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Abstract. We show that over polynomial extensions of normal affine domains of dimension two
over perfect fields (char. # 2) of cohomological dimension < 1, all finitely generated projective
modules are cancellative, thus answering a question of Weibel affirmatively in the case of poly-
nomial extensions.
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1. Introduction

Let 4 be a commutative noetherian ring. A finitely generated projective 4-module P
is said to be cancellative if A" ® P = A" ® Q implies P =2 Q. It is easy to see that
projective 4-modules of rank 1 are always cancellative.A classical result of Bass
([B 1]) asserts that every finitely generated projective A-module of rank > dim A4
is cancellative. This is the best possible result in general, as is evidenced by the
example of the tangent bundle of the real 2-sphere. However, if 4 is an affine algebra
over an algebraically closed field, then a result of Suslin ([Su 3]) (proved earlier, in the
special case of a two dimensional affine algebra, by Murthy and Swan ([M-S],
Theorem 4)) says that projective A-modules of rank = dim A4 are also cancellative.
Subsequently, Mohan Kumar, Murthy and Roy proved a similar result in the case
of finitely generated Z-algebras ((M-M-R], Corollary 2.5).

Now suppose that 4 is an affine algebra of dimension d over a perfect field k.
Assume that cohomological dimension of k < 1 and d! € k*. In this set up, a result
of Suslin implies that the free module 49 is cancellative (see ([Su 4], Theorem 2.4)).
In view of this and above cancellation theorems,it is natural to ask:

Let A be an affine algebra of dimension d over a perfect field k. Assume that
cohomological dimension of k <1 and d! € k*. Are all projective A-modules of
rank d cancellative?

Note that, in view of the above-mentioned result of Bass, an affirmative answer to
this question for a two-dimensional affine algebra 4 would imply that all projective
A-modules are cancellative.
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In this paper, we settle this question affirmatively if 4 is the coordinate ring of a
normal affine surface. More precisely, we prove:

THEOREM 1 (3.9). Let A be an affine domain of dimension 2 over a field k such that
Spec(A) is nonsingular in codimension 1 (for example k is perfect and A is normal).
If 2 € k* and cohomological dimension of k <1, then every projective A-module
of rank 2 (and hence every projective A-module) is cancellative.

We also prove the following extension of Theorem I answering a question of
Weibel (see the introduction of [W]) affirmatively in the polynomial case.

THEOREM 11 (5.5). Let k be a perfect field of characteristic #2 and of
cohomological dimension < 1. Let R be the coordinate ring of a normal affine surface
over k. Then every projective R[Xq, - -, X,]-module is cancellative.

The above theorem is proved using the following ‘Symplectic’ cancellation
theorem:

THEOREM 111 (4.8). Let R be a Noetherian ring of dimension d. Let P, Q be two
symplectic modules over A = R[X1, ..., X;]suchthat P 1. H(A) ~ Q L H(A). If rank
(P) = d, then P>~ Q (as symplectic modules).

Theorem III can be regarded as a symplectic analogue of the cancellation theorem
of Rao ([Ra 1], Theorem 2.5) which says that for a Noetherian ring R of dimension d,
every projective R[X1, ..., X;]-module of rank > d is cancellative.

We conclude the introduction by thanking the referee for his/her pertinent remark
which enabled us to remove the earlier assumption 2 € R* in Theorem III.

2. Some Preliminary Results

In this section we state some results for later use. All rings considered in this paper
are commutative and Noetherian. All modules considered, are assumed to be finitely
generated. For a module M over a ring, u(M) will denote minimal number of
generators of M.

LEMMA 2.1. Let B be areducedring and let M be a module over B. If for every prime
ideal P of B W(Mp) =r then M is a projective B-module of rank r.

Proof. Let M be a maximal ideal of B. To prove the lemma it is enough to show
that M = Byr". So without loss of generality, we assume that B is local and
u(M) =r. Let a: B —>> M be a surjection and let N = ker(z). Let S denote the
set of nonzero divisors of B. Since B is reduced, Bys is a finite product of fields.
Moreover, since u(Mp) =r for every minimal prime ideal P of B, we see that
My is a free Bg-module of rank r. Therefore oy is an isomorphism showing that
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Ng = 0. Hence, as N is a submodule of B" and S consists of nonzero divisors, N = 0.
Thus M = B". O

LEMMA 2.2. Let A be a ring and let J C A be an ideal of height r. Let P, Q be
projective A/J-modules of rank r and let @ P —> J/J* and p: Q — J/J* be
surjections. Let W: P — Q be a homomorphism such that f¥ =a. Then ¥ is an
isomorphism.

Proof. Let K denote the radical of J. Then, since ht(J) = r and J/K/J is a surjective
image of a projective A/K-module of rank r, by Lemma 2.1, J/KJ is a projective
A/K-module of rank r. Therefore, the maps o ®,4,s A/K and B@A/] A/K are
isomorphisms. Hence ¥ ®,4,7 A/K is an isomorphism. Now we are through, as
P, Q are projective A/J-modules and K/J is the nilradical of 4/J. O

The following lemma is easy to prove.

LEMMA 2.3. Let A be a ring and P a projective A-moduleof rank n. Suppose that we
are given the following short exact sequence

b,—
0P > AdeP 2% 450.

Let (ag,py) € A® P be such that apb — a(py) = 1. Let q; = (a;, p;) € P1,1 <i<n.
Then,

(1) Themap 6: A" (P1) — N'(P)givenby o(qi A ... Agqn) = ao(pr Apa A ... Apy)+
S (=D'ai(po A ... Apict Apisi A ... Apy) is an isomorphism.
(i) o(bgi A...Agy) =P1 A ... ADp.
(iii) The map f5: Py — A given by B(q) = ¢, where q = (¢, p), has the property that
B(P1) = u(P).
(iv) The map ®: P — Py given by ®(p) = (a(p), bp) has the property that f® = o and
5 A" (D) (where § is as in (i)) is scalar multiplication by b"~".

The following lemma follows from the well-known Quillen splitting lemma ([Q],
Lemma 1) and its proof is essentially contained in ([Q], Theorem 1).

LEMMA 2.4. Let A be a ring and P a projective A[T-module. Let a,b € A be such
that Aa+ Ab = A. Assume that the A,[T]-module P, is extended from Agp. Let
a(T) be an Ayp|T]-automorphism of Py, such that 6(0) =id. Then o(T) = 1,0, where
T is an Ap[T]-automorphism of Py such that v = id modulo the ideal (aT) and 0 is
an A, [T)-automorphism of P, such that 0 = id modulo the ideal (bT).

LEMMA 2.5. Let A be aring and let J be a proper ideal of A. Let J; C J and J, C J* be

two ideals of A such that J,+J, =J. Then J =J, + (e) for some e e J, and
Ji=JNJ, where J, +J = A.
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Proof. Since J/J; is an idempotent ideal of a Noetherian ring 4/J; and J, maps
surjectively onto J/J;, there exists an element e € J, such that J; + (¢) = J and
e(1 — e) € J;. Therefore the result follows by taking J' = J; + (1 — e). O

Let 4 be a ring and let P be a projective 4-module. Given an element ¢ € P* and
an element p € P, we define an endomorphism ¢, as the composite P — A4 L p.
If ¢(p) =0, then (ﬁpz =0and 1 + ¢, is an automorphism of P. By a transvection,
we mean an automorphism of P of the type 1 + ¢, where ¢(p) = 0 and either ¢
is unimodular in P*or p is unimodular in P. We denote by Um(P) the set of all
unimodular elements of P and by E(P) the subgroup of Aut(P) generated by all
transvections of P.

