invertible elements o, and therefore also (Sd{a))~ C Sg(a~l) for all invertible

D
Further mapping properties of Sg will be investigated in a future paper.
Let B be & closed subalgebra of a Banach algebra A such that B contains the unit

element 1 of A. It is well known that if a G B, then da(a, B) C da(a, A) ([1, Theorem
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3.2.13]). We shall show that S9(a,B) C Sd(a,A) holds as well. In order to do this, we
need the following results, some of which are interesting in their own right.

THEOREM 2 . 8 . ([1, Theorem 3.2.13 (i)]) Let B be a closed subalgebra of a Ba-
nach algebra A such that B contains the unit element 1 of A. Then B\SB is the union
of all components of BCs (i4\5>i) containing points ofB\SB-

LEMMA 2 . 9 . Let B be a closed subalgebra of a Banach algebra A such that B
contains the unit element 1 of A. IfE is a subset of A, then dsE C 8AE.

THEOREM 2 . 1 0 . Let B be a closed subalgebra of a Banach algebra A such that
B contains the unit element 1 of A. Then SB is the union of SA and all the components
of Bn (A\SA) containing points ofSa-

PROOF: Clearly SA C SB- If X G S B and x & SA, then x € Bn (A\SA), so that
x is contained in a component of B D (i4\S,i) which contains points of 5B- Hence SB is
contained in the union of SA and all the components of B D (J4\S/I) containing points of
SB-

Conversely, let Q be a component of B D (.A^/i) which contains points of SB- If
£2 % SB, then fi is a component of BC\ (A\SA) which contains a point of B\SB- Theorem
2.8 implies that fi C B\SB, which contradicts the fact that fi contains points of SB-
Hence QCSB. D

The following result was proved in [2], using the fact that boundary points of the set
of invertible elements of a Banach algebra are topological divisors of zero (see Theorem
2.4) and therefore permanently singular. We provide an alternative proof.

THEOREM 2 . 1 1 . ([2, Corollary 18, p. 14]) Let B be a closed subalgebra of a
Banach algebra A such that B contains the unit element 1 of A. Then dBSB C dASA-

PROOF: TO prove that daSB Q dBSA, suppose that x & 8BSA- If X £ B, then
x & BBSB, SO suppose that x G B. Then there exists an e > 0 such that either (i)
BB(X,£) C 5A or (ii) BB{x,e) C B\SA- Since SA Q SB, case (i) implies that BB(x,e)
C SB, SO that x ft OBSB, SO suppose that BB{X, e) is contained in a component fi of
B n (J4\S,I). If fl contains points of SB, then by Theorem 2.10, SI is contained in SB,

so that x & &BSB- If fi contains no points of 5a, then Q C B\SB, SO that once again,
x £ dBSB.

We have proved that 8BSB Q 9BSA- Together with Lemma 2.9 the result follows. D

COROLLARY 2 . 1 2 . Let B be a closed subalgebra of a Banach algebra A such
that B contains the unit element 1 of A. If a G B, then Se(a,B) C Ss(a, A).

PROOF: If A G Sg(a,B), then X- a e dBSB- It follows from Theorem 2.11 that
A - a G dASA, so that A G Sg(a, A). D

Now we consider the situation where A and B are Banach algebras (with B not
necessarily a subalgebra of A) and T : A -¥ B a homomorphism, and investigate the
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relationship between Sd(a,A) and Se(Ta,B), where a € A. We first establish some
properties involving TSA and SB, and T(3ASA) and 3BSB- The proof of the next lemma
is trivial:

LEMMA 2 . 1 3 . Let A and B be Banach algebras and T : A -* B a homomor-

phism. Then the following hold:

1. T-lSBCSA.

2. IfT is surjective, then SB C TSA.

3. IfT is bijective, then T~lSB = SA and TSA = SB-

THEOREM 2 . 1 4 . Let A and B be Banach algebras and T : A —> B a continuous

isomorphism. Then T(8ASA) = OBSB-

PROOF: If x € 8ASA, then there exist sequences (xn) in SA and (j/n) in A\SA such
that xn ->• x and yn —• x. It follows from Lemma 2.13 (3) that Tyn e B\SB and
Txn € SB- Since T is continuous, Txn -+ Tx and Tyn -*• Tx. Hence Tx € dBSB-

Conversely, if y e 8BSB, say y = Tx with x 6 A, then there exist sequences (zn) in
SB and (wn) in B \ S B such that zn -> y and tun -> ?/. It follows from Lemma 2.13 (3)
that zn = Txn with xn € SA and that wn e B\TSA, so that wn = Tun with un € J4\S,I.

