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On an infinite integral linear group

I. H. Farouqi

This paper investigates the normal subgroup structure of the

automorphism group F of a free abelian group A of countably

infinite rank. The finitary automorphisms, that is those acting

non-trivially only on a direct summand of A of finite rank,

form a normal subgroup $ of T ; the sublattice of all normal

subgroups of T contained in 9 is in fact the sublattice of

normal subgroups of $ and has a quite transparent structure.

By contrast there is a profusion of normal subgroups of F not

contained in $ . For example, the collection of certain types

of these normal subgroups, defined as generalizations of the

congruence subgroups of finite dimensional integral linear

groups, if partially ordered by inclusion, can be shown to

contain infinitely many chains of the order type of the

continuum.

0. Introduction

Let A be a free abelian group of countably infinite rank and let F

be the group of automorphisms of A . In this paper we present some

results on the normal subgroups of F . The normal subgroups of F that

we introduce here are defined in terms of direct decompositions of A or

infinite descending chains of subgroups of A . To begin with, we define

finitary automorphisms of A as those which are the identity on a direct

summand of finite codimension. Finitary automorphisms form a normal
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322 I.H. Farouqi

subgroup $ of F . It contains, as its subgroups, isomorphic copies of

finite dimensional integral linear groups which enables us to find the

normal subgroups of $ by using the results of Brenner [/] and Mennicke

[5] on unimodular groups. Congruence subgroups of the finite dimensional

unimodular groups have their analogue here; a congruence subgroup of F

is a normal subgroup of F which consists of those automorphisms y such

that Y - 1 maps every element of A into the characteristic subgroup

mA of A . The intersections of $ with the congruence subgroups turn

out to be essentially the only normal subgroups of $ and consequently

all normal subgroups of $ are normal in F also. $ also has the

property that, modulo the centre of F , it intersects every other normal

subgroup of F non-trivially.

The last two sections of this paper are devoted to normal subgroups

defined in terms of infinite descending chains of subgroups of A . We

show that the class of such normal subgroups is uncountable, and moreover,

each normal subgroup of this kind contains infinitely many chains of

normal subgroups of F , each chain being of the order type of the reals.

This 'density' of the normal subgroup structure of F is in strong

contrast to known results that apply to apparently similar situations.

Rosenberg [6] has studied the group of automorphisms of a vector

space of infinite dimension over a division ring. In the case when the

vector space has countable dimension, the finitary invertible linear

transformations form a unique maximal normal subgroup modulo the centre.

Another example of this kind is provided by [7] where it is shown that in

a symmetric group of countable degree the finitary permutations form a

unique maximal normal subgroup.

The large number of normal subgroups outside the subgroup of finitary

automorphisms that we exhibit have no analogue either in the finite

dimensional integral linear groups. Their existence is due to the

combination of the divisibility properties of the integers and the scope

provided by an infinite dimensional structure. Recently, Maxwell [4] has

studied a more general system, namely the units of the ring of

endomorphisms of an infinite type free module over a commutative ring. He

considers the automorphisms which are the identity on a direct summand (of

any codimension) and are transvections (see [6]). Thus, what Maxwell deals
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An infinite integral linear group 323

with is a set related to, but different from the set of finitary

automorphisms.

1. Notation and terminology

The following notation will be used in the whole paper.

A : a free abelian group of countably infinite rank.

F : the group of automorphisms of A .

Z, Z : the set of all integers, and of all positive integers,

respectively.

r(H), r{A/H) : the rank of a subgroup H , or of a free abelian factor

group A/H , of A .

codim(#) : the rank of a complement of H , H being a direct

summand of A .

1 , 1 : an identity matrix of infinite dimension, or of dimension

n respectively.

A : a matrix whose {i, j)-th coefficient, that is, the

coefficient in its i-th row and j'-th column, is a. . .

We shall also write A when the shape of A is to be
mxn

mentioned explicitly.

p
a : the normal closure of the automorphism a in F ; as

usual, we write a for g" ag .

(x , ..., x ) : the subgroup generated by x , ..., x

(X) : the subgroup generated by the subset X .

GL [Z] : the general linear group consisting of all (rexn)-matrices

with integral coefficients and determinants equal to ±1 .

