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Summary

The possibility of breeding for uniform individuals by selecting animals expressing a small response to
environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic
components in the residual variance have been developed for this purpose, but have limitations due to the
computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical
generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large
datasets. Random effects for both the mean and residual variance parts of the model are estimated together with
their variance/covariance components. An important feature of the algorithm is that it can fit a correlation
between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software
and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using
ASReml. The difference in variance component estimates between the two implementations is investigated, as
well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in
simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did
appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen
(2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the
estimated correlation between the random genetic effects being x0.52 for IRWLS and x0.62 in Sorensen &
Waagepetersen (2003).

1. Introduction

In linear mixed models, it is often assumed that the
residual variance is homogeneous. However, differ-
ences in the residual variance among individuals are
quite common and it is important to include the effect
for heteroscedastic residuals in models for traditional
breeding value evaluation (Hill, 1984). Such models,
having explanatory variables accounting for hetero-
scedastic residuals, are routinely used by breeding
organizations today. The explanatory variables are
typically non-genetic (Meuwissen et al., 1996; Yang
et al., 2012), but genetic heterogeneity can be present
and it is included as a random effect for the residual
variance part of the model.

Product uniformity is often a desirable breeding
goal. Therefore, we need methods to estimate both
variance components and breeding values in the re-
sidual variance part of the model to be able to select
animals that can satisfy this goal. Moreover, if genetic
heterogeneity is present then traditional methods for
predicting selection response can be misleading (Hill
& Zhang, 2004; Mulder et al., 2007).

Methods have previously been developed to
estimate the degree of genetic heterogeneity.
SanCristobal-Gaudy et al. (1998) have developed a
likelihood-based expectation-maximization (EM)
algorithm. Sorensen & Waagepetersen (2003) have
applied a Bayesian Markov chain Monte Carlo
(MCMC) algorithm to estimate the parameters in a
similar model, which has the advantage of producing
model-checking tools based on posterior predictive
distributions and model-selection criteria based on
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the Bayes factor and deviances. At the same time,
Bayesian methods to fit models with residual hetero-
scedasticity for multiple breed evaluations (Cardoso
et al., 2005) and generalized linear mixed models al-
lowing for a heterogenetic variance term (Kizilkaya &
Tempelman, 2005) have been developed. Wolc et al.
(2009) have studied a sire model, with random genetic
effects included in the residual variance, by fitting
squared residuals with a gamma generalized linear
mixed model. Mulder et al. (2009) fitted a bivariate
linear model for the trait and the log-squared re-
siduals, and they estimated the correlation between
effects for mean and variance. Hill & Mulder (2010)
reviewed the topic of genetic control of environmental
variation. Yang et al. (2011) showed that inferences
under the genetically structured heterogeneous vari-
ance model can be misleading when the data are
skewed.

Lee & Nelder (2006) developed their framework
of double hierarchical generalized linear models
(DHGLM), which has been applied to stochastic
volatility modelling in finance (del Castillo & Lee,
2008) and also to robust inference against outliers
by allowing heavy tailed distributions (Lee & Nelder,
2006). Inference in DHGLM is based on hierarchical
likelihood (h-likelihood) theory (Lee & Nelder,
1996) and DHGLM is a direct extension of hierarchi-
cal GLM (HGLM) including random effects for
the dispersion. Twomain computational strategies are
available. In the first, the parameters are estimated by
iterating a hierarchy of generalized linear models
(GLM), where each GLM is estimated by iterative
reweighted least squares (IRWLS; see e.g. Rönnegård
et al., 2010). The second strategy works by numerically
maximizing the h-likelihood (see e.g. Molas &
Lesaffre, 2011). The first is computational fast, while
the other may produce higher-order estimators (Noh
& Lee, 2007). DHGLM give model checking tools
based onGLM theory andmodel-selection criteria are
calculated from the h-likelihood (Lee &Nelder, 1996).
Both the theory and the fitting algorithm are explained
in detail in Lee et al. (2006).

Rönnegård et al. (2010) used DHGLM to estimate
breeding values for mean and dispersion in an animal
model, and also their variances, but the correlation
between them was not included. The computational
demands were decreased compared with Markov
chain Monte Carlo estimation. The method by
Rönnegård et al. (2010) can be used to estimate gen-
etic heterogeneity of the residual variance in animal
models with many observations.