The following result is due to Bhatwadekar and Roy ([B-R 1], Proposition 4.1):

PROPOSITION 2.6. Let A be a ring, I an ideal of A and P a projective A-module.
Then any transvection of P/IP can be lifted to a (unipotent) automorphism of P.
Moreover, if the map Um(P) to Um(P/IP) is surjective, then the map E(P) to
E(P/IP) is surjective.

We now quote a theorem of Eisenbud and Evans ([E-E]) as stated in ([P], p.1420)
and deduce some consequences which will be used later.

THEOREM 2.7. Let A be a ring and M be an A-module. Let S be a subset of Spec A
and d:S— N be a generalized dimension function. Assume that
uMp) =1+ d(P) for all P e S. Let (im,a) € M @ A be basic at all prime ideals
P € S. Then, there exists an element m' € M such that m + am’ is basic at all primes
Pes.

As a consequence of Theorem 2.7, we have the following result.

COROLLARY 2.8. Let A be aring and P be a projective A-module of rank n. Let (o, a)
€ (P* @ A). Then there exists an element f € P* such that ht(l,) = n, where
I = (oo + aP)(P). In particular, if the ideal (a(P), a) has height = n then ht I = n.
Further, if (a(P), a) is an ideal of height = nand I is a proper ideal of A, then ht I = n.

Proof. Let S denote the subset of Spec A4 consisting of all prime ideals Q of 4 with
the property: a ¢ Q and height of Q@ < n — 1. Then by ([P], Example 1), there exists a
generalized dimension function d: S — N such that d(Q) <n—1forall Q € S. As
a ¢ Q for all @ € S, the element (o, a) of P* @ A is unimodular and, hence, basic
at every member of S. Therefore, by Theorem 2.7, there exists an element
p € P* such that o + aff is basic and hence (as P* is projective), is unimodular at
all prime ideals Q € S.

Let I = (o 4 af)(P). As o+ aff is unimodular at all prime ideals Q € S, we have
Io = Ag for every Q € S. Hence, ht(Z,) > n. Since [ is a surjective image of P, [
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is locally generated by n elements and, hence, if 7 is a proper ideal, then ht I < n.
Therefore the rest of the conclusions follow. O

As an application of Lemma 2.5 and Corollary 2.8 we have

COROLLARY 2.9. Let A be aring and let P be a projective A-module of rank n. Let
J C A be an ideal of height n and let @: P/JP — J/J? be a surjection. Then there
exists an ideal J' C A and a surjection y: P —> J N J' such that

G) J+J = A.
(i) y® A/J =2.
(iii) height (J') = n.

We conclude this section by quoting the following result which is proved in ([B-RS
2], Theorem 3.3).

THEOREM 2.10 (Subtraction Principle). Let A be a Noetherian ring with
dim A =n = 2. Let P and Q be projective A-modules of rank n and n — 1 respectively
such that N'(P) > A'HQ). Let y: A" (P) > AN(Q & A) be an isomorphism. Let
J C A be an ideal of height = n and J' be an ideal of height n which is comaximal
with J. Let a: P—> JNJ' and B: Q® A —> J be surjections. Let bar denote
reduction modulo J' and @ P — J'|J?, B: O ® A —> J'/J'* be surjections induced
from o and [ respectively. Suppose that there exists an isomorphism
P> O & A such that (i) p6 =1, (ii) A"(5) = 7. Then, there exists a surjection
0: P —> J such that 0@ A)J = o A/J.

3. Cancellation over Two-Dimensional Rings

In this section we show that rank 2 (and, hence, all) projective modules over a normal
affine surface over a perfect field k of cohomological dimension < 1 and of char. # 2
are cancellative (see Theorem 3.9).

Recall that all rings considered are commutative and Noetherian, all modules are
finitely generated.

The proof of following lemma is implicit in the proof of ([M], Theorem 1.3).

LEMMA 3.1. Let A be aring and let P be a projective A-module of rank 2. Let J C A
be an ideal of height 2 such that there exists a surjection from P to J. Let Jy be
an ideal of A such that J + J, = A. Further assume that J N J| is a surjective image
of a projective A-module Q of rank 2. Then there exists a projective A-module P,
such that P® Py = Q @® (A*P @® A) and J, is a surjective image of P.

LEMMA 3.2. Let A be aring and let L be a projective A-module of rank 1. Let J C A
be an ideal of height 2 which is a surjective image of L& A. Let
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0:L/JL&® A)J —> J|J?* be a surjection. Assume that L ® A is cancellative. Then
there exists a surjection y: L® A — J and an automorphism © of L/JL® A]J
of determinant 1 such thaty®' = 0', where bar denotes reduction modulo J. Moreover,
if dim A =2 then 0’ can be lifted to a surjection from L® A to J.

Proof. Let o: L® A —> J be a surjection. Let a: L/JL @& A/J —> J/J* be the
surjection induced by o. Then, by Lemma 2.2, there exists an automorphism ¥’
of L/JL& A/J such that 0¥ =a. Let ¥ € End4(L @ A) be a lift of ¥ and let
a € A be such that det(q’) =a. Since J + Aa = A, we get the following exact
sequence:

0P > Add (L) S 4-0.

Therefore, by Lemma 2.3, we get an isomorphism J: A2 (P;) 3 A (L@ A), a
homomorphism ®: L& 4 — P; and a surjection f: Py = J such that, fO =«
and the endomorphism & A? (®) of A%2(L @ A) is a scalar multiplication by a.

Since 4 ® Py = A ® (L ® A), by assumption, Py = L & 4. Hence, there exists an
isomorphism A: L& A — P; such that A2(A)=6"". Let y = A and ¥ = A™'®.
Then y: L & A — J is a surjection such that y¥ = a. Moreover, the endomorphism
A2(P) of A2(L @ A) is a scalar multiplication by a.

Let bar denote reduction modulo J. Then we have ¥ =& = 0'¥’. Moreover
P! is an automorphism of L/JL & A/J of determinant 1. Therefore, putting
© = P¥'!, we are through.

Now assume that dim A =2. Then, since dim 4/J=0, we have
L/JL& AJJ = (4/J)* and SL(4/J) = E»(A/J). Therefore, by (2.6), @' can be lifted
to an automorphism ® of L ® 4. Hence, 0’ can be lifted to a surjection y® from
Lo AtoJ. ]

LEMMA 3.3. Let A be a ring and let P be a projective A-module of rank 2. Let
o P —>J be a surjection where J is an ideal of A. Let yp,: A2 (P) = P be a

map defined by ypoP @ =auqp—op)g. Then im(yp,) C ker(e) NJP.
Moreover, for a € J there exists a map 0p: P — A*(P) such that the endomorphism
0pyp.yy of A2(P) is a scalar multiplication by a.