SL [Z] : the special linear group consisting of all those elements

of GL [Z] of determinant equal to +1 .

g.c.d. : abbreviation for "greatest common divisor"; but for two
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integers m, n we write usually (m, n) for

g.c. d.{m, n} .

2. Results on free abelian groups

This section contains some properties of free abelian groups of

countably infinite rank that will be used subsequently. Most of them are

known; we give references or proofs as needed.

2.1. H is a direct summand of A if and only if A/H is free

abelian.

Hence, as subgroups of A are free, we have

2.1.1. The kernel of an endomorphism of A is a direct summand.

2.2 ([3], Example 51c). The intersection of any number of direct

swnmands of A is a direct summand of A .

2.2.1. Let H be a subgroup of A . There is a unique least direct

summand B of A containing H ; B and H have the same rank.

2.3. Let again H £ A and let B be the least direct summand of A

containing H . If an automorphism y ( r maps H onto itself then it

maps B onto itself.

Proof. The direct summand B may "be obtained as the intersection of

all direct summands of A that contain H . As Hy = H , y induces a

permutation on the set of all these direct summands and so maps their

intersection onto itself.

2.4. Let #i and K2 be direct summands of A , both of finite

codimension (that is, a complement has finite rank). Then K\ n K2 also

has finite codimension.

2.5 ([2], §2). If H is a direct summand of A and the subgroup

B of A contains H , then H is a direct summand of B .

Hence, easily

2.6. Let A = H © K and let B be another direct summand of A

containing H . Then we can write A = B © C where C 5 K .

Proof. Consider B n K which is a direct summand of -4 , hence of

K . Thus we have K = (BnK) © C for some C , and now
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A = U © {BnK) © C = B © C .

3. The finitary automorphisms and the congruence subgroups

Finitary automorphisms of A have been defined in the introduction

as those automorphisms which are the identity on some direct summand of A

which is of finite codimension. The following theorem gives several

characterizations of such an automorphism.

THEOREM 3.1. Let (p £ T be an automorphism of A . The following

properties of <p are equivalent:

(i) the endomorphism p = <p - \ , where \ is the identity on

A , has image Ap of finite rank;

(ii) ip maps a direct summand of A of finite codimension

identiaally onto itself;

(Hi) there exists a basis \x. \ i € Z \ for A and a positive

integer n such that x.cp = x. for all i > n ;

(iv) there exists a direct decomposition of A , A = H © K say,

such that H is of finite rank, H<p = H , and cp is the

identity on K .

Proof. (i) => (ii). Let p = (p - l and assume that 4p has finite

rank. Since p is an endomorphism of A , kerp is a direct summand of

A . Then kerp is mapped identically onto itself by q> ; and kerp has

finite codimension, since 4/kerp = Ap .

The equivalence (ii) <=> (Hi) is obvious, and so is the implication

(iv) => (i).

We only show now that (ii) implies (iv). We have A = H © K with cp

being the identity on K and H of finite rank. Set H* = <ffu#q>> .

Then H* has finite rank and moreover H*ip = H* . To see this, note that

H*tp = <#<puflcp2> ; but for h € H , hip = h' + k uniquely (where h' i H ,

k ( K), and now hp2 = Tz'cp + k £ H* as k = hs> - h' € H* . Now let B

be the least direct summand of A containing H* . B has finite rank and

we can write A = B © C where C 5 K so that C is mapped identically

onto itself by <p .
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From now on, we shall use these equivalent characterizations of a

finitary automorphism without further reference. For a finitary

automorphism <p of 'A we shall say that A = H © K is a decomposition

of A with respect to cp , or corresponding to ip , if and only if

Hip = H , f restricted to K is the identity on K and H has finite

rank. Again, we call a basis X = \x. \ i £ Z \ a basis of A with

I l J
n

respect to ip , or corresponding to <p , if x .<p = £ a. .x. , 1 5 i 5 n
i j=l ^ ^

for some n € Z and x.<p = x. for i > n ; the matrix A representing
If 1r

(p in this basis is of the form A + 1 where I is the infinite
nxn

identity matrix. It is often convenient to look upon <p as represented

by the matrix A

THEOREM 3.2. The subset $ of V consisting of all finitary

automorphisms of A is a normal subgroup of T .

