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Abstract
We propose an improved adjoint-based method for the reconstruction and prediction of the nonlinear wave field from
coarse-resolution measurement data. We adopt the data assimilation framework using an adjoint equation to search
for the optimal initial wave field to match the wave field simulation result at later times with the given measurement
data. Compared with the conventional approach where the optimised initial surface elevation and velocity potential
are independent of each other, our method features an additional constraint to dynamically connect these two control
variables based on the dispersion relation of waves. The performance of our new method and the conventional
method is assessed with the nonlinear wave data generated from phase-resolved nonlinear wave simulations using
the high-order spectral method. We consider a variety of wave steepness and noise levels for the nonlinear irregular
waves. It is found that the conventional method tends to overestimate the surface elevation in the high-frequency
region and underestimate the velocity potential. In comparison, our new method shows significantly improved
performance in the reconstruction and prediction of instantaneous surface elevation, surface velocity potential and
high-order wave statistics, including the skewness and kurtosis.

Impact Statement
In this study we propose a novel method to incorporate ocean surface wave measurement data for wave
forecasting. Our method accounts for the flow physics that govern the realistic wave evolution in the marine
environment and shows promising performance under various wave conditions. Even when the input data
are inadequate in the temporal and spatial resolution, the forecast wave field and its statistics obtained with
our method agree well with the true values. This method is therefore a valuable complement to the wave
measurements for future operational wave applications.

1. Introduction

In recent years, with the increasing capabilities in water wave measurement, substantial efforts have
been made to assimilate the observation data of water waves into computational models for wave
field reconstruction and prediction. In modern observational studies, the key wave properties and the
spatial distribution of the wave surface elevations and velocities can be measured using remote sensing
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techniques (Laxague, Curcic, Björkqvist, & Haus, 2017; Laxague, Zappa, LeBel, & Banner, 2018; Lund,
Collins, Graber, Terrill, & Herbers, 2014; Lyzenga et al., 2015; Plant, Holland, & Haller, 2008). Data
assimilation techniques, such as the Kalman filtering method and the adjoint method, are necessary
to incorporate measured wave data into the numerical wave models when the required wave field
information is not directly measured (e.g. Aragh & Nwogu, 2008; Nwogu & Lyzenga, 2010; Wang & Pan,
2021; Wu, 2004; Yoon, Kim, & Choi, 2015). It remains a challenge to reconstruct a high-resolution
phase-resolved wave field from measurement data. Specifically, the accuracy of the reconstructed wave
field is often limited because of the measurement noise and the insufficient resolution of the measured
data. To reduce the negative impacts caused by these limitations, we propose an improved method to
reconstruct the full phase-resolved wave field from the noisy measurement of wave surface elevation by
utilising the adjoint method for data assimilation.

Data assimilation refers to the combination of data and models. One of the aims of data assimilation is
to obtain the optimal unknown variables that fit the data distributed over the observational time duration
(Law & Stuart, 2012). In particular, the adjoint-based data assimilation methods solve optimisation
problems with constraints imposed by the physics-based models, where the goal is to find the optimal
controls that minimise a predefined cost function used to quantify the difference between the data and
the model prediction. The control variables can be the initial conditions (Gronskis, Heitz, & Mémin,
2013), the boundary conditions (Gronskis et al., 2013; Xu & Wei, 2016) or the parameters in the
models (Foures, Dovetta, Sipp, & Schmid, 2014). To solve the constrained optimisation problem in data
assimilation, the gradient-based optimisation methods are often used. Compared with the stochastic
methods (Cavazzuti, 2012), the gradient-based optimisation methods require a smaller number of
iterations for convergence and thus save a significant amount of computational cost for complex system
applications. The optimisation algorithm is a key component of the data assimilation scheme. For
applications in complex systems, the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
method (Byrd, Lu, Nocedal, & Zhu, 1995; Zhu, Byrd, Lu, & Nocedal, 1997) has been widely used
because the memory requirement is affordable even when the dimension of the Hessian matrix is
high, say, O(109). The method utilises the gradients of the cost function with respect to the control
parameters to determine the search direction to minimise the cost function. However, the gradients are
usually computationally expensive to calculate in a complex system with large degrees of freedom.
A general approach to solve this issue is via the adjoint model, which is extensively used in fields
such as meteorology, oceanography, fluid dynamics and climate modelling (Errico, 1997; Gronskis
et al., 2013; Moore et al., 2004; Xu & Wei, 2016). The main benefit of the adjoint model is that the
computational cost of the gradient calculation is independent of the degrees of freedom of the control
variables (Mishra, Mani, Mavriplis, & Sitaraman, 2015). Therefore, the adjoint model is suitable for
data assimilation applications in complex systems with a large number of control parameters, such as
the complex ocean wave field.