Proof. 1t is obvious that im(yp ) C ker(x) N JP.

Let I': Hom, (P, A*(P)) — End4(A%(P)) be a map defined by I'($) = ¢ p.,. Since
A%(P) is a projective 4-module of rank 1, we have End 4(A*(P)) = A. To complete the
proof it is enough to prove the following claim.

CLAIM. I'(Hom (P, A*(P))) = J.

Proof of the claim. 1t is enough to prove the claim when 4 is local. So we assume
that 4 is local. But then P = 4% Let (e;,e;) be a basis of P and let
ale;) = a;, i =1,2. Then yp,(e1 Aex) = are; —ajey. Since J = (a1, ap) the claim
follows. O
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The following lemma is easy to prove and, hence, we omit the proof.

LEMMA 3.4. Let A be a ring and let P, Q be projective A-modules of rank 2. Let
o P—> J and p: Q —> J be surjections where J is an ideal of A. Let ¥: P — Q
be a homomorphism such that BY =oa. Let 7y, A2 (P)— P and
Yo.p): A2 (Q) — Q be homomorphisms as defined in Lemma 3.3. Then

YY) = V0.p) A2 ().

LEMMA 3. 5 Let A be a ring and let P and Q be projective A-modules of rank 2 such
that NX(P) = AXQ). Let 7: A2 (P) — AX(Q) be an isomorphism. Let J C A be an
ideal of height 2. Let a: P —> J and fp: Q —> J be surjections. Let bar denote
reduction modulo J and a: P — J/J?, B: O — J/J? be surjections induced from
o and B respectively. Suppose that there exists an isomorphism §: P > O such that

(i) po=u
(i) A2(9) = 7. Then, there exists an isomorphism A: P — Q such that (1) fA = «, (2)
A is a lift of 6 and (3) A*(A) = y.

_Proof. First we show that d can be lifted to a homomorphism AP Q such that
PA = a.

Let A’ be a lift of 6. Then, since 6 = &, (BA" — o)(P) C J>. Since f(JQ) = J*,there
exists a homomorphism n: P — JQ such that i = fA" — a. Let A=A —y. Then
,BA = a. Since n(P) C JO, it follows that A is a lift of o.

Since A2(5) =7 and A is a lift of &, the endomorphism 7! A2 (A) of AX(P) is a
scalar multiplication by 1 —a for some a € J.

Let

'})(P!“): /\2 (P) — P and V(Q,ﬁ): /\2 (Q) —> Q

be homomorphisms as defined in Lemma 3.3. Then, by Lemma 3.3, there exists a
map 0p: P — A%(P) such that the endomorphism Gp/(P » Of A 2(P) is a scalar
multiplication by a. Let A= A+ Yo.pr0p. Then, since By =0, we have
PA = ﬁA = a. Since 7o, ﬂ)(A (Q)) C JQ, it follows that A is a lift of §. Moreover,
a local computation shows that A%(A) = . Thus, the lemma is proved. O

Remark 3.6. Let J C A be a local complete intersection ideal of height 2 and let
o: P —> J be a surjection, where P is a projective A-module of rank 2. Then we
get the short exact sequence

0 A2P) 3 P4 g 0.
Therefore Ext!(J, A2(P)) = A/J and the above short exact sequence corresponds to a
generator (which we denote by E(P, «)) of Ext!'(J, A2(P). Keeping this notation in
mind, a classical result of Serre says that E(P, o) = E(Q, p) if and only if correspond-
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ing exact sequences are isomorphic. Lemma 3.5 is nothing but a reformulation of this
result, where J is not necessarily local complete intersection.

PROPOSITION 3.7. Let A be ring of dimension 2 and let P be a rank 2 projective
A-module. If N*(P) ® A is cancellative, then P is cancellative.

Proof. Let P, Q be projective A-modules such that A" & P = A" & Q. We want to
show that P= Q. Note that A2(Q)= A2(P). Let 1 A2(P)— AXQ) be an
isomorphism.

Since rank(P) = 2, by Corollary 2.8, there exists a surjection o: P —> J where
JCA is an ideal of height >2. If ht(J)>2 then J=A4 and hence
P > A2 (P) ® A. Therefore, by the assumption, P =2 Q. So it is enough to consider
the case ht(J) = 2.

Since dim(A4) = 2, dim(A4/J) = 0 and therefore P/JP, Q/JQ are free A/J-modules.
Hence there exists an isomorphism o: P/JP > 0/JO such that A*(8) = A/J ®4 .
Let @: P/JP —> J/J? be the surjection induced by o and let f =o'

CLAIM. The surjection p: Q/JQ — J/J* can be lifted to a surjection f: Q — J.

Proof of the claim. By Corollary 2.9, there exists an ideal J; C A4 and a surjection
f:0—>JNJ; such that (1) J+J, =4, 2) f ® A/J = and (3) ht(J;) > 2. If
ht(J;) > 2, then J; = A4 and the claim is proved. So we assume that ht(J;) = 2. Since
B(Q)=JNJ; and a(P)=J, by Lemma 3.1, there exists a projective A-module
Py such that P® P, =~ Q @ (A*(P)® A) and J; is a surjective image of P;. Since
P is stably isomorphic to @, it follows that P; is stably isomorphic to
A%(P) @ A. Hence, by the assumption, P; =2 A>(P) @ 4. Thus, J; is a surjective image
of AX(P)® A.

The map S gives rise to a surjection 4/J, ®4 f: Q/J1Q — J1/J;. Since
dim A/J; =0, as before, we see that there exists an isomorphism
o1: A2 (PJIIP)® A/, > 0/J1Q  such  that  A2()=A/Ji ®47.  Let
0= (A/J, ®4 f)d1. Since A2(P) @ A is cancellative, by Lemma 3.2, the surjection
0: A2 (P/J,P)@® A/J; —> Ji/J,? can be lifted to a surjection 6: A2 (P)@® A —> J;.

Thus, we have surjections f:Q —> JNJ; and 0: A>(P)® A - J; such
that (0 ®4 A/J)0, ' =A/J1 @4 and AX6,"")=A/J1 Q4. Therefore,
by Theorem 2.10, there exists a surjection f:Q —>J such that
A)JQ4p=A/J Q4. Since f=A/J @4, B is a lift of f and thus the claim is
proved.

Now we have surjections o: P —>J, fp:Q—>>J and an isomorphism
d: P/JP > Q/JQ such that AX(8) = 4/J ®4 z and & = 5. Therefore, by Lemma 3.5,
there exists an isomorphism A: P> QO such that fA =0a, A is a lift of 0 and
AN (D) = 1. O

The proof of Proposition 3.7 yields the following corollary.
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COROLLARY 3.8. Let A be ring of dimension 2 and let P be a rank 2 projective
A-module. If N*(P)@® A is cancellative, then the canonical map Aut,(P) to
Aut,(A2(P)) = A* is surjective.

THEOREM 3.9. Let A be an affine domain of dimension 2 over a field k such that
Spec(A) is nonsingular in codimension 1 (for example, k is perfect and A is normal).
If 2 € k* and cohomological dimension of k < 1, then every projective A-module
is cancellative.