Proof. Let a, 3 £ $ and suppose that A = Hi © K\ = H2 © K2 are

two decompositions of A corresponding to a and 3 respectively. By

2.1* K-[ n K2 is a direct summand of A and has finite codimension.

Clearly, a3 maps K^ n K2 identically onto itself. Hence by Theorem

3.1 cx3 is finitary. Then, a is the identity on K\ and so a

also is finitary. Finally, let y (. V . Then A = Hrf © Kxy and y~ ay

is the identity on X : Y where K^y has finite codimension. Thus y~ ay

is also finitary and $ is a normal subgroup of F .

We close this section by giving the definitions of congruence

subgroups of T . For each positive integer m we define the subset

T(m) of T to consist of all elements a t T such that xa - x £ mA

for all x i A . Then T(m) is a normal subgroup of T . This becomes

clear at once if one writes xaa' - x = (xa-x)a' - {xa'-x) and

xy cry - x = [xy a-ary )y and observes that mA is characteristic in

A . These subgroups T(m) are called congruence subgroups of T ; of

course T(l) = T .
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4. Finitary normal subgroups

In this section we determine all the normal subgroups of $ . Each

of these normal subgroups of $ is normal in V also; we call these the

finitary normal subgroups of Y . We first define one normal subgroup of

§ by means of the "determinant" of a finitary automorphism. Let cp d $

and let X = \x. \ i d Z \ be a basis of A with respect to cp so that
I •*- ;

n
x.cp = \ c. .x. , 1 £ £, j S n , x.ip = x- for i > n , n being some

j=l %3 3

positive integer. As we have pointed out in Section 3, cp can be

represented by the matrix C x with coefficients c. . . Since cp maps

<x., x_, ..., x > onto itself and C has integral coefficients,

detC = ±1 . The same automorphism cp can also be represented by some

other finite matrix say, E , with respect to some other basis of A . We

now show that detC = detE , so that the determinant of a finitary matrix

representing an element of $ is independent of the choice of a basis of

A to which C corresponds.

LEMMA 4.1. Let a, g be two elements of <£> and let

A = H®K = H'®K' be two decompositions of A corresponding to a and

6 respectively. Then we can write A = L © M where M £ K n K' and

La = Lg = L , L has finite rank and contains both H and H' .

Proof. By 2.h K n K' is a direct summand of A , and has finite

codimension;- and by 2.5 K n K' is a direct summand in both K and

K' . Thus we can write A = H © K[ © K n K' = H' © K'2 © K n K' , where

K{ < K , K'z < K' and both K[ and K2 have finite rank. Let

H* = (H u H' u K[ u K'2) , then H* has finite rank. Also,

H*d = #*g = H* ; for, let h* i H* . Then h* = h + k , h i H , k S K

and h*a = ha + ka = ha + k • Now k = h* - h d H* and ha i H gives

that h*a i H* . Thus H*a = H* . Similarly H*& = H* , so that H* is

invariant under both a and g . It follows from 2.2.1 that there is a

least direct summand L of A containing H* , and L has finite rank.

By 2.3 La = Lg = L . Finally, by 2.6 we get A = L © M , M contained

in K n K' , as a decomposition of A with the required properties.

LEMMA 4.2. If cp is represented by two finite matrices A and B
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with respect to different bases, then detA = detB .

Proof. Let cp be represented by the matrices A x and B

corresponding to the bases X = \x. \ i i Z \ and X' = \x'. \ i £ Z V

respectively. Then we can write A = H®K=H'@K' where

H = <x. | 1 5 i 5 m) , K = <x. | i > m) , H' = <x'. I 1 2 i 5 n> ,

K' = (x\ \ i > n) , Hip = H , H'lp = H' , and cp is the identity on both

K and K' . By Lemma k.l we can write A = L © M where L contains

both H and H' , Lcp = L and Af is contained in K n K' . Also both

# and H' are direct summands in L and we can write

L = H © Xj^ = H1 ® K2 where Xx < X and K2 < K' . Thus if r is the

rank of L , we can choose two bases of L as

*• = {*,-» Z/.,- I ̂  = 1» 2» •••,'" . J = 1 , 2, .... r-m} and

•i" = t̂ ;,-, j ' I ̂  = 1, 2 K , j = 1, 2, ..., r-n} . Corresponding to

these bases, cp will be represented by the matrices A' = A + I _

and 5' = B + 1 respectively, where we have of course,

detA' = detA and detB' = detB.. But now the matrices A' and B'