The phase-resolved wave models have attracted increasing attention in recent studies of wave recon-
struction and prediction because of their capabilities to forecast the evolution of individual waves
deterministically (Aragh & Nwogu, 2008; Qi, Wu, Liu, Kim, & Yue, 2018; Qi, Wu, Liu, & Yue, 2018;
Wang & Pan, 2021; Wu, 2004). In ocean wave simulations based on phase-resolved wave models
(Dommermuth & Yue, 1987; Liang, Liu, Tang, & Rana, 2013; Madsen, Bingham, & Liu, 2002; West,
Brueckner, Janda, Milder, & Milton, 1987), reconstructing the full wave field requires the initial wave
state including both the initial surface elevation and the initial velocity potential (or initial velocity) at
the free surface, which cannot be obtained directly from the measurement of the wave surface elevation
with noises. In previous studies (Aragh & Nwogu, 2008), the adjoint method has been applied to wave
reconstruction with the function of noise removal. In their study, the wave reconstruction results had the
same resolution as the measurement data. However, for wave reconstruction using measurement of low
resolution, the measurement itself does not contain explicit information about the high-frequency com-
ponents. Therefore, the numerical properties of the reconstruction algorithm may lead to an incorrect
reconstruction of these components, e.g. an overestimation of the high-frequency energy.
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In the present study, we propose a new adjoint-based data assimilation method, named the con-
nected-parameter method (CPM), to address the inconsistency between measurement resolution and
simulation resolution. The key feature of our method is the consideration of the wave-physics-based
connection between the control variables, i.e. the initial surface elevation and the initial surface velocity
potential. A typical wave model imposes constraints on the time evolution of the wave state, not on the
initial wave state. The unconstrained initial wave states have a significant impact on wave dynamics.
Therefore, for wave reconstruction, it is necessary to develop a wave-physics-based connection to guide
the algorithm to search for the optimal initial wave state. We show that the conventional method, named
the free-parameter method (FPM) in this paper, has unsatisfactory performance when the measurement
data have a lower resolution than the reconstructed wave field. The wave reconstruction and prediction
performance of both methods are evaluated for wave data of various nonlinearity and noise levels, and
the new CPM is shown to have much improved performance.

2. Mathematical model and methodology

In this section, we introduce the mathematical foundations of the wave reconstruction and prediction
framework. As shown in figure 1, the key components include a wave model, the corresponding adjoint
model and an optimiser. The wave model serves as a nonlinear function that maps the control variable,
i.e. the initial wave condition, to a time series of wave simulation data. The adjoint model is used for
calculating the gradients of a predefined cost function with respect to the control variables. The control
variables are then updated iteratively through the optimisation process.

2.1. Wave model

For the wave simulation, we use the high-order spectral (HOS) method (Dommermuth & Yue, 1987;
West et al., 1987), a phase-resolved wave model. Under the potential flow assumption, it can be shown
that the wave system is uniquely determined by the quantities at the surface (Zakharov, 1968). The
governing equations expanded to the third perturbation order are (Aragh & Nwogu, 2008; West et al.,
1987; Yoon et al., 2015)

𝜂t + L[𝛷] + ∇ · (𝜂∇𝛷) + L[𝜂L[𝛷]] + ∇2( 1
2𝜂

2L[𝛷])

+ L[𝜂L[𝜂L[𝛷]] + 1
2𝜂

2∇2𝛷] = 0, (2.1)
𝛷t + g𝜂 + 1

2∇𝛷 · ∇𝛷 − 1
2 (L[𝛷])2 − L[𝛷] (𝜂∇2𝛷 + L[𝜂L[𝛷]]) = 0, (2.2)

where 𝜂 = 𝜂(x, y, t) is the surface elevation, 𝛷 = 𝜙(x, y, z = 𝜂, t) is the velocity potential at the water
surface, 𝜙z = 𝜕𝜙/𝜕z(x, y, z = 𝜂, t) is the surface vertical velocity, ∇ = (𝜕/𝜕x, 𝜕/𝜕y) is the gradient
operator in the horizontal directions, x and y denote the horizontal coordinates, z denotes the vertical
coordinate and L[𝛷] = −F −1 [|k|F [𝛷]] is a linear operator with |k| being the magnitude of the
wavenumber. Here, F and F−1 denote Fourier transform and inverse Fourier transform, respectively.
The boundary condition is assumed to be periodic and the spatial derivatives are calculated efficiently
with the fast Fourier transform. The fourth-order Runge–Kutta method is used for time advancement of
the evolution equations. The HOS method has been used extensively in wave simulations. More details
on its numerical scheme and validation can be found in Mei, Stiassnie, and Yue (2018).

2.2. Adjoint model

Based on the wave model, i.e. (2.1) and (2.2), the corresponding adjoint model is (Aragh & Nwogu,
2008)

𝜆1,t = g𝜆2 − ∇𝛷 · ∇𝜆1 + L[𝛷]L[𝜆1] + 𝜂L[𝛷]∇2𝜆1 + L[𝜆1]L[𝜂L[𝛷]]

+ L[𝛷]L[𝜂L[𝜆1]] + 𝜂L[𝜆1]∇
2𝛷 − 𝜆2L[𝛷]∇2𝛷 − L[𝛷]L[𝜆2L[𝛷]], (2.3)
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Figure 1. Wave field reconstruction and prediction scheme consisting of the HOS method, the adjoint
model and a gradient-based optimiser.

𝜆2,t = L[𝜆1] + ∇ · (𝜂∇𝜆1) − ∇ · (𝜆2∇𝛷) − L[𝜆2L[𝛷]] + L[𝜂L[𝜆1]]

+ L[ 1
2𝜂

2∇2𝜆1] + L[𝜂L[𝜂L[𝜆1]]] + ∇2( 1
2𝜂

2L[𝜆1]) − L[𝜂𝜆2∇
2𝛷]

− ∇2(𝜂𝜆2L[𝛷]) − L[𝜆2L[𝜂L[𝛷]]] − L[𝜂L[𝜆2L[𝛷]]], (2.4)

where 𝜆1 = 𝜆1(x, y, t) and 𝜆2 = 𝜆2(x, y, t) are the adjoint variables. The state variables, 𝛷 and 𝜂,
which are predicted by the wave model, are stored and serve as the parameters in the adjoint model.
The adjoint variables 𝜆1 and 𝜆2 are initialised as 0 at the final time instants. At each observation time
instant, the difference between the predicted surface elevation obtained from the wave model and the
measured data, i.e. (𝜂−𝜂M), is added to the adjoint variable 𝜆1 at the corresponding measured locations
as 𝜆1 = 𝜆1 + (𝜂 − 𝜂M). The numerical scheme for integrating the adjoint model is the same as that for
the wave model, except that the adjoint model is integrated backwards in time (i.e. with a negative time
step) to obtain the adjoint variables at the initial time, which determine the gradients of the cost function
with respect to the control variables, as explained in the next section.