Proof. Let P be a projective A-module. If rank(P) > 3 then, by a result of Bass
([B 1]), P is cancellative. Since projective modules of rank 1 are always cancellative,
it remains to prove the result in the case where rank(P) = 2. If k is finite then
the result follows from ([M-M-R], Corollary 2.5). So we assume that k is infinite.

In view of Proposition 3.7, it is enough to show that A*(P) @ A4 is cancellative.

Suslin has shown that, under the assumptions of the theorem, 4 is cancellative
(see ([Su 4], Theorem 2.4)). His arguments can be used to show, that under the
hypothesis of the theorem, L @ 4 is cancellative for every projective A-module L
of rank 1. We just indicate the salient points of his arguments.

In view of the above result of Bass, it is enough to show thatif (/,a,b) e LH A & A
is a unimodular element then there exists W e Aut(L@® 4 @& A) such that
Y(,a,b)=(0,0,1).

Let J C A be the ideal defining the singular locus of Spec(4). Then, since Spec(4) is
nonsingular in codimension 1, dim(A4/J) = 0 and, hence, L/JL = A/J. Therefore, in
view of Proposition 2.6, we can assume that a, b € J. Now, using Swan’s version
of Bertini’s theorem (see ([Sw 1], Theorems 1.3 and 1.4)), we can assume that if
I =I(L7"), then Spec(4/I) is a smooth affine curve. Therefore, using ([Su 4],
Propositions 1.4, 1.7 and Lemma 2.1)), we can assume that b = ¢, c € 4. Now
we are through by ([M-S], Theorem 4). O

Remark 3.10. Let A be a ring of dimension 2 and let L be a projective 4-module of
rank 1. In view of Proposition 3.7, it would be interesting to give conditions under
which L @ A4 is cancellative.

The group SL(L @ 4?) acts on Um(L @ A?) and the orbit space can be identified
with the set G of isomorphism classes of pairs (P, y) where P® 4=~ L @ A> and
v AP (L@ A) = A2(P) is an isomorphism. Note that, under this identification,
the orbit of the unimodular element (0, (0, 1)) corresponds to the isomorphism class
of (L@ A4,id.).

In ([B-RS 2], Sections 4 and 6), the notions of the Euler class group E(A, L) with
respect to L and that of the weak Euler class group Ey(A, L) (a certain quotient
of E(A, L)) are defined. Moreover, to the isomorphism class of a pair (P, ) an
element e(P,y) of E(A,L) is attached. This assignment is such that
e(L® A,id.) = 0. Therefore we get a map from (the set) G to E(A, L) which, by
Lemma 3.5 and ([B-RS 2], (4.3)), is injective. Moreover, using ([B-RS 2], (5.1)
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and (6.2)), it can be shown that the image of G in E(A, L) is precisely the kernel of the
canonical map E(A4, L) —> Ey(A, L). Since E(A4, L) is Abelian, we have, thus, an
induced Abelian group structure on the orbit space Um(L @ 4%)/SL(L & A?). Setting
L = A, we obtain a group structure on Um(A4?)/SL3(A4). This coincides with the
group structure defined by Vaserstein.

Now, since dim 4 = 2, L @ A is cancellative if and only if the action of SL(L & 4?)
on Um(L @ 4?) is transitive i.e. the group Um(L & 4%)/SL(L @& A?) is trivial. Thus
L & A is cancellative if and only if E(4, L) = Eo(4, L).

Now let X = Spec(A4) be a smooth affine surface over the field R of real numbers.

If the topological space (with the Euclidean topology) X (R) of real points of
X has no compact connected component (for example A4 =R[X,Y,Z]/
X"+ Y"+ Z" = 1), n odd), then, using ([Ro], Corollary 11.2 and Theorem 11.10),
it can be shown that, for every projective A-module L of rank 1,
E(A, L) = Ey(A4, L) and, hence, L & A4 is cancellative for every L.

On the other hand, if the topological space X(R) has at least one compact
connected component, then, by ([Ro], Corollary 12.9), E(A4, K4) # Ey(A4, K4) where
K 4 denote the canonical module of 4 over R. Therefore K, @ A4 is not cancellative.

We conclude this section by giving an example of a smooth real affine surface 4
such that A2 is cancellative but K4 & 4 is not cancellative.

EXAMPLE 3.11. Let X = Spec A4 be an affine open subvariety of the projective
2-space P*(R) which is the complement of V(X2 + Y2+ Z2). Then, by ([B-RS 1],
Corollary 6.3 (i) and Proposition 6.1), 4% is cancellative.

Since X(R) is compact, by the above discussion, one knows that K, & A4 is not
cancellative. But here we give an argument which (we feel) is more elementary.

Let B=R[Ty, T», T3]/(Ti> + T»> + T3> = 1) be the coordinate ring of real
2-sphere and let ¢ be an R-algebra automorphism of B defined by o(z;) = —t; where
t; denotes the image of 7; in B. Then it is easy to see that B’ = 4 and B is a finite
etale extension of 4. Therefore Qpr = Qq/r @4 B.

Now the projective B-module Qg does not have a B-linear automorphism of
determinant —1 (see ([O], Proposition 2.11) or ([Sw 2], Corollary 7.5)) and, hence,
the projective 4-module Q4/r does not have an A-linear automorphism of determi-
nant —1. Thus, the canonical map from Auts(Q,4r) to A* is not surjective.
Therefore, by Corollary 3.8, K4 @ A4 is not cancellative.

4. Symplectic Cancellation over Polynomial Extensions

We first recall some preliminary facts about symplectic modules.

Let A be a ring and let P be a finitely generated projective 4-module. A bilinear
map (,): Px P— A is called alternating if (p,p) =0V p € P. An alternating
bilinear form (,) induces a homomorphism a: P — P*(Homy(P, A)) (defined as
a(p)(q) = (p, q)) such that o 4+ o* = 0. Conversely, if 2 € 4*, then a homomorphism
o: P — P* with the property « + o* =0 gives rise to an alternating form on P.
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An alternating form (, ) on P is called non-degenerate if the induced homomorphism
from P to P* is an isomorphism.

A symplectic A-module is a pair (P, (,)) where P is a finitely generated projective
A-module and (,): P x P — A is a nondegenerate alternating bilinear form. If
(P, {,)) is a symplectic A-module then the rank of P is even and P has trivial
determinant.

To make the notation simple, we will always denote a nondegenerate alternating
bilinear form by (, ) irrespective of the base module.

If (P, (,))and (Q, (,)) are two symplectic modules then nondegenerate alternating
bilinear forms on P and Q will give rise (in a canonical manner) to a nondegenerate
alternating bilinear form on P @ Q and we denote the symplectic module thus
obtained by (P L Q, (,)). There is a unique (up to scalar multiplication by elements
of A*) nondegenerate alternating bilinear form (,) on the free module
A> = A® A, namely ((a,b), (c,d)) = ad — bc and hence in the sequel it will be
understood that we are considering this form on A42.

Two symplectic modules (P, (,)) and (Q, (,)) are isomorphic if there exists an
isomorphism t: P — Q such that

(p1,p2) = (t(p1), T1(p2)), p1,p2 € P.