Previously correlation between random effects for
the same level in DHGLM have been estimated (Lee
et al., 2006), i.e. correlation between random effects
for the mean, or correlation between random effects
for the dispersion. Correlation between random
effects for different levels, that is between an effect for

the mean model and an effect for the residual variance
model, has not previously been reported within the
DHGLM framework.

The aim of this paper is to extend DHGLM,
and thereby the method from Rönnegård et al.
(2010), to include correlation between random
effects for mean and variance, and moreover to
evaluate the performance with regard to bias and
precision.

2. Material and methods

In this section, we start by defining the exponential
model (Hill & Mulder, 2010) introduced by
SanCristobal-Gaudy et al. (1998). Thereafter, a bi-
variate linear mixed model is used as a tool in an
IRWLS algorithm for fitting the exponential model.
The algorithm is a natural extension of the algorithm
by Rönnegård et al. (2010) by including a correlation
between random effects for mean and variance. It is
also quite similar to the one presented byMulder et al.
(2009), except that the algorithm below corrects for
the fact that estimated, and not true, residuals are
used, and that the squared residuals are gamma dis-
tributed. In the Appendix, we derive that the IRWLS
algorithm can be motivated using the h-likelihood
method.

(i) Model

The model fitted is the exponential model,

E(yja, ad)=m (1)

with a linear predictor

m=Xb+Za:

The dispersion part of the model is specified as

var(yja, ad)=W

with linear predictor

W=diag w, log w=Xdbd+Zad:

By y is denoted a vector of n responses depending on
fixed effects b and random effect a (length k), and w
is a vector of residual variances depending on fixed
effects bd and random effect ad. The response vector
y given a and ad is normal distributed. Matrices
for design X and Xd, and the incidence matrix Z are
known.

The random effects a and ad are normal
distributed additive genetic effects with mean 0 and
variance

var
a
ad

� �
=G� A, (2)
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G=
s2
a sasadr

sasadr s2
ad

� �
,

where A is the additive genetic relationship matrix of
dimension k for the additive genetic effects, thus sa

2A
is the covariance of a and s2

ad
A is the covariance of

ad. The parameter r is the correlation between a
and ad as included in the estimation by Sorensen &
Waagepetersen (2003).

The model on responses y is referred to as the
mean part, and the model on the residual variances w
is referred to as the residual variance part. Other un-
correlated random effects (permanent environmental
effects) can be added to both the mean and the re-
sidual variance parts.

The additive genetic effect ad for the residual
variance log w is the genetic control of environmental
variation, which is a measure on the uniformity
of trait expression. The correlation parameter r
indicates how the uniformity varies with the
breeding value of the animal. A numerically high
value of r would mean that selection of high
breeding values for the mean would change the en-
vironmental variance.

(ii) A bivariate linear mixed model and a fitting
algorithm

Consider the bivariate linear mixed model

y

zd

� �
=

X 0

0 Xd

� �
b

bd

� �

+
Z 0

0 Z

� �
a

ad

� �
+

e

ed

� �
,

(3)

with working weight matrix and residual variance

Sx1=
Wx1 0
0 diag( 1xq

2
)

� �
,

var
e
ed

� �
=S

s2In 0
0 s2

dIn

� �
:

Here the residual variances s2 and sd
2 are both 1

(but defined for later use in the fitting algorithm be-
low), zd is the vector of linearized working variables
(McCullagh & Nelder 1989)

zd, i=log wi+wx1
i

ê2i
1xqi

xwi

� �
, (4)

and q is the vector of hat values defined in
Appendix (i)(b).

This gives estimates similar to h-likelihood
estimates, as shown in the Appendix. We call the
bivariate REML method used to fit the linear
mixed model above an IRWLS approximation of the
h-likelihood.

Fitting algorithm for the IRWLS approximation

The above linear mixed model (3) is fitted by the
following IRWLS algorithm.