2.3. Cost function and gradients

Searching for the optimal initial wave condition that minimises the difference between the reconstructed
wave field and the measurement is a key step in wave reconstruction. In this study, we define a cost
function to quantify this difference between the predicted surface elevation 𝜂 from the time evolution
of the initial wave state and the measured surface elevation 𝜂M , based on the L2-norm error (Aragh
& Nwogu, 2008; Gronskis et al., 2013; Xu & Wei, 2016)

J =
1
2

NX∑
i=1

NY∑
j=1

NT∑
k=1

[𝜂(xi, yj, tk) − 𝜂M (xi, yj, tk)]2, (2.5)

where NX and NY denote the grid numbers of the measurement in the x and y coordinates, respectively,
and NT denotes the number of time instants of the measurement used in the wave reconstruction process.
For a given wave model, the predicted surface elevation 𝜂 is determined uniquely by the initial wave
state used in the forward wave simulation. Therefore, J is a function of the initial conditions 𝜂0 and𝛷0,
bounded by the wave model.

The difference between our new method, CPM, and the conventional method, FPM, is summarised
in table 1. In the FPM, both 𝜂0 and 𝛷0 are treated as the independent control variables to minimise
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Table 1. Description of control parameters and their gradient expressions in the free-parameter method
(FPM) and connected-parameter method (CPM).

Method Control parameters Gradient expression

FPM 𝜂0(x, y) and 𝛷0(x, y)
𝜕J
𝜕𝜂0

= 𝜆1(t0),
𝜕J
𝜕𝛷0

= 𝜆2(t0)

CPM 𝜂0(x, y)
𝜕J
𝜕𝜂0

= 𝜆1(t0) − F −1
[
−i𝜔
|k|

sgn(kx)F (𝜆2(t0))
]

the cost function in the optimisation problem. In the optimisation process, 𝜂0 and 𝛷0 are updated at
each iteration step using the gradient information 𝜕J/𝜕𝜂0 and 𝜕J/𝜕𝛷0, respectively. In the new method,
CPM, we derive a physics-based constraint that connects 𝛷0 to 𝜂0 by utilising the dispersion relation.
The cost function is then determined entirely by 𝜂0. Therefore, in an iteration step in the optimisation
process of CPM, 𝜂0 is updated and 𝛷0 is calculated based on 𝜂0 via the physics-based constraint.

Here we present the expression of the gradients of the cost function with respect to the control
variables. The detailed derivations are given in the supplementary material available at https://doi.org/
10.1017/flo.2021.19. As shown in table 1, the gradients of the cost function regarding 𝜂0 and𝛷0 in FPM
are

𝜕J
𝜕𝜂0

����
FPM

= 𝜆1(t0) and
𝜕J
𝜕𝛷0

����
FPM

= 𝜆2(t0). (2.6a,b)

The total derivative of the cost function with respect to 𝜂0 in CPM is

𝜕J
𝜕𝜂0

����
CPM

= 𝜆1(t0) − F −1
[
−i𝜔
|k|

sgn(kx)F (𝜆2(t0))
]
, (2.7)

which utilises the relation between 𝛷0 and 𝜂0,

𝛷0 = F−1
[
−i𝜔
|k|

sgn(kx)F (𝜂0)

]
, (2.8)

where 𝜔 = (g|k|)1/2 is the wave angular frequency and the sgn function is defined as follows:

sgn(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x > 0,
0 if x = 0,
−1 if x < 0.

(2.9)

We stress that, in the CPM, the first-order approximation shown in (2.8) only applies to the initial wave
field, and the nonlinear wave dynamics are captured using the nonlinear wave evolution model shown
in (2.1) and (2.2).

2.4. Wave field reconstruction and prediction

With the gradient information calculated from the adjoint model as shown in table 1, the L-BFGS
method (Byrd et al., 1995; Zhu et al., 1997) is then used to optimise the control parameters to reduce the
cost function. Similar reconstruction frameworks, including the forward model, the adjoint model and
a gradient-based optimiser, have been used in previous studies (see e.g. Aragh & Nwogu, 2008; Foures
et al., 2014; Gronskis et al., 2013; Xu & Wei, 2016). The key steps to reconstruct and predict the wave
field from measurement are sketched in figure 1 and summarised as follows:
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• Step 1. An initial guess of 𝜂0 and 𝛷0 is given for starting the wave simulation.
• Step 2. The HOS method is used for the forward simulation of the wave field from the initial time t0

to the final time tf .
• Step 3. The cost function J is calculated using (2.5). If the difference of J in two consecutive

optimisation iterations is smaller than a predefined threshold value, the process ends and the initial
field is the optimal solution. Otherwise, go to Step 4.

• Step 4. The adjoint model is integrated from the final time tf to the initial time t0 to obtain the
gradient information 𝜕J/𝜕𝜂0 and 𝜕J/𝜕𝛷0.

• Step 5. The gradient information and the cost function are fed into the L-BFGS method for the
optimisation of the initial condition 𝜂0 and 𝛷0 to reduce the cost function J.

• Step 6: Return to Step 2. A new optimisation iteration is started with the modified initial condition
𝜂0 and 𝛷0.