An isometry of the symplectic module (P, (,)) is an automorphism of (P, (,)). We
denote by Sp(P, {,)) the group of isometries of (P, (,)). Sp(P, (,)) is a subgroup
of SL(P) and it coincides with SL(P) when rank(P) = 2. Therefore SL;(4) can
be identified with a subgroup of Sp(42 L P, (,)).

Let (P, (,)) be a symplectic A-module and let u, v € P be such that (i, v) = 0. Let
a € A and let 7(,,,,: P — P be a map defined by

TaunyP) =p+ (P, VVu+ (p,u)v +a(p, uu.
Then t(,.,v) € Sp(P, (,)). Moreover

T(a,u,v)_l = TU(—a,u,—v) = V(—a,—u,v) and O“L'(a,u.v)a_1 = T(a,ou),o(v))

for an element o in Sp(P, {,)).

An isometry 1(44,v) is called a symplectic transvection if either u or v is unimodular.
We denote by ESp(P, (,)) the subgroup of Sp(P, (,)) generated by symplectic
transvections. ESp(P, {,)) is a normal subgroup of Sp(P, (,)).

The above definition of symplectic transvection is slightly more restrictive than the
one given by Bass.

Now we prove a few lemmas, some of which are well known and are included for
the convenience of the reader. We begin with a result which is a symplectic version
of Proposition 2.6.

LEMMA 4.1. Let A bering andlet (P, {,)) be asymplectic A-module. Let I be an ideal

of A. If the canonical map Um(P) — Um(P/IP) is surjective, then the canonical map
ESp(P, (,)) — ESp(P/IP, (,)) is surjective.
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Proof. Let b€ A/I and let x,y € P/IP be such that (x,y) =0. Assume that
x € Um(P/IP). Let u € Um(P) be a lift of x, v € P be a lift of y and a € 4 be a
lift of b. Then (u,v') = ¢ € I. Since u is a unimodular element of P, there exists
w € P such that (u,w)=1. Let v=v —cw. Then v is also a lift of y and
(u,v) = 0. Therefore, as u is unimodular in P, 7, is a symplectic transvection
of (P,(,)) which is a lift of the symplectic transvection 7, ,) of (P/IP,(,)).
The case y € Um(P/IP) can be proved similarly. Hence, the lemma follows. []

LEMMA 4.2. Let A be ring and let s € A be a nonzero divisor. Let (P, {,)) be a
symplectic A-module of rank 2n. Let ey, ..., ey, fi,...,fn € P be such that

(eie)) =0=(fi.f)), 1<ij<n,
and
(e, fi) = s, (e, fi) =0, i#j.

Let F =Y | Ae;+ > ., Af; be a submodule of P. Then F is a free of A-module of
rank 2n and sP C F.
Proof. Let FX = {q € P, (F, g) = 0}. Then, since s is a nonzero divisor, F is a free
A-module of rank 2n and FN F+ =0. Let p € P and let {(e;, p) = b;, (fip) = —aj.
Let x =" ,ae+ Y i bifi€ F. Then (e;,x) = sb;, (fj, x) = —sa;. Therefore
sp —x € F* and hence sP C F @ F* C P. Since F and P have same rank and s
is a nonzero divisor, it follows that F+ = 0 and, hence, the result follows. O

Let (P, (,)) be a symplectic A-module. Let ¢,d € 4,q € P. If
u=(0,1,0) and v=(0,c,9) e APADP,

then 7., ) is a symplectic transvection of (4> L P, (,)) such that

T(—(?,u,v,)((av ba P)) = (Cl, b + ca + (p’ Q)fp + Clq)
Similarly, if « = (1,0,0) and v = (—d, 0, —¢), then

T(d,u,v)((a’ b’p)) = (Cl + bd + <q7p>’ b’p + bq)

In what follows we will use the following additional notation:

We denote by 0, a symplectic transvection of (4> L P, (,)) defined as
(a,b,p) = (a,b+ca+(p,q),p+aq). Similarly, oy, will denote a symplectic
transvection (a, b, p) — (a + bd + {q, p), b, p + bg).

LEMMA 4.3. Let A be a ring and let (P,{,)) be a symplectic A-module. Let
(a,b,p)c A>®P. Let t=ca*+dbh>c€A and qeP. Then, there exists
W € ESp(4% L P, (,)) such that y(a, b, p) = (a, b, p + 1q).

Proof. Let q; = caq, g = dbq, and (p, q) = s. Then (p, q1) = acs, (p, q») = bds. Let
Y = 0(ds,q2)0(=cs,q1)- Then € ESp(4% L P, (,)) and y(a, b, p) = (a, b, p + tq). O
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LEMMA 4.4. Let A be a ring and let (P, (,)) be a symplectic A-module. Let
(a, b, p) € A> @ P be such that either (a, p) or (b, p) € Um(A ® P) Then, there exists
an element ¢ of ESp(4%> L P, (,)) such that ¢(a, b, p) =(1,0,0).

Proof. First assume that (b, p) € Um(A @ P). Then, since the alternating form (, )
on P is nondegenerate, there exist ¢ € P and d € 4 such that 1 —a =db + (q, p).
Therefore

owqgla, b,p)=(a+db+{q,p),b,p+bq)=(,b,p+bg).

Now 0(—b.—p—bq)(la b,p + bq) =(1,0,0). Hence, by putting (,b = 0(_1,,_[,_1,(1)0'((1,,]), we
are through. In the case where (¢, p) € Um(4 @ P) the proof is similar. ]

Let Bbe aring and let A = B[X]. Let F be a free 4-module with a basis (ey, ..., ¢,).
Let p(X) =Y, 7{(X)e; € F. Then, for b € B, we denote by p(bX) the element
Y 7i(bX)e; of F. Keeping this convention in mind, we state the following lemmas.

LEMMA 4.5. Let Bbe aring and let s € B be a nonzero divisor. Let A = B[X] and let
(P, (,)) be a symplectic A-module of rank 2n. Let ey, ..., ey, f1,...,fn € P be such
that (e e) =0=(fi, /), 1 <i,j<n, and (e,f;)=s (e f})=0,i#j. Let
F=Y" 4e;+Y " Afi. Let («X),B(X),p(X)) € Um(A> D F) be such that
o(X) = 1 modulo (sX). Then, for b € B,

(u(bX), p(bX), p(bX)) € Um(4> & P).
Proof. Since (u(X), f(X), p(X)) € Um(4> @ F),
((bX), B(bX), p(bX)) € Um(A> & F).

Therefore, since, by Lemma 4.2, F;, = P;, (u(bX), f(bX), p(bX)) is a unimodular
element of (42 @ P),. Hence, as a(hX) =1 (modulo (sX)), (x(bX), B(bX), p(bX))
is a unimodular element of 4% & P. O

The following lemma is due to Suslin ([Su 2], Lemma 2.1).

LEMMA 4.6. Let B be a ring and let a(X), f(X) € B[X]. Let ¢ € BN (u(X), f(X)).
Then for any ideal I of B[X] and g(X), h(X) € B[X] with W(X) — g(X) € clI, there
exists A € SLy(B[X], I) such that [a(l(X)), B(R(X))]A = [o(g(X)), f(g(X))].