Since T is bijective, linear and bounded, T~l exists and is linear and bounded (by the
Bounded Inverse Theorem), which implies that i n - » i and un -t x. Since (in) is in SA
and (un) is in J4\S,I, it follows that x € 8ASA- D

In the following result kerT will denote the kernel of T.

THEOREM 2 . 1 5 . Let A and B be Banach algebras, T : A —> B a continuous
isomorphism and a € A. Then

Sd(a,A) = Sd(Ta,B)= (J S9(a + b,A).
dekerT

PROOF: If A 6 S0{a,A), then A - a 6 C^SA, SO that Theorem 2.14 implies that
A - Ta = T(A - o) € dBSB, and so A € 5a(ra, B).

If A € 5a(a + 6, /I) for some b € kerT, then A - Ta = T(X - a - b) e dBSB, by
Theorem 2.14, so that A € S9{Ta,B).

We have proved that

Sd{a, A) C S8(Ta, B) and ( J Sa(a + b,A)C Sa(Ta, B).
6ekerT

If A e S9{Ta,B), then T(A - o) = A - Ta 6 9B5B, so that Theorem 2.14 implies
that T(A - a) € T(dASA). The injectivity of T implies that A - o € 9^5^, so that
A € 5e(a,i4). Since 0 € kerT, we obtain the following inclusions:

Sa(Ta,B)CSd(a,A)C (J Sd(a + b,A)
iekerT

Hence the results follow. D
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3. APPLICATIONS IN ORDERED BANACH ALGEBRAS

In this section we investigate certain results in ordered Banach algebras involving
the boundary spectrum. Prom ([9, Section 3]) we recall that an algebra cone C of a
complex Banach algebra A with unit 1 is a subset of A containing 1 which is closed under
the following operations: addition, positive scalar multiplication, and multiplication. If
A has an algebra cone C, then A, or more specifically (A, C), is called an ordered Banach
algebra (OBA). If, in addition, C n — C = {0}, then C is called proper.

An algebra cone C of A induces an ordering '%" on A in the following way:

a < b if and only if b — a € C

(where a,b € A). This ordering is reflexive and transitive. Furthermore, C is proper if
and only if the ordering has the additional property of being antisymmetric. Considering
the ordering that C induces we find that C = {a € A : a ^ 0} and therefore we call the
elements of C positive.

An algebra cone C of A is called closed if it is a closed subset of A. Furthermore, C
is said to be normal if there exists a constant o > 0 such that it follows from 0 ^ a ^ 6
in A that ||a|| ^ ot\\b\\. It is well known that if C is normal, then C is proper. If C
has the property that if a e C and a is invertible, then a"1 € C, then C is said to be
inverse-closed. If B is a Banach algebra such that 1 € B C A, then C D B is an algebra
cone of B, and hence (B, C n B) is an OBA.

In [9, 8], and later in [4, 5, 6, 7], some spectral theory of positive elements in
ordered Banach algebras was developed. In particular, we recall the following results:

THEOREM 3 . 1 . ([9, Theorem 4.1(1)]) Let (A,C) be an OBA with C normal. If
a,b € A such that 0 ^ a < b, then r(o) ^ r(b).

We refer to the above property by saying that the spectral radius in (.4, C) is mono-
tone.

THEOREM 3 . 2 . ([9, Theorem 5.2]) Let (A, C) be an OBA with C closed and
such that the spectral radius in (A, C) is monotone. If a 6 C, then r(a) 6 o{a).

Using the boundary spectrum we obtain the following (slightly stronger) analogues
of Theorem 3.2 and ([6, Theorem 3.3]):

PROPOSITION 3 . 3 . Let (A,C) be an OBA with C closed and such that the
spectral radius in (A, C) is monotone. If a € C, then r(a) £ Sg(a).