represent the same automorphism of the free abelian group L of finite

rank; hence A1 and 8' are conjugate, B' = T A'T for some

invertible (rxr)-matrix T , and so detA' = detB' , that is

detA = detB .

Now we may speak of the determinant of a finitary automorphism, and

an argument similar to the one just presented shows that

det(a3) = detadet$ whenever a and (3 are finitary. Thus we obtain:

THEOREM 4.3. The finitary automorphisms with determinant +1 form

a maximal normal subgroup, $ say, of $ . Moreover 0 is normal in

V .

Proof. Only the last part still needs proof. But if a ( $ and if

X is a basis of A corresponding to a , then Xy is a basis

corresponding to y ocy for any y € F , and the matrix representing a

with respect to the basis X also represents Y~ <*Y with respect to the
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basis Xy . Hence deta = det [y~ ocy] for all y £ T , which completes the

proof.

The rest of this section is devoted to showing that the normal

subgroups $(m) = $ n r(m) for all m € Z , $ and F(2) n $ are in

fact the only normal subgroups of $ , and therefore also the only normal

subgroups of F contained in $ . We also describe the lattice formed by

these subgroups.

We shall write I + me . . for a square matrix (of any degree) which
13

has diagonal entries equal to 1 , the entry in the place (i, 3) with

i # 3 equal to m , all other entries zero.

LEMMA 4.4 ([/]). Let C ( GL [Z] , n > 2 and let the greatest

common divisor of the set {a..-a.., 0. . | i £ j} be m . The least
Us 33 ^3

normal subgroup of GL [Z] [or of SL [Z] if detC = l) containing C

contains th<- matrix I +

In fact such a normal subgroup of GL [Z] , or of SL [Z] , then

contains all the matrices of the type I + me . . , i £ 3 . Moreover one
13

has the following fact.

LEMMA 4.5 ([5]). For n > 2 the least normal subgroup of SL [Z]

containing I + me2\ is the normal subgroup consisting of all matrices

which are congruent to the identity matrix modulo m .

THEOREM 4.6.

(i) If m > 2 , $(m) = $ n T(m) 5 $+ ;

(ii) the groups $(m) for all m , $ and $(2) = $(2) n $

are the only normal subgroups of 0 ;

(iii) $(p) and $(2) are precisely all the maximal normal

subgroups of $ , where p ranges over the odd primes ;

(iv) $ and $(2) are the only two maximal normal subgroups of

$ .
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Proof. (i) Let cp ( $(m) , m > 2 . Let the finite matrix A

represent cp . As A - I = 0 mod m , the g.c.d. {a. .-1, a. . \ i ? j} = k

is greater than 2 , and detA E 1 mod k . Moreover detA cannot be -1

since k > 2 ; consequently det<p can only be +1 , whence $(m) S <J>

(ii) First we show that if <p € $(m) , m i l , but cp | $(n) for

$ "f" +

n > m then cp 2: $(m) n $ . Let y £ $(m) n $ . Then there is a

decomposition 4 = £©/</ such that both cp and y are the identity on

M and map £ onto itself, and L has finite rank. We can assume that

r{L) = Z- is sufficiently large so that there is a basis Xi of L such

that at least one element of X\ is mapped onto itself by cp . Let A7 7

and 87 , be two matrices representing (p and y respectively

corresponding to A"i . By the definition of <p , A = I mod m and m is

the greatest such integer. Since at least one diagonal element of A is

equal to 1 , A satisfies the assumptions of Lemma h.k. Therefore, "by

Lemmas U.U and U.5S the normal closure of A in GL [Z] contains 8

which implies that cp contains \i .