1. Initialize weights Sx1=
Wx1 0
0 diag 1xq

2

� �� �
and

working variables zd.
2. Fit (3) with correlation structure G�A between a

and ad, but y and zd conditional uncorrelated,
that is, var(y|a, ad)=s2W and var(zd|a, ad)=
sd

2 diag(2/(1xq)).
3. Update ŝ2, ê and q, and thereby zd=log( ŝ2 w)+

1

ŝ
2W

x1( ê2 =(1xq)x ŝ2 w) and diag((1xq)/2) in

Sx1.
4. Repeat step 2.
5. Update Wx1=diag(exp( ẑd ))

x1 and update Sx1.
6. Iterate steps 2–5 until convergence (ŝ2 =1).

(iii) Simulations for validating the
h-likelihood method

Estimation of correlation between random effects for
mean and dispersion is new within the h-likelihood
framework and there are potential applications in
other research areas than genetics. A relatively simple
simulation structure was therefore considered.
Using these simulations the h-likelihood method
and the IRWLS approximation were compared. The
h-likelihood was implemented in the R software using
a Newton–Raphson algorithm on the score functions.
The score functions are given in the Appendix for the
effects for mean and variance, together with the ad-
justed profile likelihood for the variance components.
The variance components were estimated using
transformation j=(log s2

a, log s2
ad
, log 1+r

1xr
) to avoid

boundary problems.
We simulated 10 000 observations and a random

group effect. The number of groups was either 10 or
100. An observation for individual j with covariate
x belonging to group k was simulated as yjk=1.0x
+ak+ejk, where the random group effects were
iid with akyN(0,sa

2), and the residual effect ejk
was sampled from N(0, var(ejk)) with var(ejk)=
exp(0.2x+ad,k). The covariate x was simulated binary
to resemble sex effect. Furthermore, ad, k � N(0, s2

ad
)

with cov(ak, ad, k)=rsasad . The simulated variance
components were sa

2=1 and s2
ad
=0�1 or 0.5, whereas

the correlation r was eitherx0.5 or 0.95. The value of
s2
ad
=0�1 gives a substantial variation in the simulated

elements of ad, where one standard deviation differ-
ence between two values ad,l and ad,m increases the
residual variance 1.37 times. We replicated the simu-
lation 100 times and obtained estimates of variance
components using the h-likelihood method and the
IRWLS algorithm.

The computational demands of the h-likelihood
method, implemented in R, limited analyses of
more sophisticated unbalanced data scenarios
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and were therefore not used in the following
analyses.

(iv) Pig litter size data and model

Pig litter size was previously analysed by Sorensen &
Waagepetersen (2003) using the Bayesian method,
and the data are described therein. The data includes
10 060 records from 4149 sows and a total number of
6437 pigs in the pedigree. Hence, repeated measure-
ments on sows were present and a permanent en-
vironmental effect of each sow was included in the
model. The maximum number of parities is nine. The
data include the following class variables : herd
(82 classes), season (four classes), type of insemi-
nation (two classes) and parity (nine classes). The data
are highly unbalanced; 13 herds contribute five ob-
servations or less, and the ninth parity includes nine
observations.

Several models were analysed by Sorensen &
Waagepetersen (2003) with an increasing level of
complexity in the model for the residual variance, and
with the model for the mean y=Xb+Wp+Za+e.
Here y is the litter size (vector of length 10 060),
b is a vector including the fixed effects of herd,
season, type of insemination and parity, and X is
the corresponding design matrix (10 060r94), p is
the random permanent environmental effect (vector
of length 4149), W is the corresponding incidence
matrix (10 060r4149) and var(p)=sp

2I, a is the ran-
dom additive genetic effect, Z is the corresponding
incidence matrix (10 060r6437) and var(a)=sa

2A,
where A is the additive relationship matrix. Hence,
the LHS of the mixed model equations is of size
10 680r10 680.

The residual variance var(e) was modelled as fol-
lows, whereModel III andModel IV are model names
from Sorensen & Waagepetersen (2003) :

Model III: Random additive genetic effect and
fixed effects for the linear predictor for the residual
variance

var(ei)=exp(Xd, ibd+Ziad),

where bd is a parameter vector including an
intercept b0 and effects of parity and type of insemi-
nation, Xd,i is the ith row in the design matrix Xd, Zi is
the ith row of Z, and ad is the random additive genetic
effect.

Model IV: Permanent environmental effect,
additive genetic effect, and fixed effects for the linear
predictor for the residual variance

var(ei)=exp(Xd, ibd+Wipd+Ziad),

where Wi is the ith row of W and pd is a random per-
manent environmental effect with pd � N(0, s2

pd
I).