PROPOSITION 4.7. Let the hypothesis and notation be as in Lemma 4.5. Further
assume that f(X) is a monic polynomial. Let b, b’ € B be such that b — b’ € sB. Then
there exists ¥ € SLy(4, (sX))ESp(42 L P, (,)) such that

Y((bX), B(bX), p(bX)) = (x(b'X), BB X), p(b'X)).

Proof. Note that, since ESp(4> L P, (,))is anormal subgroup of Sp(4> L P, (,)),
SLy(4, (sX))ESp(4% L P, (,)) is a group.
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Let G = SL,(A4, (sX))ESp(4> L P, (,)) and let J be a set of elements ¢ € B having
the following property:

b—bececsB=30ec G
such that
D(a(bX), f(bX), p(bX)) = (b’ X), p(b' X), p(b'X)).

It is easy to see that, since G is a group, J is an ideal of B. We shall prove that J = B.

Let 1€ BN («X)*, f(X)*) and let b,b € B be such that b— b € tsB. Then
p(bX) = p(b’'X) — tsq(X). Since t € B, it also belongs to the ideal of B[X] generated
by a(bX)?, f(bX)*. Therefore, by Lemma 4.3, there exists y € ESp(4% L P, (,)) such
that Y(u(bX), p(bX), p(bX)) = ((bX), f(bX), p(b'X)). Since bX — b’ X € (tsX), by
Lemma 4.6, the element (a(bX),p(bX),p(b'X)) can be transformed to
((V'X), B(V'X), p(b' X)) by an element of SL,(4, (sX)). Hence, ¢ € J.

Since f(X) is monic and «(X) =1 (modulo (sX)), BN («(X)*, f(X)?) +sB = B.
Therefore the above argument shows that J + sB = B.

Let m be a maximal ideal of B. If s € m then m + J = B. Now assume that s & m.
To complete the proof, it is enough to show that m +J = B.

Since

a(X) = l(modulo(sX)) and (a(X), f(X), p(X)) € Um(4> @ P),

(a(X), B(X), sXp(X)) € Um(A> @ P). Therefore, there exists p’ € P such that mB[X]
and the ideal (a(X) + (p/, sXp(X)), (X)) are comaximal. Since sP C F, sXp' € F. Let

qX)=sXp',  pi(X) = p(X) + B(X)gq(X)
and

n(X) = a(X) + (¢(X), p(X)).
Then

n(X) = l(modulo(sX)) and mB[X]+ (n(X), (X)) = B[X].
Moreover, for b € B,

00,qbx)(UDX), B(bX), p(bX)) = (n(bX), B(X), p1(bX)).

Let J; = BN (n(X)?, B(X)?) Then, since mB[X]+ (n(X), (X)) = B[X] and B(X) is
monic, m+ J; = B.

Let t; € Ji. As before, we see that if b, b’ € B such that b — b’ € st; B, then there
exists ® € G such that

Db X), BX), pr(bX)) = (n(b'X), BB'X), pr(b'X)).
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Therefore
G0.q0x) PO, qex)(bX), BBX), p(bX)) = (2(b'X), B(B'X), p(b' X)).
Hence, J; C J and thus m + J = B. Therefore J = B and we are through. OJ

THEOREM 4.8. Let R be a ring of dimension d. Let A be a polynomial ring in
r( = 0) variables over R. Let (P, (,)) be a symplectic A-module of rank 2n > 0. If
2n > d then ESp(4> L P, (,)) acts transitively on Um(4> @ P).

Proof. Let (g1,g2,p) € Um(4>@® P). We want to show that there exists
® e ESp(4> L P, (,)) such that ®(gy, g, p)=(1,0,0). We prove the result by
induction on r.

If r =0 (i.e. A = R), then this is a result of Bass. We give, however, the proof for
the sake of completeness.

Since rank(4 @ P) > d, by a theorem of Bass ([B 1]), there exist 2 € 4, g € P such
that (g2 +g1h,p+g1q) is a unimodular element of A& P. Therefore
(g2 +g1h+ (p,q), p+ g19) is also unimodular. Therefore, since

Ong(81,82.p) = (g1, &2+ &1h+(p.q),p + 19,

by Lemma 4.4, we are through.

Let A = R[X}, ..., X;], r = 1. With out loss of generality we can assume that R is
reduced. Let S be a set of nonzero divisors of R. Then Ry is a finite direct product
of fields and therefore, by the Quillen—Suslin theorem ([Q], Theorem 4, [Su 1],
Theorem 3), every projective Ag-module is free. Hence, we can find a basis
DPls-sPns Qus-...qn of Pg such that (p;,p;)=0=(q,q), 1<i, j<n, and
(Piqi) =1, (pi.qj) =0, i # .

Let p;=ej/t,gi=fi/t, teS,e;, fieP, 1<i<n and let s=¢. Let F=
Yo, Aei+ Y ., Af;. Then, by Lemma 4.2, F is a free-submodule of P of rank
2n and sP C F.

Since s € R is a nonzero divisor, R = R[X,]/(sX,) is a ring of dimension d and
A= A/(sX,) is a polynomial ring in r—1 variables over R. Moreover, since
rank(P) = d,by ([L], Lemma 1.11), the map Um(42 @ P) — Um((4)’ ® P/sX,P)
is surjective. Therefore, by (4.1) and the induction hypothesis, there exists
W € ESp(4% L P, (,)) such that y(g1, g2, p) = (1,0, 0) (modulo (sX,).)

Let y(g1, 22, p) = (g1, &', P). Then, by Corollary 2.8, there exist € 4 and p; € P
such that ht(4gs + I) > rank(4 & P) > d, where

=g’ +hg, pr=p +g'p1, and I =py(P*)=(P,ps).

Put a(X;) = g3 + (p1, ') then o p)(g1, 82, p') = (UX:), &2', p2).
Note that, since g’ € (sX;) and p’ € sX,P, a(X;) =1 (modulo (sX,)). Moreover,
since (p1, p2) = (p1,p’) € I and a(X;) =1 (modulo (sX;)), Ags +1 = Au(X,)+ 1 =

Aa(X;) + sX,1.
Since Aa(X;)+ sX,I is an ideal of 4 = R[X1, ..., X;] of height > d = dim(R), by
([B-2], Lemma 3 of Section 4), there exist positive integers /i, ..., /._; such that,
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denoting X; + X, by Y; (1 <j<r—1), Au(X,) + sX,I contains a monic polynomial
»(X;) in X, with coefficients inR[Y1, ..., Y,_1].

Let B=R[Y},..., Y,_1]. We denote X, by X. Then 4 = B[X]. Without loss of
generality we can assume that X-degree of y(X) >X-degree of the eclement
g2’ € B[X]. Let p(X) = w(X)(X) + v(X) where v(X) € sXI. Since I = (P, p,) there
exists p3 € sXP such that v(X) = (—p3, p2) = (p2, p3). Put (X)) =g+ y(X) and
pa=pr+o(X)ps. Then O x)py((X), &', p2) = (UX), B(X), ps). Note that, by
construction, «(X) =1 (modulo (sX)), f(X) monic and ps € sXP. Therefore, by
Lemma 4.2, p, € XF. Hence, we write py as p4(X).