It follows from this that if cp £ $(m) , m > 2 and cp <j $(n) ,

0 +
n > m , then cp = $(m) . Similarly, if cp € $ and is not in any proper

+ $ $ +
normal subgroup of $ then cp = cp = $ ; and likewise if cp is in

<J> but not in any proper normal subgroup of <!> then cp = $ . And lastly

if cp € $(2) and $(2) is the smallest normal subgroup of $ with this

property, then cp = $(2) . A similar result holds if we replace $(2)

by $(2) .

Now for every cp in $ there, is a greatest integer m such that

cp (. $(OT) . Hence the above arguments allow us to deduce that the only

proper normal subgroups of $ are $ 5 $ ( 2 ) , $(2) =0(2) n $ and

$(m) , m > 2 .

(Hi) Consider the least normal subgroup of 0 containing $(p) ,

p being an odd prime, and an element p which is not in $(p) . Then
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y contains an element i|) which can with respect to a suitable basis X

of A be represented by the matrix I + me . . , where m is not divisible
I'd

by p . Let <p be the automorphism represented by the matrix I + pe • •

in the basis X ; then <p ( §(p) . Since (p, m) = 1 , there exist

integers r, s such that pr + ms = 1 and so ip x/j is represented by

the matrix I + (p?*+ms)e. . = I + e. . . But then the normal closure of

<p i|) in $ is the whole of $ by (ii) above, whence <J>(p) is maximal

normal in $ . The case of $(2) can be dealt with likewise. That

$(2) and §(p) are the only maximal normal subgroups of $ follows

from the fact that $(m) 2 $(w) if and only if m divides n •

(iv) We have already shown in Theorem U.3 that $ is maximal

normal in $ . As regards $(2) , the same arguments as in the proof of

(iii) above show that if p j $(2) then the least normal subgroup 0 of

$ containing both $(2) and \i contains $ . But $(2) also contains

elements having determinant -1 , and that makes 0 = $ .

COROLLARY 4.7. Every normal subgroup of $ is the normal closure

of a single element of $ .

We conclude this section by pointing out that if m and n are two

integers greater than 2 then $(m) n $(n) = $(r) where r is the least

common multiple of m and n , and $(m).<t>(?i) = $(s) where s is the

greatest common divisor of m and n . When m = 2 , some distinction of

cases is necessary. For instance, for any odd prime p ,

*(2) n $(p) = $(2p) = $(2)+ n $(p) but $(2).S>(p) = $ while

$(2) .<4>(p) = 0 . These remarks suffice to get a picture of the lattice

formed by the normal subgroups of $ .

5. An intersection property

As we have mentioned in the introduction, $ has got the property

that, modulo the centre, it intersects every normal subgroup of F

non-trivially. We give a proof of this fact here. Moreover, any
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prescribed normal subgroup of 0 can be obtained as the intersection of

$ with some normal subgroup of F as will be indicated at the end of

this section by an example.

THEOREi'1 5.1. $ intersects every other normal subgroup of F

non-trivially modulo the centre of T .

*)Proof. We first point out that the centralizer of $ in F is

just the centre Z(F) = <-l> of F , where -1 is the automorphism of A

that maps every element of A onto its inverse. Let 0 be another

normal subgroup of F not contained in $ . If 0 n $ = {I} , then every

element of § commutes with every element of 0 so that 0 is contained

in the centralizer of 0 . Hence 0 is contained in the centre of F .

The theorem follows.

The following example also is due to Professor B.H. Neumann.

LEMMA 5.2. There exists an automorphism a € F which is not

finitary, but the intersection a n $ contains an automorphism of

determinant -1 .

Proof. Consider the integral matrix

W =

1 0 0

0 w 0

0 0 u2

where 1 and 0 are to be interpreted as the corresponding 2x2-matrices,

and w = , so that w3 = 1 and w2 + w + 1 = 0 . Thus W is of

degree 6 and determinant 1 . Now take

0 1 0

0 0 1

1 0 0

with the same interpretation of 0 and 1 so that

0 02 V 1
W + Ur- + Or- = 0 (where X = / >

*) This simple proof is due to Professor B.H. Neumann. It replaces
our proof which was based on Brenner's [7] arguments.
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Next put

P =

'0 HI

0 0

and T =

0 0

where 0 is the zero matrix of degree 6 . Then one checks that

= p?T + P T P T 2p + pT +

hence

(5.2.1) (I+2P)(r+2PT)(l+2PT2) = I .