(v) Simulations for validating the IRWLS
approximation

To test whether the IRWLS algorithm gives unbiased
variance components on realistic examples for animal
breeding, we simulated observations using the pedi-
gree from the pigs litter size data. The number of
sows with records was fixed as in the original dataset.
The total number of observations was either kept
(n=10 060), or increased by changing the number of
repeated records per sow (parities) to 4 (n=4r
4149=16 596) or 9 (n=9r4149=37 341).

On the mean level the observation for animal
j, parity k and insemination type x was yjk=
11.16+bparity,k+0.45x+pj+aj+ejk. The residual
effect was sampled from N(0,var(ejk)) with var
(ejk)=exp(1.77+bd,parity,kx0.17x+pd,j+ad,j). Addi-
tive genetic effects were sampled from (2) with
sa

2=1.62, s2
ad
=0�09 and r=x0.62. Permanent en-

vironmental effects were sampled from pjyN(0, 0.60)
and pd,jyN(0, 0.06) (Model IV) or pd,j=0 (Model III).
These values came from Sorensen & Waagepetersen
(2003). The simulations were replicated 100 times and
analysed using the IRWLS algorithm.

3. Results

(i) Simulations for validating the h-likelihood method

For the simulations with balanced data, the two
methods h-likelihood and IRWLS gave identical re-
sults (Table 1) up to the fourth decimal. When the
number of groups was small (10 groups), there was
a large variation in the estimates, because only ten
values of a and ad were sampled in each replicate.
In that case there was a tendency for r to be
overestimated (estimate x0.42, 16% overestimated)
because of the parameter boundary rox1. An
alternative way to estimate r is to take mean of
log((1+r)/(1xr)). By doing that we avoid boundary
problems and obtained the value x0.48 (4% over-
estimated).

The algorithms performed well for estimating vari-
ance components for models with correlation between
random effects for mean and residual variance.

(ii) Data on pigs litter sizes

For the pigs litter size data, the results for the IRWLS
algorithm (Table 2) were similar to the MCMC esti-
mates of Sorensen & Waagepetersen (2003) for most
parameters. The MCMC estimates of r were slightly
more negative (x0.57 for Model III and x0.62
for Model IV) than the IRWLS estimates (x0.49
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for Model III and x0.52 for Model IV). Similarity
of estimates for the two methods was found for
the variance components sa

2 and s2
pd
, and for all

of the fixed effects for the residual variance, bd.
The permanent environmental effect variance sp

2 in
the mean model was about half the MCMC estimate,
and the additive genetic variance s2

ad
in the residual

variance was considerably larger, compared with
Sorensen & Waagepetersen (2003).

(iii) Simulations for validating the IRWLS
approximation

The general trend showed that bias and standard
error (SE) decreased when the number of parities was
increased for each sow (Table 3). There were excep-
tions to this trend, including the intercept term bd0 of
Model IV, which could be due to the fact that the
number of parities for some sows was actually smaller
in the setting with four parities for all sows compared
with the original data structure. For the scenario
with nine parities per sow, both bias and SE were very
small or negligible for all parameters.

The estimates of s2
ad

and r were biased for Model
III, and Model IV seems to be more appropriate to
use for situations with repeated observations. For
Model IV, the magnitude in percentage bias was less
than 10% for all parameters except the permanent
environmental effects for the mean and residual vari-
ance models (i.e. sp

2 and s2
pd
) (Table 3 (b)). The genetic

parameters sa
2, s2

ad
and r were estimated with small or

no bias, for all scenarios and both models, indicating
that the method will give good estimates for these
parameters in a very general setting.

4. Discussion

We have extended the DHGLM framework to in-
clude correlation between random effects for the
mean and the residual variance, for a normal response
and normal distributed random effects. We have

approximated the h-likelihood by an IRWLS algo-
rithm that in summary works by iteratively updating
and fitting a bivariate linear mixed model simul-
taneously on mean and residual variance. The
IRWLS approximation of DHGLM is a fast and
easily implemented algorithm for genetic heterogen-
eity estimation building on REML tools. The ad-
ditional functions required are implemented in the
developmental version of ASReml (Gilmour, 2010) to
be released as ASReml 4 and an example code is
available on request from the authors.