3. Results

3.1. Generation of wave data

In this study, we use the wave solution obtained from the wave simulation using the third-order HOS
method as the true wave data, which is sufficient to capture the nonlinear four-wave interactions (Has-
selmann, 1962), to test the performance of the wave reconstruction methods. The initial condition of
the wave field is constructed from the directional Joint North Sea Wave Project (JONSWAP) spectrum
(Hasselmann et al., 1973)

S(𝜔, 𝜃) =
𝛼pg2

𝜔5 exp

[
−

5
4

(
𝜔

𝜔p

)−4
]
𝛾exp[−(𝜔−𝜔p)

2/(2𝜎2𝜔2
p ) ]D(𝜃), (3.1)

where𝛼p is the Phillips parameter,𝜔 is the wave frequency,𝜔p = 1.57 rad s−1 is the peak wave frequency,
𝜆p = 24.98 m is the peak wavelength, Tp = 4 s is the peak wave period, 𝛾 = 3.3 is the peak-enhancement
parameter, 𝜎 = 0.07 for 𝜔 ≤ 𝜔p, 𝜎 = 0.09 for 𝜔 > 𝜔p, and D(𝜃) = 2 cos2(𝜃)/π with 𝜃 ∈ [−π/2,π/2]
is the angular spreading function. The parameters chosen here are similar to those in Qi, Wu, Liu, Kim,
and Yue (2018). The computational domain size is set to Lx × Ly = 16𝜆p × 16𝜆p, with 512 grid points
in the x and y directions, respectively. In each case, the wave data are collected after a relaxation period
of wave evolution. In the present study, this relaxation period is 100 s, which is sufficient for capturing
the nonlinear wave dynamics, as suggested in Dommermuth (2000). The simulation time interval is
0.08 s, and the time duration used for wave reconstruction and prediction is 100 s. The simulated surface
elevations are referred to as the true wave field 𝜂T (x, y, t).

In the simulation of wave data, we consider different wave nonlinearity and noise levels in the
computational cases listed in table 2. We use two quantities to measure the wave field nonlinearity,
including the effective wave steepness defined as (Qi, Wu, Liu, Kim, & Yue, 2018) (ka)e = 4π𝜎𝜂/𝜆p,
where 𝜎𝜂 is the root mean square of the initial surface elevation, and the local maximal wave steepness
(ka)l = max (𝜂2

x + 𝜂2
y)

1/2. As listed in table 2, we consider a range of wave steepness in cases KA03-
N00, KA06-N00, KA09-N00 and KA13-N00. To account for the effect of the measurement error in
cases KA09-N03, KA09-N06 and KA09-N10, we add a random noise with a magnitude of 3 %, 6 %
and 10 %, respectively, of the maximal value of wave surface elevation to the true wave field as the
measurement 𝜂M (x, y, t). As shown in figure 2 and table 3, 𝜂M has a much lower spatial resolution than
the true wave field 𝜂T .

After the synthetic measurement data 𝜂M are obtained, we then perform the data assimilation
process separately using the FPM and CPM (see § 2.4). The grid number used for the wave recon-
struction/prediction is 512 × 512. The degrees of freedom of the independent control variables is then
5.2 × 105 in FPM and 2.6 × 105 in CPM. In the optimisation iteration, we set both 𝜂0 and𝛷0 to zero as
the initial guess. The wave fields obtained by solving the governing equations (2.1) and (2.2) from the
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Figure 2. Instantaneous surface elevation of: (a) the true wave field 𝜂T; and (b) the measurement 𝜂M.
Both are normalised by 𝜎𝜂 , the root mean square of 𝜂T .

Table 2. Descriptions of case set-up. Here (ka)e and (ka)l are the effective and the local maximal
steepness, respectively.

Case (ka)e (ka)l Noise level

KA03-N00 0.03 0.11 0
KA06-N00 0.06 0.22 0
KA09-N00 0.09 0.40 0
KA09-N03 0.09 0.40 3 %
KA09-N06 0.09 0.40 6 %
KA09-N10 0.09 0.40 10 %
KA13-N00 0.13 0.52 0

Table 3. Descriptions of the wave surface elevation symbols.

Name Symbol Grid number
Time step

resolution (s) Time duration (s)

True wave field 𝜂T 512 × 512 0.08 [0, 100]
Measurements 𝜂M 32 × 32 0.4 [0, 50]
Reconstructed/predicted

wave field
𝜂FPM 512 × 512 0.08 [0, 50]/[50, 100]
𝜂CPM

initial guess with data assimilation using FPM and CPM are referred to as the reconstructed/predicted
wave field 𝜂FPM and 𝜂CPM , respectively (table 3). We use the first 50 s of data for wave reconstruction
and the remaining 50 s for wave prediction. Note that the wave measurement data 𝜂M are assumed
unknown in the prediction time duration, i.e. [50, 100] s, in the data assimilation process. The choice of
the above parameters is consistent with the recent studies on wave field reconstruction and prediction
(Qi, Wu, Liu, Kim, & Yue, 2018).

3.2. Performance comparison of CPM and FPM

In this section, we evaluate the performance of CPM and FPM by comparing their results with the ground
truth. The results presented are from case KA09-N00, and those from other cases are presented in the
next section to examine the effects of nonlinearity and measurement noise. We evaluate the convergence
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Figure 3. Convergence of the normalised cost function J/J0 for the reconstructed wave field in case
KA09-N00, where J0 is the initial value of J before the optimisation process.

of the cost function defined in (2.5), with the number of the time instants NT = 125 and the grid number
of the measured surface elevations NX = NY = 32. Figure 3 shows the convergence of the normalised
cost function as the number of optimisation iterations increases. In FPM, the cost function saturates at
approximately 20 % of the initial value, while in CPM, the cost function converges to below 0.1 % of
the initial value.