Now define the infinite invertible matrix A by

= vvJ?j2 = o

V + + Pi ,

where P. = I + 2P for all i , V is any invertible matrix of finite

degree which in this example is chosen so that V = I mod 2 and

detO = -1 . Then for every integer s > 2 one has V ^ I mod s . Now A

represents, with respect to some fixed basis, an automorphism, a say,

which belongs to F(2) , but not to F(s) when s > 2 , and a is not

finitary. Let C = E + £ + T. , where T. = T for all i and E is

UZ+

any invertible matrix of the same size as V , and let y be the
2

automorphism represented by C in the same basis. Then u o V can be

C C2 E E2 •
represented by the product M A = VD V + 1 where I is the infinite

2
identity matrix because of (5-2.1). Thus 3 = aaYaY is finitary and it

clearly has determinant -1 , because V has determinant -1 .

This completes the proof of the lemma.

It is now easy to see, and will merely be stated, that in fact

a n $ = $(2) , that by using the freedom of choice left in V and E ,

a can be so chosen that the intersection is the whole of $ , and that a

similar construction will produce non-finitary elements of T whose

normal closure intersects $ precisely in $ , $(2) or $(m) for
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every m > 2 .

6. A f i r s t generalization of congruence subgroups

We introduce now those normal subgroups which contain the congruence

subgroups of T lying in $ , that is, the subgroups <J>(m) , and are

contained in the larger congruence subgroups T(m) of F . These

subgroups are defined in terms of direct decompositions of A or in terms

of descending chains of subgroups of A and are of various types. This

section and the next one is devoted to the study of such normal subgroups.

The main results concern the number of such normal subgroups.

Let m > 1 , q > 1 be integers.

DEFINITION 6.1. Let h(m, q) be the subset of T such that

X € h(m, q) if and only if there exists a decomposition of A , namely

A = H © K , where H has finite rank, such that hX - h € mA for all

h € H and kX - k € mqA , for all k i K .

Obviously for q = 1 we simply obtain the subgroup F(m) itself and

A(l, l) = F . When for an automorphism X of this kind we speak of "a

decomposition of A associated with X" , we shall always tacitly assume

the properties specified in this definition. Similarly in later

definitions of other types of automorphisms that are defined in terms of

direct decompositions of A or subgroup chains of A , a decomposition

(or a descending chain) associated with the automorphism in question will

always mean the one that has the properties specified in the particular

definition.

THEOREM 6.2. h(m, q) is a normal subgroup of F .

The proof is just like that of Theorem 3-2 together with the remark

on congruence subgroups following it.

We point out that, obviously, A(m, q) could have equally well been

defined as follows: X € k{m, q) if and only if there is a subgroup K

of A such that A/K is free abelian of finite rank and aX - a € mA

for all a I A , but kX - k € mqA for all k € K . A little less

obvious is that we could also require merely that A/K is finitely

generated. Again, one might think of generalizing further by defining

A(m , m , ..., m^) , I > 2 , to consist of all those automorphisms X
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such that there exists a direct decomposition A = © £ H. , only ff?
i=l

having infinite rank and h .X - h. d mmn ... m.A for all h. Z H. . But

it is immediate from the definition that A(m_, m , ..., mS) = A(m , m.] .

However, the situation is different when we admit an infinite number of

subgroups. Moreover here it is not clear, and in fact not known, whether

the definitions based on a direct decomposition of A into summands of

finite rank, or on an infinite descending chain with successive factors

free abelian of finite rank, or with factors merely required to be finitely

generated, lead to the same normal subgroups or not. We restrict ourselves

to only one of these possibilities.

Let F be the set of all functions f : Z -* Z such that f{i)

properly divides f(i+l) for each i d Z . For a given function f € F

we define a subset of T as follows:

DEFINITION 6.3. Let f € F . Then £(/) is the subset of T such

that 0 € E(_f) if and only if there exists an infinite descending chain

of subgroups of A , say A = H > H > ... > H. >... , such that H./H.

is free abelian of finite rank for each i and h.a - h. (. f(i)A for all

THEOREM 6.4. !(/) is a normal subgroup of T .