Significant bias was found for data structures
having few repeated observations per individual,
where the bias decreased quickly as the number of
repeated observations increased. For data structures
having few repeated observations, the largest bias was
detected for sp

2. This is perhaps not surprising, be-
cause for an individual having a single observation the
permanent environmental effect pi and the residual ei
are indistinguishable, and part of the sp

2 will therefore
be picked up by the residual variance.

It is possible that more accurate estimates could be
obtained by implementing a computationally efficient
algorithm (using sparse matrix techniques) for the
h-likelihood estimation method presented in our
paper, instead of using the IRWLS algorithm. This
would, however, require further research. Further-
more, the second-order h-likelihood estimation
method is known to eliminate bias for binary out-
comes in HGLM (Lee et al., 2006), but can be more
demanding to compute.

Similar bias patterns were found when comparing
the simulation study with the difference between
the estimates obtained by Sorensen & Waagepetersen
(2003) and the IRWLS estimates (Tables 2 and 3).
The variance components for the mean model,
the fixed effects for the residual variance and the
correlation showed a similar pattern in differences.
This might give an indication of a problem with
the IRWLS estimates being biased in certain direc-
tions, when the data structure does not contain

Table 1. Mean (standard errors) for 100 replicates of 10 000 balanced observations in k groups using the
h-likelihood estimator. (The IRWLS algorithm gave identical results)

True values Estimates

k sa
2 s2

ad
r sa

2 s2
ad

r

100 1.0 0.1 x0.5 1.02 (0.014) 0.10 (0.002) x0.50 (0.008)
10 1.0 0.1 x0.5 0.93 (0.044) 0.10 (0.004) x0.42 (0.033)
100 1.0 0.5 x0.5 1.02 (0.015) 0.50 (0.007) x0.50 (0.007)
100 1.0 0.1 0.95* 1.00 (0.021) 0.11 (0.002) 0.94 (0.003)

*Results in the fourth row are calculated from 58 replicates that converged for both methods (97 replicates converged for the
h-likelihood method and 60 replicates converged for the IRWLS algorithm).
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Table 2. Estimates and 95% confidence intervals of chosen parameters for pigs litter size data in Model III (first section) and Model IV (second section) used by
Sorensen & Waagepetersen (2003). Results obtained by Sorensen & Waagepetersen (2003) (first row in each section), by Rönnegård et al. (2010) (second row) and
using IRWLS (third row)

Mean model Residual variance model

Variances Fixed effects* Variances Cor r

sa
2 sp

2 bd0 bdins
bdpar

s2
ad

s2
pd

Sorensen & Waagepetersen (2003) III 1.58 0.60 1.78 x0.16 0.34 0.11 x0.57
1.13, 2.00 0.31, 0.96 1.65, 1.90 x0.24, x0.09 0.25, 0.43 0.08, 0.15 x0.72, x0.41

Rönnegård et al. (2010) 1.35 0.53 1.73 x0.17 0.32 0.13
0.99, 1.71 0.25, 0.81 1.61, 1.85 x0.23, x0.11 0.26, 0.39 0.09, 0.16

IRWLS 1.61 0.34 1.70 x0.17 0.32 0.18 x0.49
1.24, 1.97 0.08, 0.61 1.57, 1.82 x0.23, x0.11 0.26, 0.39 0.14, 0.22 x0.63, x0.36

Sorensen & Waagepetersen (2003) IV 1.62 0.60 1.77 x0.17 0.35 0.09 0.06 x0.62
1.20, 2.05 0.30, 0.92 1.65, 1.89 x0.25, x0.09 0.26, 0.44 0.06, 0.13 0.05, 0.09 x0.80, x0.43

Rönnegård et al. (2010) 1.35 0.44 1.72 x0.17 0.32 0.09 0.06
1.00, 1.70 0.17, 0.71 1.62, 1.83 x0.23, x0.11 0.26, 0.39 0.05, 0.14 0.02, 0.11

IRWLS 1.61 0.28 1.69 x0.17 0.32 0.15 0.05 x0.52
1.25, 1.96 0.02, 0.54 1.57, 1.81 x0.23, x0.11 0.26, 0.39 0.10, 0.20 0.00, 0.09 x0.66, x0.37

*bd0 is the intercept term in the model for the residual variance, bdins
is the fixed effect for insemination and bdpar

is the fixed effect for the difference in first and second parity.
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enough repeated observations to give good estimates.
However, variance components for the residual
variance did not follow the same pattern. A simu-
lation study using Bayesian MCMC methods would
be desirable but is not within the scope of the current
paper.