3.2.1. Wave evolution
To evaluate the algorithm performance, we first present the reconstructed initial wave state. In figure 4,
we plot the instantaneous wave field at t = 0 of the true wave field 𝜂T in the KA09-N00 case as described
in § 3.1, the wave surface elevation 𝜂FPM and 𝜂CPM reconstructed using the conventional method, FPM,
and our new method, CPM, respectively, and their zoomed-in views. In figure 5, we plot the same figures
for velocity potential 𝛷. As shown, the reconstructed surface elevation using FPM preserves the main
features of the true wave field. However, we also observe spurious surface fluctuations in the wave field
reconstructed by the FPM (figure 4b). The zoomed-in view shows that the FPM overestimates the wave
crests and troughs, comparing figures 4(d) and 4(e). As shown in figures 4(d) and 4( f ), the reconstructed
wave field using the CPM agrees well with the true wave field, including the regions near the wave
troughs and crests. The result for the surface velocity potential is shown in figure 5. The magnitude of
the reconstructed velocity potential by the FPM (figure 5b,e) is significantly underestimated compared
with the ground truth (figure 5a,d). On the other hand, the results produced by our CPM (figure 5c, f )
and the ground truth are indistinguishable.

Next, we present the omnidirectional wavenumber spectra of reconstructed 𝜂0 of FPM, CPM and
the ground truth in figure 6(a). The difference between the FPM result and the ground truth is small
in the low-wavenumber range but significant in the high-wavenumber region of k > 1.5kp, while the
spectrum calculated from the CPM agrees with the true value throughout the entire wavenumber range.
The unsatisfactory performance of FPM is likely caused by the coarse measurement resolution, which is
much smaller than the resolution of the ground-truth wave field. Specifically, for the high-wavenumber
wave components that are not resolved spatially, their dynamics may still be partially captured by the
time series of the wave measurement data. The FPM fails to reconstruct these wave components, while
CPM is effective because of the additional constraint in (2.8). The advantage of the CPM is also seen
from the spectrum of the surface velocity potential 𝛷 plotted in figure 6(b). In our CPM, the spectrum
of the velocity potential S𝛷 agrees with the ground truth.

In contrast, the FPM notably underestimates the spectrum S𝛷 even for the peak wave, and the
corresponding magnitude of𝛷FPM is then around half of the true value𝛷T . This might be explained by
the different order of gradient magnitudes in the optimisation process (see figure S1 of the supplementary
material), where 𝜕J/𝜕𝛷0 is nearly one order of magnitude smaller than 𝜕J/𝜕𝜂0. In the gradient-based
optimisation, the control parameters’ increments are proportional to the gradient magnitudes, and thus
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Figure 4. Surface elevation of: (a) the true wave field, 𝜂T; (b) the wave field reconstructed using FPM,
𝜂FPM; and (c) the wave field reconstructed using CPM, 𝜂CPM. Panels (d–f) are zoomed-in views of
panels (a–c), respectively. All results are plotted at t = 0 and normalised by 𝜎𝜂 = 0.18 m, the root
mean square of the initial true surface elevation.

the cost function minimisation would place more emphasis on the parameters with large gradients, i.e.
𝜂0, resulting in the underestimated 𝛷0 in the found suboptimal solution. However, in CPM, the control
parameter𝛷0 is connected to 𝜂0, which would not have the same problem caused by the different order
of gradient magnitudes. We also present the summed omnidirectional spectrum of the surface velocities
(u, v,w) |z=𝜂 at both the beginning and end of the reconstruction time duration as in figures 6(c) and 6(d),
where the surface velocities are calculated from the surface elevation 𝜂 and surface velocity potential𝛷
as (Aragh & Nwogu, 2008; West et al., 1987; Yoon et al., 2015)

u =
𝜕𝜙

𝜕x

����
z=𝜂

=
𝜕𝛷

𝜕x
− w

𝜕𝜂

𝜕x
, v =

𝜕𝜙

𝜕y

����
z=𝜂

=
𝜕𝛷

𝜕y
− w

𝜕𝜂

𝜕y
,

w =
𝜕𝜙

𝜕z

����
z=𝜂

= −L[𝛷] − 𝜂∇2𝛷 − L[𝜂L[𝛷]] +
𝜂2

2
∇2L[𝛷] − 𝜂∇2(𝜂L[𝛷])

−L

[
𝜂2

2
∇2𝛷 + 𝜂L[𝜂L[𝛷]]

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.2)

The spectrum in FPM deviates from the ground truth significantly and has a non-physical high energy
concentration in the large-wavenumber region, whereas the result in CPM agrees well with the ground
truth. Furthermore, the spectrum distribution in FPM, which changes rapidly from t = 0 to t = 50 s
as evidenced by the comparison between figures 6(c) and 6(d), also indicates that FPM fails to find a
physically optimal solution.
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Figure 5. Surface velocity potential of: (a) the true wave field, 𝛷T; (b) the wave field reconstructed
using FPM, 𝛷FPM; and (c) the wave field reconstructed using CPM, 𝛷CPM. Panels (d–f) are zoomed-in
views of panels (a–c), respectively. All results are plotted at t = 0 and normalised by 𝜎𝛷 = 1.04 m2 s−1,
the root mean square of the initial true surface velocity potential.