Proof. This uses again the same routine arguments as before. We

merely remark that if a, a' are two elements of £(/) and if

/l = ff>ffo £ . . . > # . > . . . and A = H' > H' > . .. > H'. > . . . are two

descending chains of subgroups of A corresponding to them, then the chain

A = Hi n H[ > H2 n H'2 > . . . will do for aa' .

It follows from the definition that there can only be countably many

normal subgroups of the type A(m, q) . However, of those of type £(/)

there are uncountable many, which fact we now proceed to prove. We shall

write rn\\n if the integer m divides n or is equal to n .

LEMMA 6.5. Let f,gdF. Then Kg) 5 Z(f) if and only if there

exists an infinite increasing sequence [s •) . of positive integers such
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that f(i)\\g{sj) for all i , and sx = 1 .

Proof. (a) The condition is sufficient:

We assume that there exists an inf in i te increasing sequence {s .) • of

posi t ive integers s . such that f(i)\\g[s.) , for a l l i , and s. = 1 .

Let a £ t{g) and l e t A = H > H 2 . . . > H. 2 . . . be a descending chain

associated with a . Then the chain A = K > # „ > . . . 2 X. > . . . where
\ - £— 1s

K. = H , K = H h a s t h e p r o p e r t y t h a t k .a - k . t g[s . ) A , f o r a l l

k. € K. . Wow since f{i)\\g[s .} , for a l l i , we have k .a - k. € f(i )A ,

for a l l k. € K. . By the definition of £(/) , a € Z(/) . Hence

Kg) s K/) •

(b) The condition is necessary:

First, we note that for E(g) being contained in £(/) it is

necessary that f(l)\\g(l) ; for consider the element a € Z(g) defined

with respect to a basis X = <x. | i t Z > of A by Xja = g(l)x-2 + xi ,

x.a = x. for all t > 1 . For a to belong also to
I "I

xa - x € /(lM must hold for all x , hence in particular for X\ . Hence

g{X)x2 € f(l)A and so f(l)\\g(l) as required.

Now we assume that f(l)\\g(l) but there does not exist any sequence

of integers satisfying the condition mentioned in the statement of the

lemma. This means that for every infinite increasing sequence [s .) • of

positive integers there exists an integer i such that f[i ]H<?(s. ) .
0 o %o

Let (s .) . be the sequence such that s. = i for all i . Thus there
If It Is

exist integers t\ and t\ such that f(t\)l,g(t{) . Next consider the

sequence (tj+i). . Again, we can find integers to and £2 such that

where t% S t\ + 1 . According to our assumption this process

will define inductively an increasing sequence [t . ) . of positive integers
I "I

t . ) .
Is "Is

with a sequence (*'•).£ of positive integers such that f{t'-)V,g[t.} , for

all i , and the sequence (£.) . is unbounded and strictly monotonically
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increasing, that is, t. + t. if and only if i + j (though any number of
i' 3

terms of the sequence ft1.) . may be equal to each other).
Is ts

We now prove that there is an integer k such that /(i)H<7(j) for

all i, 3 > k . It is sufficient to prove that f{k)^g(j) for j 2; k ,

because f(i) is a multiple of f(k) for all i 2; k . If the contrary

is true then for every integer i we can find an integer I'. 2: i such

that f(i)\\g[l'-j • But since the integers i are increasing and

unbounded, the sequence of integers I', are unbounded and so infinitely
Is

many of the V. must be distinct. Hence we have an infinite strictly
tr

increasing subsequence, [I.) . say, such that f(i)\\g[l-} for all i ,
Is 7s Is

which together with f(l)\\g(l) contradicts our basic assumption. And

therefore, there exists an integer k such that f(k)JHg(j) for all

Let o d Z( g) be such that with respect to a basis X = ix I i (. Z

I i
of A , x^o = x^ , x a = x. + g(j+k)x._-. for all j > 1 . Suppose that

0 £ £(/) so that there exists a descending chain of subgroups of A •>

namely 4 = E . > ff_ > ... iff. 2 . .. , such that h-0 - h. (. f(i)A for
X £ "2, %• Is

all ft. € ff. , and for each i , H./H. has finite rank. Let s > k
Is Is Is 7s*X.