PROOF: If a e C, then by Theorem 3.2 r(a) 6 a(a). Hence r(a) € da(a) and so
r(a) € Sd(a). D

PROPOSITION 3 . 4 . Let (A,C) be an OBA with C closed and inverse-closed,
and such that the spectral radius in (A, C) is monotone. If a is an invertible element of
C, then 6(o) e S9(a).
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P R O O F : If a e C and a is invertible, then a"1 € C, since C is inverse-closed.
Proposition 3.3 implies that r(a~1) € S a ^ " 1 ) . Hence r(a~1) = 1/AO for some Ao € Sg(a),
by Proposition 2.7. Since r ( a - 1 ) = l/(<$(a)), the result follows. D

In the following result B is a subalgebra of A but not necessarily closed in A .
THEOREM 3 . 5 . Let (A, C) be an OBA and B a Banach aigebra with U B C A

J. Suppose that the spectral radius in (A, C) is monotone. If 0 ^ a ^ b
with a, 6 6 B and either d<r(a, B) = da(a, A) or Sg(a, B) = SB{a, A), then
r(a,B)^r(b,B).

2. Suppose that the spectral radius in (B, C D B) is monotone. If 0 < a ^ b
with a,be B and either da(b,B) = do{b,A) or Sa(b,B) - Sa(b,A), then
r(a,A)^r(b,A).

PROOF:

1. Since B is a subalgebra of A, we have that a(b, A) C a(b, B), so that
r(b, A) ^ r(b, B). The monotonicity of the spectral radius in {A, C) im-
plies that r(a, A) < r(b, A). Finally, the assumption that either da(a, B)
= da(a, A) or Sg(a, B) = Sa(a, A) yields r(a, B) = r(a, A), by Proposition
2.1. Combining the results, it follows that r(a, B) < r(b, B).

2. Similarly as in (1), the fact that B is a subalgebra of A, the monotonicity
of the spectral radius in (B, C n B) and the additional assumption imply,
respectively, that r(a, A) < r(o, B), r(a, B) < r(b, B) and r(b, B) = r(b, A),
which yield the result. D

We note that Theorem 3.5 (2) is a stronger version of ([9, Proposition 4.5]).
For our next result we need the following lemma and theorem:

LEMMA 3 . 6 . ([7, Lemma 4.1]) Let A be a Banach algebra, x,y 6 A and a € C.
Ifa — x is invertible and r((a - x)~x(x — y)) < 1, then a - y is invertible.

THEOREM 3 . 7 . ([7, Proof of Theorem 4.2]) Let (A, C) be an OBA with C closed
and normal, and let x e C. IfyEC such that x < y and either xy ^ yx or yx ^ xy,
and a is a positive real number such that a > r(x), then

r((a - xy'iy - x)) ^ r((a - 1 ) " 1 ) ^ - x).

Now let (A, C) be an OBA. Define, for each x e C, an analogue A'{x) of the set
A{x) (defined in ([7, Section 4])) as follows:

A'(x) = {y 6 A : x < y, xy^yx or yx^xy and
d(r(y),Sd(x)) > d(a, Sd(x)) for all a e Sa(y)}

Then x € A'(x), A'(x) C C and A'(0) = C. Finally, the following theorem is a comple-
mentary result to ([7, Theorem 4.2]):
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THEOREM 3 . 8 . Let (A, C) be an OBA with C closed and normal, and let x&C.

Then Sa{y) Q SB(x) + r{x - y) for all ye A'(x).

PROOF: Let y e A'(x). Then 0 < x < y, so that r(x) < r{y), by Theorem 3.1. If

r(x) = r(y), then d(r(y),Sg(x)) = 0, by Proposition 3.3, so that, by the assumption,

d(a, Sg(x)) = 0 for all a G Sg(y). This implies that d(a, Sg(x)) ^ r(x - y) for all

a € Sd(y), so that S0(y) C Sg{x) + r(x - y).

So suppose that r(x) < r(y), and suppose there exists an a € Sg(y) such that

d{a, Sa(z)) > T{X — y). Proposition 3.3 implies that r(y) € Sg(y) and hence, by the

assumption, we may take a € R+ with a > r(x). Since a £ <r(x), it follows from

Proposition 2.1 that d(a,Sg(x)) = d(a,a{x)), so that d(a,Sg(x)) = l/(r{(a - x)'1)).

Therefore r((a - x)~1)r(x — y) < 1 with a € R+ and a > r(x).

It follows from Theorem 3.7 that r((a - x)"l(y - x)) < 1, so that a £ a{y), by

Lemma 3.6. Hence a & Sg(y) — a contradiction. Therefore d{a, Sg(x)) ^ r(x - y) for

all a e Sg(y), so that Sg(y) C Sg(x) + r(x - y). D
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