We further compare the time history of the reconstructed and predicted wave fields with the true
data. Considering that the reconstructed and predicted wave field has a higher spatial resolution than
the measurement (see table 3), we have first examined locations where the synthetic surface elevation
measurement data are available (not plotted due to space limit): the FPM generally produces a slightly
worse result compared with the CPM. As a comparison, we plot in figure 7 the results obtained using
both methods at a fixed location without the measurement data (x = 9.4𝜆p, y = 8𝜆p). The reconstructed
surface elevation obtained by FPM has notable deviations from the true wave state, and the surface
velocity potential obtained by FPM shares a similar distribution with the ground truth but with a visible
difference, while the results obtained by CPM agree well with the true values. In addition, we also
compare the spatial distribution of the reconstructed wave field and the true wave field along the line
y = 8𝜆p at t = 24 s and t = 72 s in figure 8. As shown in figures 8(a) and 8(b), the reconstructed surface
elevation using FPM contains non-physical high-wavenumber oscillations in the spatial domain. The
velocity potential obtained by FPM has a noticeable difference compared to the true data 𝛷T as shown
in figures 8(c) and 8(d), which would result in a more significant difference in velocity as shown in
figures 6(c) and 6(d) considering the fact that the velocity is related to the spatial derivative of the velocity
potential. Similar to figure 7, CPM produces more accurate results compared to FPM. We also observed
that, for the results computed at other locations (not plotted), the CPM always outperforms FPM. In
summary, including a constraint between 𝛷0 and the independent control variable 𝜂0 in CPM provides
an apparent improvement over FPM in recovering the true wave dynamics in both the reconstruction
and prediction time duration.
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Figure 6. Omnidirectional wavenumber spectra of: (a) the reconstructed initial surface elevation, 𝜂FPM
and 𝜂CPM, and the true initial surface elevation 𝜂T; (b) the reconstructed initial velocity potential,𝛷FPM
and 𝛷CPM, and the true initial velocity potential 𝛷T; (c) the reconstructed and true surface velocity at
t = 0; and (d) the reconstructed and true surface velocity at the end of reconstruction time duration,
i.e. t = 50 s.

3.2.2. Wave statistics
To evaluate the statistics of the reconstructed wave field, we calculate the probability density function
(p.d.f.) of the wave field. In figure 9, we plot the p.d.f. of 𝜂/〈𝜂2〉1/2 and 𝛷/〈𝛷2〉1/2 at t = 0, t = 24 s for
the reconstructed wave field, and t = 72 s for the predicted wave field, where the bracket 〈· · ·〉 denotes
the spatial mean. Under the linear wave assumptions, the p.d.f. of the surface elevation yields a Gaussian
distribution. However, as observed in field measurements (see e.g. Ochi & Wang, 1985), if the wave
slopes are not small, the p.d.f. deviates from the Gaussian due to the nonlinearity, which is consistent
with the p.d.f. of 𝜂T and𝛷T in our result. The reconstructed and predicted wave fields obtained by CPM
successfully recover the p.d.f. of the true wave field, while the results by FPM have a non-negligible
deviation, indicating the difference of 𝜂FPM and 𝛷FPM from the true values, consistent with the results
in the preceding section.

Skewness and kurtosis are important statistics to reflect the physical features of a nonlinear wave
field. Specifically, the skewness measures the deviation of the wave profile from a sinusoidal shape, and
the kurtosis indicates the probability of the occurrence of extreme waves (Xiao, Liu, Wu, & Yue, 2013).
We compute the skewness C3 and the kurtosis C4 from the instantaneous surface elevation as

C3 =
〈𝜂3〉

〈𝜂2〉3/2 and C4 =
〈𝜂4〉

〈𝜂2〉2 . (3.3a,b)

We present the evolution of skewness and kurtosis of the reconstructed wave field and the true wave
field in figure 10. For a standard Gaussian distribution, their values are C3 = 0 and C4 = 3, respectively.
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Figure 7. Time history of the normalised surface elevation and the velocity potential located at (x =
9.4𝜆p, y = 8𝜆p) in (a,c) the reconstruction time duration (t < 50 s) and (b,d) the prediction time duration
(t > 50 s). Here the subscript ‘T’ denotes the true wave data, while the subscripts ‘FPM’ and ‘CPM’
denote the methods used for reconstruction and prediction. The root mean square of the initial true
surface elevation and velocity potential are 𝜎𝜂 = 0.18 m and 𝜎𝛷 = 1.04 m2 s−1, respectively.
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Figure 8. Instantaneous spatial distribution of the wave field along a horizontal line at y = 8𝜆p in (a,c)
the reconstruction time duration (t = 24 s) and (b,d) the prediction time duration (t = 72 s). Here, the
meanings of the legends are the same as those in figure 7.
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Figure 9. Probability density function of the normalised reconstructed wave fields obtained using FPM
and CPM, and the true wave field at (a,d) t = 0; (b,e) t = 24 s (in reconstruction time duration); and
(c, f) t = 72 s (in prediction time duration). The standard Gaussian distribution is also plotted.

The skewness of the computed wave field varies from 0.05 to 0.2 and the kurtosis varies from 2.8 to
3.3, mostly above 3, which differs from the statistics of a standard Gaussian distribution because of the
wave nonlinearity. As shown in figure 10, our CPM can successfully recover the skewness and kurtosis
of the wave field in both the reconstruction time duration and the prediction time duration. On the other
hand, there exists a distinct difference between the FPM results and the ground truth, especially for the
kurtosis (see e.g. t/Tp = 11 in figure 10b).

3.3. Effect of nonlinearity and measurement noise

To evaluate the effect of wave field nonlinearity and measurement noise, we perform the data assimilation
for the reconstruction and prediction for wave fields with different nonlinearity and noise levels, as
shown in table 2. The wave data generation process is described in § 3.1. We present the omnidirectional
wavenumber spectra of the reconstructed initial wave field and the true wave field in figures 11 and 12
for the cases with the largest wave steepness and noise level, i.e. cases KA013-N00 and KA009-N10,
respectively. Compared with the results for the case KA09-N00 (see figure 6), the deviation of the wave
surface elevation obtained by CPM from the true wave data increases in the high-wavenumber range due
to the high nonlinearity and noise. Nevertheless, the performance of CPM in reconstructing/predicting
the surface elevation is much better than that of FPM.