The IRWLS algorithm is distinct from the algor-
ithm used by Mulder et al. (2009) because it uses
h-likelihood theory and the algorithm fits corrected
squared residuals as a gamma distributed response,
whereas the log-squared residuals were fitted as a
normal response in Mulder et al. (2009). Compared
with Bayesian methods we expect the IRWLS algor-
ithm to be faster. The IRWLS computation on
pigs litter size data took less than 5 min on a Linux
server.

In a previous paper, Rönnegård et al. (2010), the
variance part was fitted using a gamma generalized
linear mixed model. In the presented IRWLS algor-
ithm, we could have fitted a bivariate normal-gamma
model, but chose to fit a corresponding bivariate
normal–normal model that gives the same estimates
at convergence. The bivariate normal–normal model
resulted in a user-friendly code and is straightforward
to compare with the method in Mulder et al. (2009).
However, the bivariate normal–gamma model can be
implemented by iteratively calling ASReml using
some external code (in R or Fortran for instance).

This approach may be required if convergence prob-
lems for the IRWLS algorithm occur, but perhaps
more importantly the user should assess whether the
available data are sufficient to be able to fit the model.
When the number of repeated observations is too
small (or with a single record per animal) there might
not be enough information to fit a model with random
additive genetic effects both for the mean and residual
variance models.

Inferences under the genetically structured hetero-
geneous variance model can be misleading when the
data are skewed (Yang et al., 2011). In analysis of
data using DHGLM, scaling effects should be
tested and a possibility would be to fit the IRWLS
algorithm for different transformations of y com-
bined with model selection tools to find an optimal
transformation. This would, however, require
further theoretical developments of the DHGLM
approach.

The IRWLS algorithm provides a simple im-
plementation of genetic heterogeneity models in ex-
isting REML estimation software useful in applied
animal breeding and can deal with large datasets. We
have focused on applications in animal breeding but
the DHGLM framework is applicable in many other
fields of research as well (including finance and
industrial quality control (Lee et al., 2006; Lee &
Nelder, 2006)), and we expect the interest in our

Table 3. Mean (a) and standard errors (b) of estimates of parameters for simulated data over Model III (first
section) and Model IV (second section). The left hand column contains the simulated data structure

Mean model Residual variance model

Variances Fixed effects Variances Cor r

sa
2 sp

2 bd0 bdins
bdpar

s2
ad

s2
pd

(a)
True values (Model III) 1.62 0.60 1.77 x0.17 0.35 0.09 x0.62
Original parity distribution 1.58 0.45 1.74 x0.17 0.33 0.11 x0.52
Four parities 1.59 0.61 1.73 x0.17 0.34 0.12 x0.56
Nine parities 1.63 0.60 1.74 x0.17 0.35 0.11 x0.60

True values (Model IV) 1.62 0.60 1.77 x0.17 0.35 0.09 0.06 x0.62
Original parity distribution* 1.56 0.24 1.73 x0.16 0.31 0.08 0.13 x0.61
Four parities 1.65 0.51 1.66 x0.16 0.34 0.09 0.15 x0.64
Nine parities 1.62 0.60 1.71 x0.17 0.35 0.09 0.09 x0.64

(b)
(Model III)
Original parity distribution 0.018 0.016 0.007 0.003 0.004 0.002 0.008
Four parities 0.015 0.012 0.005 0.003 0.004 0.002 0.007
Nine parities 0.012 0.008 0.005 0.001 0.003 0.001 0.005

(Model IV)
Original parity distribution* 0.017 0.016 0.006 0.004 0.004 0.003 0.004 0.012
Four parities 0.017 0.012 0.007 0.003 0.004 0.002 0.003 0.008
Nine parities 0.013 0.008 0.005 0.002 0.003 0.001 0.001 0.005

*Twenty-seven out of 100 replicates did not converge. Estimates are for all replicates (with minor differences in results if these
27 replicates were included or not).
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theoretical development reaches beyond animal
breeding.
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Appendix. IRWLS approximation of h-likelihood

We state the h-likelihood for the exponential model
(1) and show that the IRWLS fitting algorithm for
the bivariate linear mixed model (3) can be derived
from it using an approximation. The h-likelihood will
be maximized to estimate fixed and random effects
for the mean part, an adjusted profile likelihood
will be used to estimate fixed and random effects for
the variance part, and from an additional profiling
the estimates of variance components will be found.
Adjusted profile likelihood corresponds to restricted
maximum likelihood.