Since (a(X))+ sB[X] = B[X] and f(X) is monic, there exists ¢ € B such
that 1 —cs e BN (a(X), f(X)). Then, writing b=1,0"'=1—sc and applying
Proposition 4.7, we see that there exists ¥ € SL,(4, (sX))ESp(4> L P, (,)) such that
Y(ou(X), p(X), pa(X)) = (a(b'X), p(b'X), pa('X)). Since a(X)=1 (modulo (sX))
o(b'X) =1 (modulo (sb'X)). Moreover b’ =1 — ¢cs € BN (a(b'X), p(b'X)). Therefore
[o(6' X), (b’ X)] is a unimodular row.

Let ¥ = A~'¢ where A € SLy(4, (sX)) and ¢ € ESp(4% L P, (,)). Let

[a(6'X), BOO' X)]A = [o1(X), 1 (X)].
Then

(X)), B(X), pa(X)) = (1 (X), B1(X), pa(b'X)).

Since A € SLy(4, (sX)), a1(X) = 1 (modulo (sX)) and [« (X), ,(X)] is a unimodular
row. Therefore, by (4.3), there exists ¢, € ESp(4%> L P, (,)) such that

$1(21(X), B1(X), pa(b' X)) = (1(X), B1(X). e1).

Since (e}, f1) = s, (21(X), e1) is an element of Um(A @ P). Therefore, by Lemma 4.4,
there exists ¢, € ESp(4% L P, (,)) such that ¢,(a(X), B;(X), e1) =(1,0,0).
Let @ = ¢21¢0ux).p)00r.p)Y- Then @(gi, g2, p) = (1,0, 0). O

Remark 4.9. Let R be a ring of dimension d and let 4 be a polynomial ring over R.
Suslin ([Su 2], Theorem 2.6) has shown that if n > max(l,d), then E, ,(A)
acts transitively on the set Um,»(A4) of unimodular rows of length n + 2. Lindel
([L], Theorem 2.6) has generalised this result of Suslin by proving that, for a
projective A-module P of rank n > max(l,d), E(A>@ P) acts transitively on
Um(A? @ P). Theorem 4.8 is a symplectic analogue of this result of Lindel and
our proof of Theorem 4.8 is a simple adaptation of the proof given by Lindel.

5. Projective Modules over Polynomial Extensions of Two-Dimensional
Rings

Let S be a two-dimensional local ring with 2 € $*. Then every unimodular row
[f1, /2, /3] over S[X] is completable (see ([Ra 2], Lemma 2.9) for a proof). The
following lemma is a consequence of this result.
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LEMMA 5.1. Let R be a two dimensional ring with2 € R*. Let A = R[ X1, ..., X,] and
let P, Q be two projective A-modules of rank 2 such that A" ® P =2 A"® Q. If Q is
extended from R, then P is also extended from R.

Proof. Since, by (|[B-R 2], Theorem 3.1), every projective A-module of rank > 2 is
cancellative, we can assume that n = 1.

We prove the result by induction on r. If r = 1, then the result follows from above
result and the Quillen localization theorem ([Q], Theorem 1).

Let P=P/(Xi,...,X,)P and P = P/(X», ..., X,)P. Then, by the case r=1,
P=Pox R[X1]. Let R(X}) denote the ring obtained from R[X] by inverting monic
polynomials in X;. Let B = R(X1)[X>, ..., X;]. Then, by the induction hypothesis,
P®4B=PQgyxB= P ®gr B. Therefore, by the monic inversion theorem of
Quillen and Suslin ([Q], [Su 1]), P is extended from R[X>, ..., X;]. Hence, applying
the induction hypothesis again, we see that P is extended from R. OJ

LEMMA 5.2. Let S be a reduced semilocal ring of dimension 2 with 2 € S* and let
B =S[X1,...,X)]. Let P, Q be two projective B-modules of rank 2 having trivial
determinant such that B"@® P = B"@® Q. Let wp, wp be generators of N2(P) and
AX(Q) respectively. Then there exist comaximal ideals I,I, of B with
ht(I) = 2, ht(I}) = 2 or I = B, surjections o: P —> I, : Q —> I N1y, 0: B> - I,
and isomorphisms 8: Q/10 — P/IP, 6,: O/1;0 — (B/I,)* such that

(i) («®B/1)0 =& B/I.
(i) (0 ® B/1))d; = p ® B/I,.
(i) A2(0)(wo ® B/I) = wp ® B/I.
(iv) AX(S1)(wg ® B/11) = (e1 A e2) ® B/I) where e; = (1,0), e, = (0, 1).

Proof. If P is free then, by Lemma 5.1, Q is free. In this case the proof is easy. So
we assume that P is not free.

By the Quillen—Suslin theorem there exists a nonzero divisors € S such that P, Q;
are free. Since dim(S/sS) < 1,by ([B-R 1], Theorem 3.1), there exists a; € P* such
that (oy,s) € P* @ B is unimodular. Therefore, by Corollary 2.8, there exists
oy € P* such that ht(J) = 2 where o« = oy + sop and I = a(P).

The surjection o«: P — I induces a surjection &: P/IP —> I/I*. Since I + sB = B
and Py, Qy are free, Q/IQ and P/IP are free. Therefore, there exists an isomorphism
5: 0/IQ = P/IP such thatA*(8)(wg ® B/I) = wp @ B/I.

Let f =ad. Then pB: Q/IQ — I/I> is a surjection. Since, by ([B-R 1],
Theorem 3.1), O/sQ has a unimodular element, using the fact / +sB = B, it is easy
to see that there exists a lift B: @ — I of B’ such that B(Q)+sB=B. Let
L = B(Q). Then L+ I* = 1,1, + sB = B. Therefore, I, +sI> = I and, hence, by
Lemma 2.5, there exists ges/> such that I, +(g)=1. Now applying
Corollary 2.8 to the pair (E, g), we see that there exists 7 € O* such that
(B+gn)(Q) is an ideal of height two. Let f =+ gn. Then, by construction,
p(Q) = I NI where either I} = B or I is an ideal of height two comaximal with
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(2). Note that (¢ ® B/I)d = ' = B ® B/I. Therefore if I, = B we are through. So
assume that /; is an ideal of height two.

By Lemma 3.1, there exists a projective B-module P’ of rank two such that
P®P ~Q@(AX(P)®B) and I; is a surjective image of P'. Since A%*(P) = B,
B'"® P~ B"® (Q,P is stably isomorphic to B>. Since S is semilocal, by (5.1), B?
is cancellative. Therefore P’ = B*>. Hence I,is a surjective image of B>.