To quantify the overall performance of CPM and FPM, we define the correlation coefficient between
𝜂 and 𝜂T as

𝜌(𝜂, 𝜂T ) =

NX∑
i=1

NY∑
j=1

(𝜂(xi, yj) − 〈𝜂〉)(𝜂T (xi, yj) − 〈𝜂T〉)√√√ NX∑
i=1

NY∑
j=1

(𝜂(xi, yj) − 〈𝜂〉)2
NX∑
i=1

NY∑
j=1

(𝜂T (xi, yj) − 〈𝜂T〉)2

, (3.4)
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where NX and NY denote the grid numbers of the reconstructed and predicted wave field in the x and
y coordinates, respectively. The value of 𝜌(𝜂, 𝜂T ) is a measure of the accuracy of the data assimilation
scheme, and a larger value corresponds to a better accuracy. When 𝜂 = 𝜂T , 𝜌(𝜂, 𝜂T ) = 1. For the surface
velocity potential, the correlation coefficient is calculated using the same definition as in the above
equation.

The time-averaged correlation coefficient in the reconstruction time duration (t < 50 s) and the
prediction time duration (t > 50 s) for wave fields with different wave steepness and noise level are
presented in figures 13 and 14. For the FPM result, the time-averaged correlation coefficients 𝜌(𝜂R, 𝜂T )

and 𝜌(𝛷R,𝛷T ) in the reconstruction time duration decrease from 0.8 to 0.6 and from 0.9 to 0.7,
respectively, with increasing wave steepness, and the correlation coefficients in the prediction time
duration decrease from the values in the reconstruction time duration more rapidly with higher wave
steepness. For the CPM result, the correlation coefficient of the reconstructed wave field with the true
wave field is above 0.9 for all the cases. Figure 14 shows that the effect of noise level in the range of 0 % to
10 % has a negligible effect on the reconstruction performance. In these cases, the correlation coefficients
of the reconstructed and predicted wave field obtained by CPM are notably higher than those obtained by
FPM. Therefore, the advantages of CPM over FPM are unaffected by the measurement noise and higher
wave nonlinearity. Simulations with different initial random wave phases are also performed for cases
KA09-N00, KA09-N10 and KA13-N00. As shown in table 4, we found that the wave reconstruction
and prediction performance for both FPM and CPM, quantified by correlation coefficients, varies only
slightly with the initial random wave phases.
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Table 4. Correlation coefficients for different sets of initial random wave phases.

Case 𝜌(𝜂R, 𝜂T )FPM 𝜌(𝜂R, 𝜂T )CPM 𝜌(𝛷R,𝛷T )FPM 𝜌(𝛷R,𝛷T )CPM

KA09-N00-RP1 0.62 0.98 0.77 0.99
KA09-N00-RP2 0.62 0.97 0.77 0.99
KA09-N10-RP1 0.61 0.96 0.76 0.98
KA09-N10-RP2 0.62 0.96 0.77 0.99
KA13-N00-RP1 0.59 0.93 0.71 0.97
KA13-N00-RP2 0.60 0.93 0.71 0.97

4. Discussion

4.1. Reasons for better performance of CPM

The better performance in CPM over FPM is likely due to three factors. First, the non-physical high-
wavenumber wave components have been removed by using the wave-physics-based constraint for
control variables in CPM. The wave model, i.e. (2.1) and (2.2), only restricts the evolution of 𝜂 and 𝛷.
However, 𝜂0 and 𝛷0 are independent variables that serve as the initial condition (Zakharov, 1968). In
wave simulations, appropriate initial states are required to ensure that the wave dynamics are captured
correctly. In FPM, the initial wave states are obtained via a gradient-based optimiser that does not
guarantee the physical reasonableness of the found solutions for this complex system and results in a
solution with non-physical high-wavenumber waves. The additional constraint in CPM, on the other
hand, helps the optimisation algorithm to search for a solution with the reasonable initial wave state
quantified by 𝜂0. If the nonlinearity were to be included in the dispersion relation, the frequency of a
given wave would be a function not only of the wavenumber and amplitude of itself but also of those of
all other free-wave components (Wu, 2004). Therefore, it is infeasible to write a similar formula to serve
as the constraint. Besides, because this linear assumption is imposed only at the initial time, and the
forward wave model captures the nonlinear evolution afterwards, we do not expect a significant change
in the reconstructed and predicted wave field even if a nonlinear dispersion relation can be incorporated
into the constraint between 𝜂0 and 𝛷0.

Second, the additional constraint in CPM addresses the issue of the inhomogeneity in the magnitude
of the gradient in the optimisation process of FPM. In the gradient-based optimisation used in FPM, the
increment of the control parameters is proportional to the gradient magnitudes, and thus the optimiser
tends to modify the parameters with large gradients, i.e. 𝜂0. However, in CPM, the control parameter
𝛷0 is connected to 𝜂0, which would not have the same problem caused by the different order of gradient
magnitudes. An alternative way to examine this issue is to use the scaling strategy. Strictly speaking,
the suitable value for scaling is unknown before wave reconstruction because the velocity potential is
unknown and only sparse measurements of surface elevation are available. However, for the sake of the
performance testing, we assume 𝜎𝜂 and 𝜎𝛷 are known and choose them as the scaling factors for 𝜂 and
𝛷, respectively, to ensure that the normalised variables have the same order of magnitude. As shown in
table 5, while the scaling strategy enhances the performance of FPM, its cost function is still 60 times
larger than that in CPM, suggesting that the performance issue in FPM cannot be solved by scaling.

Third, this seemingly counter-intuitive worse performance in FPM by using an extra control variable
𝛷0 is known as the degradation problem widely observed in the optimisation of complex systems with
large degrees of freedom (He, Zhang, Ren, & Sun, 2016). Specifically, when the number of independent
control variables increases, the performance of the optimiser decreases counter-intuitively such that the
optimiser fails to find the global optimal solution. The degradation problem is based on the observation of
an abnormal increase of the cost function with adding more free control variables. Rigorous theoretical
explanation is still a research topic to address in the research community. An effective method that has
been adopted by the deep neural network optimisation community to alleviate the degradation problem
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Table 5. Effect of scaling of control variables on the cost function for case KA09-N00. Listed are the
convergence values of the cost function normalised by the initial value.