(i) The h-likelihood for the exponential genetic
heterogeneity model

From Lee & Nelder (1996), the h-likelihood (ignoring
constant terms) is

h=log f(yja, ad)+log f(a, ad)

=x
1

2
log detWx

1

2
(yxm)TWx1(yxm)

x
1

2
logdetG� Ax

1

2

a

ad

� �T

Gx1 � Ax1 a

ad

� �
:

This can be simplified as follows (ignoring a constant
involving log det A) :

h=x
1

2
g
i

log wix
1

2
g
i

(yixmi)
2=wi

x
k

2
{log(s2

a)+log(s2
ad
)+log(1xr2)}

x
1

2(1xr2)

1

s2
a

aTAx1a+
1

s2
ad

ad
T Ax1ad

 !

+
r

(1xr2)
ffiffiffiffiffiffiffiffiffiffiffi
s2
as

2
ad

p aTAx1ad:

Lee & Nelder (2001) considered the adjusted profile
(log)- likelihood, which is defined by the generic
function:

pa(l)=[lx1

2
log det{D(l,a)=(2p)}]ja=~aa,

where l is a likelihood (either a log marginal-
likelihood or an h-likelihood) with nuisance effects a,
D(l, a)=xh2l/ha2 and ~aa solves hl/ha=0. When pro-
filing out random effects, it is an extension of the
REML likelihood and used for estimating variance
components. Furthermore, from a classical likelihood
point of view, profiling out random effects is a
Laplace approximation of an integrated (marginal)
likelihood (Molas & Lesaffre, 2011).

A summarization of parameters and the functions
from which they are estimated using h-likelihood is
found in Table A.1. For the estimation one uses h for
tM=(b, a), ptM(h) for tD=(bd, ad) and pt(h)=
pba, bd, a, ad (h) for j=(logs2

a, logs
2
ad
, log1+r

1xr
). The fixed

and the random effects are found by solving the score
equations:

@h
@tM

@ptM (h)

@tD

 !
=

0
0

� �
(A:1)

and the variance components by

@pt(h)

@j
=0: (A:2)

Table A.1 Parameters and the functions from which they are estimated by using h-likelihood and the IRWLS
algorithm

Parameter h-likelihood

IRWLS algorithm:
iterated REML on
bivariate model

Effects for mean: tM=(b, a) h l
Effects for variance: tD=(bd, ad) ptM (h) l
Variance components: j=(log s2

a, log s2
ad
, log 1+r

1xr
) pt(h), t=(tM, tD) lREML
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(a) Estimation of tM=(b, a)

The score function for tM=(b, a) is

S(tM)=
@h

@tM

=
XTWx1(yxm)

ZTWx1(yxm)x 1
(1xr2)s2

a
Ax1a+ r

(1xr2)
ffiffiffiffiffiffiffiffi
s2
as

2
ad

p Ax1ad

 !
,

and zero is given by the mixed model equation

XTWx1X XTWx1Z

ZTWx1X ZTWx1Z+ 1
(1xr2)s2

a
Ax1

 !
b

a

� �

=
XTWx1y

ZTWx1y+ r

(1xr2)
ffiffiffiffiffiffiffiffi
s2
as

2
ad

p Ax1ad

 !
:

(A:3)

(b) Estimation of tD=(bd, ad)

For estimating tD=(bd, ad), we use the adjusted pro-
file likelihood

ptM (h)=[hx1

2
log det{D(h, tM)=2p}]jtM=t̂M

,

where

D(h, tM)=x
@2h

@tM@t
T
M

=H=
XTWx1X XTWx1Z

ZTWx1X ZTWx1Z+ 1
(1xr2)s2

a
Ax1

 !
:

With q being the column consisting of the diagonal
elements of the hat matrix [X Z]Hx1[X Z]TWx1