Since I} + Bg = B, gis a multiple of s and Q; is free, Q/11 Q is free. Therefore there
exists an isomorphism o: Q/I;Q — (B/I)> such that AX(S)(wp® B/I)) =
e1 Aey ® B/I, where e; = (1,0),e; = (0, 1). o

Let 0: (B/1)*> — I,/I,? be a surjection defined by &' = (8 ® B/I,)(6) . Then, by
(3.2), there exists a surjection 0: B> —> I; and an element ® of SL,(B/I;) such
that (0 ® B/1)0®' =0 = (B® B/I)() . Now the proof is complete by setting
d; = @'. O

Let B be a ring and let P be a projective B-module of rank 2 with trivial
determinant. Then, having a nondegenerate alternating form (, ) on P is equivalent
to giving an isomorphism Z: AZ (P) = B. Thus, we can identify the symplectic
module (P, (,)) with (P, w), where w is the generator of A%(P) given by i~'(1).
It is easy to see, that the isometry classes of (P, (,)) coincide with the isomorphism
classes of (P, w). In what follows, for convenience of notation, we will denote by
(P, w) a corresponding symplectic module.

Now we state a result, a proof of which is implicit in the proof of Theorem 7.2 of
([B-RS 2]).

PROPOSITION 5.3. Let B be aring and let P be a projective B-module of rank 2 with
trivial determinant. Let wp be a generator of A>(P). Let a: P ——> I and 0: B> — I, be
surjections, where I and 1| are ideals of height 2 which are comaximal. Then there
exists a projective B-module Py of rank 2 with trivial determinant, a generator w;
of AX(Py), a surjection B,: Py —> I NI} and maps Jy: Py — P, Jo: Py — B? such that

Q) aiy =B, = 0a.
(i) AA (o)) = uwp, u—1¢el, N*J(w) =vey Aer),v—1¢€el; where e; =(1,0),
e = (0, 1).
(i) (B (e1 Aer)) L (P, wp) = (B* €1 Aey) L (P, ).

The following proposition is an extension of Proposition 3.7 to the polynomial
situation.

PROPOSITION 5.4. Let R be a ring of dimension two with 2 € R* Let
A= R[Xy,...,X,] and let P, Q be two projective A-modules of rank 2 such that
A"®P=A"® Q. Let L be a rank one projective R-module such that
L®r A= N(P)2ANQ). Let z: N> (P) — A*(Q) be an isomorphism . If L& R is
cancellative, then there exists an isomorphism A: P — Q such that A*(A) = y.
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Proof. Let N denote the nilradical of R. Then, since 2 € 4*, every element of 4*
which is congruent to 1 modulo N4 has a square root in 4*. Therefore, it is enough
to prove the result in the case R is reduced.

Let bar denote reduction modulo (Xi,...,X;). Then R"® P =~ R" @ Q. Since
L =~ /\Nz(?) and L & R is cancellative, by Proposition 3.7, there exists an isomorphism
A: P > 0 such that A2(A) = 7.

If Q is extended from R, then, by Lemma 5.1, P is extended from R. Therefore A
can be lifted to an isomorphism A: P — Q. Since R is reduced and Az(A) =7,

A%(A) = x.So we assume that Q is not extended from R.

LetJ = {a € R: Q, extended from R,.} Then,by ([Q], Theorem 1), J is an ideal of R
and since A*(Q) is extended from R, by ([B-R 1], Theorem 3.1), ht(J) =

Let S= Ry, 75, B=A1,;=S[X1,...,X,]. Then S is a semilocal (reduced) ring.
Hence Li;; = S. Therefore Piy; and Qs have trivial determinant. Let wp, wg
be generators of A*(Py4)), A*(Q14s) respectively such that z,,(wp) = wo.

By Lemma 5.2, there exist comaximal ideals I, I} of B with ht(/) =2 = ht([}),
surjections o P1+J —>> 1, B: Q1py > INL, 0 B> > I, and isomorphisms
8: Q144/1014s = P1yy/IP14y. 012 Q14s/T1 @14y — (B/T))” such that

(i) («c® B/1)0 = ® B/I.
(iii) A2(0)(wo ® B/I) = wp ® B/I.
(iv) /\2(51)((1)Q ® B/1)) = (e1 A ex) ® B/I where e; = (1,0),e2 = (0, 1).

Therefore, by Proposition 5.3, there exists a projective B-module P; of rank 2
having trivial determinant, a generator ®; of A%(P;), a surjection
By: Py = INI and maps A;: Py — Pi,;, /2: P — B2 such that

(D) 41 =By =07,
(i1) /\2/11(601) =uwp, u—1¢€l, Alez(wl) =veiANey, v—1¢€ 1],

where ¢; = (1,0), e; = (0, 1) and
(ili) (B* e1 Aey) L (Piys, wp) = (B e1 Aez) L(Pr, o).

But then, by (4.8), the symplectic modules (P, wp) and (P, w;) are isomorphic.
Let K =1N1. Then we have surjections f;: Py >> K f: Q11; —>> K, Let
T: P1 /KPy = 01.,/KQ1,; be an isomorphism defined as [ ® B/I =
o~ (m ® B/I) and F®B/11 =06, 'l ® B/I). Then it is easy to see that
2(F)(a)1 ®B/K)=wpo®B/K and (fQ® B/K)I~" =, ® B/K. Therefore, by
Lemma 3.5, the symplectic modules (P, w1) and (Q1+,, wg) are isomorphic. Hence,
there exists an isomorphism A;: Pi.; — Qy4s such that A%(Aj)(wp) = wo.

Since R is semilocal, Pi,; is free and SLy(R) = E5(R). Therefore, in view of
Proposition 2.6, we can assume that A; is a lift of Ajyy. TNherefore there exists
a € J such that A; is an isomorphism from Py to Oy lifting Ay, where b =1 +a.

Since P, and Q, are extended from R,, there exists an isomorphism A,: P, — Q,
which is a lift of A,.
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Since the automorphism (Az)b*I(Al)a of the extended module P, is identity
modulo (Xi,...,X;), by Lemma 2.4, A; and A, patch up and give rise to an
isomorphism A: P — Q which is a lift of A. Since R is reduced and A2(A) = 7, it
follows that A2(A) = y. O

THEOREM 5.5. Let k be a perfect field of characteristic # 2 and of cohomological
dimension < 1. Let R be a normal affine surface over k. Then every projective
R[X1, ..., X,]-module is cancellative.

Proof. Let P be a projective R[X7, ..., X,]-module. If rank P = 1 then obviously P
is cancellative. So we assume that rank P > 2.

If rank P > 2, then, by ([B-R 2], Theorem 3.1), P is cancellative. If rank P = 2,
then, since R is normal, there exists L € Pic(R) such that
L®gR[X1,...,X,] =2 A*(P). Since, by Therem 3.9, L& R is cancellative, by
Proposition 5.4, P is cancellative. O

Remark 5.6. Let k be a field with 2 € k*. Assume that either k is algebraically
closed or finite. Let R be a reduced two-dimensional affine k algebra. Then, by
(IM-S], Theorem 4) (if k is algebraically closed) or by ([M-M-R], Corollary 2.5)
(if k is finite), any projective R-module is cancellative. If R is seminormal, then
Pic R[X1, ..., X;] = Pic(R) and hence, by Proposition 5.4 and ([B-R 2], Theorem
3.1), all projective R[X],..., X;]-modules are cancellative. Even if R is not
seminormal, a similar result holds. The proof is a bit technical and involves a con-
ductor diagram between R and its seminormalisation.
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