Method FPM without scaling FPM with scaling CPM

J/J0 18 % 5.4 % 0.092 %

0 1 2 3 4 5
10–4

10–3

10–2

10–1

100

0 1 2 3 4 5
10–2

100

102

S η
 (

m
3
 r

ad
–
1
)

k/kp k/kp

(a) (b)
�tM /Tp = 0.3

�tM /Tp = 0.2

�tM /Tp = 0.1

Ground truth

�tM /Tp = 0.25

�tM /Tp = 0.125

Ground truth

Figure 15. Omnidirectional wavenumber spectra of the reconstructed initial surface elevation using
measurements of different temporal resolutions and the true initial surface elevation: (a) for case KA09-
N00; and (b) for a typical wave field of wave period Tp = 10 s. Results are obtained using CPM.

is to add connections in different neural layers to change the system structure. Our results show that a
wave-physics-based constraint introduced in the CPM can also provide an effective solution to help the
optimiser when searching for the globally optimal result.

4.2. Effect of the discretisation of measurement on CPM performance

We have shown that measurement with a coarse resolution of ΔxM/𝜆p = 0.5 and ΔtM/Tp = 0.1 is
sufficient to accurately capture the high-frequency information at the present configuration using CPM.
Theoretically, by assuming that the temporal resolution of the measurement is adequately high and by
using the linearised wave theory, it is possible to determine the predictable zone for irregular wave
fields by the maximum and minimum wave group velocities and direction spreading angle of the wave
field as well as the spatial and temporal extents of the measurement (Qi, Wu, Liu, & Yue, 2018; Wu,
2004). However, this theoretical work is inapplicable for discretised spatial and temporal resolutions,
which are typically seen in wave measurement practice. For the case KA09-N00, CPM has a fairly good
performance in the reconstructed surface elevation spectrum when the temporal resolution is changed
to ΔtM/Tp = 0.2, as shown in figure 15(a). However, the performance declines significantly when the
resolution is ΔtM/Tp = 0.3.

We also test the reconstruction performance for another wave field with 𝜆p = 156 m, Tp = 10 s,
(ka)e = 0.08 and (ka)l = 0.33 as shown in figure 15(b). The simulation time step Δt = 0.25 s and the
domain length is 16𝜆p×16𝜆p with the 512×512 grid resolution. Two simulations are conducted with this
wave field with measurements of different temporal discretisation ΔtM/Tp = 0.125 and ΔtM/Tp = 0.25
and the same spatial resolutionΔxM/𝜆p = 0.5. Similar to the result shown above, high-wavenumber wave
components are observed with ΔtM/Tp = 0.25, while CPM obtains good reconstruction performance
for ΔtM/Tp = 0.125. Note that for all the cases, reconstructed wave fields obtained in CPM have higher
correlation coefficients with the true wave fields than the results obtained from FPM. Therefore, the
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discretisation of measurement is an important factor that affects the accuracy of CPM. In real appli-
cations, we need to choose appropriate combinations of the spatial and temporal resolutions of
measurement to obtain satisfactory results.

5. Conclusions

In this study, we have investigated the assimilation of measurement data for the wave field reconstruction
and prediction based on the HOS method and its adjoint model. In our method, we quantify the difference
between the reconstructed/predicted wave field and measurement as a cost function. Compared with
the conventional adjoint-based wave data assimilation method, FPM, we have introduced a physical
constraint on the initial wave field in the new method, CPM, which is shown to effectively reduce the
cost function in both the reconstruction and prediction. In the optimisation process, we use the L-BFGS-
b method to minimise the cost function, and convergence can be reached within several iterations steps.
The new method can be applied to situations where the wave measurement data have a low resolution.

To evaluate the performance of the new method, CPM, we have generated wave data with different
wave steepness and noise levels. The gradient information calculated using the adjoint model is validated
against that obtained from the finite-difference method (see the supplementary material). We have
conducted numerical tests to examine the optimisation, reconstruction and prediction performance for
the new CPM and the conventional FPM. In the test results, CPM shows an advantage over FPM.
Using one half of the control variables in FPM, CPM proves to be more efficient in reducing the
overall cost function than FPM. We have also calculated the omnidirectional wavenumber spectra
of the optimal initial wave states. It is found that non-physical high-wavenumber components are
generated in reconstructed surface elevation and the magnitude of the initial surface velocity potential is
underestimated in the FPM results, while the CPM results are close to the ground truth, demonstrating
an improved capability of wave field reconstruction and prediction. The time history and the spatial
distribution of the wave states reconstructed and predicted by CPM show significantly smaller errors than
FPM. In addition, the CPM can successfully predict key wave statistics, including the p.d.f., skewness
and kurtosis of the wave field. We have also investigated the effect of measurement noise and wave
nonlinearity, and observed a better performance of CPM over FPM in all cases.

Finally, we remark that in this study the performance of data assimilation is evaluated using the
synthetic wave data obtained from simulation, which might be limited by the assumptions employed by
the wave model, e.g. potential flow and periodic boundary conditions. In applications, similar tests can
be conducted using wave data with realistic noise obtained from field measurements. Other effects, such
as bottom topology, ambient current, wind forcing and wave breaking, are not incorporated in the present
wave model but could in principle also be included with modifications (Wu, 2004). When a physical
process is significant but not captured in a wave model, the error caused by the model inaccuracy would
result in an inaccurate reconstructed wave field. In future studies, it would be interesting to incorporate
these effects in a modified data assimilation framework for both the wave model and the adjoint model.
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