(Hoaglin & Welsch, 1978),

where the function vec of a matrix stacks all
columns into a single column (Magnus & Neudecker,
1999). The score function is solved by

XT
ddiag

1xq
2

� �
Xd XT

d diag
1xq
2

� �
Z

ZTdiag 1xq
2

� �
Xd ZTdiag 1xq

2

� �
Z+ 1

(1xr2)s2
ad

Ax1

 !
bd

ad

� �

=
XT

ddiag
1xq
2

� �
zd

ZTdiag 1xq
2

� �
zd+

r

(1xr2)
ffiffiffiffiffiffiffiffi
s2
as

2
ad

p Ax1a

 !
,

(A:4)

where zd was defined in (4) by

zd, i=logwi+wx1
i

ei
2

1xqi
xwi

� �
:

(c) Joint estimation of tM and tD

The two MMEs (A.3) for the mean part and (A.4) for
the variance part can be expressed as a single MME,
namely

C

b
bd

a
ad

0
BB@

1
CCA=

XTWx1y
XT

ddiag
1xq
2

� �
zd

ZTWx1y
ZTdiag 1xq

2

� �
zd

0
BB@

1
CCA, (A:5)

with

Note that the added terms in the lower right corner of
C are simply the elements of Gx1�Ax1.

In a DHGLM setting one would rather state the
score function for tM and tD instead of the MME,
that is, for t=(b, bd, a, ad),

S(t)=
X 0 Z 0
0 Xd 0 Z
0 I2q

0
@

1
A

T

Wx1

y x m
zd x log w

x a
x ad

0
BB@

1
CCA,

where

Wx1=
Wx1 0 0
0 diag 1xq

2

� �
0

0 0 Gx1 � Ax1

0
@

1
A:

C=

XTWx1X 0 XTWx1Z 0

0 XT
ddiag

1xq
2

� �
Xd 0 XT
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1xq
2

� �
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(1xr2)s2

a
Ax1 x r

(1xr2)
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2
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p Ax1
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2
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2
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2

� �
Z+ 1
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1
CCCCCA: (A:6)

S(tD)=
@ptM (h)

@tD
=

@h

@tD
x

1

2
(vecHx1)T

@vecH

@tD

� �
jtM= t̂M

=
x 1

2
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1
2
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2
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;
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(d) Estimation of j=(log s2
a, log s

2
ad
, log 1+r

1xr
)

For estimation of j=(log s2
a, log s

2
ad
, log 1+r

1xr
), we use

the adjusted profile likelihood

pt(h)=[hx1

2
log det{D=2p}]jt=t̂ ,

where

B1=diag(1
2
(yixmi)

2=wi) and B2=diag((yixmi)=wi):

(ii) Estimates from a bivariate linear mixed model
gives approximate h-likelihood estimates

In this section, we show that REML estimation from
the bivariate linear mixed model (3) can be used to
obtain approximate h-likelihood estimates.

At convergence of the IRWLS algorithm, the re-
lationship between the h-likelihood and the joint log
likelihood for the bivariate model (3) is

l=x
1

2
logjSjx 1

2

yxm

zdxlogw

� �T

Sx1 yxm

zdxlogw
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2
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2
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2
g
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2
g
i

(zd, ixlogwi)
2 1xqi

2
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2
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2
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2
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2 1xqi

2
:

The variance components for the bivariate model are
estimated using the REML likelihood

lREML=lx1

2
log detC, (A:7)

where C was previously defined (A.6).
Comparison between functions from which para-

meters are estimated using h-likelihood and IRWLS is
found in Table A.1. Note that the MME (A.5) solves
l, h and ptm(h), so if j was fixed, the estimates of fixed
and random effects (b, bd, a, ad) would be the same for
h-likelihood and IRWLS. The IRWLS algorithm

gives estimates of j from (A.7), but

@pt(h)

@j
=

@h

@j
x

1

2
(vecDx1)T

@ vecD

@j

=
@l

@j
x

1

2
(vecDx1)T

@ vecC

@j

� @l

@j
x

1

2
(vecCx1)T

@ vecC

@j

=
@lREML

@j
,

so the approximation is only through multiplication
by Cx1 instead of Dx1. Moreover C and D are con-
nected through C=E(D). This is the only approxi-
mation done to the h-likelihood method by using the
IRWLS algorithm.
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