and consider A/H ; this has finite rank. Now x .a - x • - g(j+k)x. ,
s 3 3 J~l

for all j > 1 , so x .0 - x . { f(i)A for any i > k because /(i)Hg'(j)
3 3

for any i, j > k . Thus x. f ff for j > 1 . We show that all the
3 s

elements x. + H , j > 1 , are linearly independent in A/H . Since
3 s s

A/H is free abelian, it is sufficient to prove that if x = £ a.x. is

any finite linear combination such that g.c.d.{a. | i > l} = 1 , then
Is

x \ U . Consider axr - x = J a.(x.0-x.) = \ a.g(i+k)x. ,
t>i i>i

Now

since g.c.d.{a. | i > 1} = 1 , either xo - x is a primitive element or
Is

xo - x = mx' where x' is a primitive element of A and m divides
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g{j) for some j > k . Since s > k , f{s)ftg(j) for any j and so

f(s)Hm • Hence w - i f f{s)A , but h a - h £ f(s)A for all

h € # , hence a; i # . Thus, as we asserted, the infinitely many
So S

elements x. + H , i, > 1 are linearly independent in the factor group
If S

A/H and so A/H cannot have finite rank. This is a contradiction.
s s

Hence a cannot be in Z(f) and the condition of Lemma 6.5 is necessary

also.

COROLLARY 6.6. l{g) | £(/) if and only if there exists an integer

k such that f{k)$g{j) for all j > k .

We now proceed to prove the main result of this section. First, we

claim that the set F is uncountable. Let us assume on the contrary that

the set F is countable, and let / , f , ...,/., ... be an enumeration

of all elements of F . Consider the function f which is defined as

follows: f{i) = f,(2)./ (3) ... f.(i+l) for all i . f is a function

from Z into Z which has the property that f(i) divides /(i+l)

for all i , therefore / € F . But, clearly, / is not equal to any of

the functions /. enumerated above because f{i) t /.(•£) for all i .
"Z- If

Hence the set F is uncountable. Then, we have

THEOREM 6.7. There exists an uncountable subset F\ of the set F

such that !(/) ? l(g) if f,gl F2 and f # g .

Proof. Let P* be the set of all infinite subsets of the set of all

primes. P* is uncountable. Let P be an element of P* and index the

primes in P in some way, for example in order of magnitude, so that

P=ip.\i(.Z>. We construct a function f : Z •*• Z such that for

each i , fp(i) = P±P2 •••Pi • Clearly, fp(i) divides /p(i+l) and

so fp € F . Let Q be another element of P* , Q f P ,

Q = \q. | i (: Z > and similarly define f' : Z •+ Z such that

f^(i) = q q ... q. for all z . Since P J= Q , we may assume without

loss of generality that there is a prime in P which is not in Q ; let

it be p . , say, for some j . Then, fp{k) does not divide / Q ( ^ ) f°r

https://doi.org/10.1017/S0004972700046670 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046670


An infinite integral linear group 339

any k > j because p. divides fp(k) , for all k > j but p. does not

appear as a factor of frX^) f°r a ny i- • Then, by Corollary 6.6

l{fQ) * Z[fp)- This completes the proof.

7. A second generalization of congruence subgroups

We further generalize the concept of congruence subgroups of T and

define for each f t F normal subgroups of T which are contained in

£(/) . Let f* : Z ->• R be a function from the set of positive integers

into the set of positive reals, and let F* be the set of all such

functions.

DEFINITION 7.1. l{f, f*) is the subset of r such that

a 6 !(/, f*) if and only if

(i) a € l(f) ,

(ii) a descending chain A = H\ 5 ff2 - ••• associated with a by

(i) can be so chosen that, if r. is the rank of H./H. ,

there exists a constant c(o) such that

r. £ e(o)f*{i) for all i .

THEOREM 7.2. £(/, /*) is a normal subgroup of Y .

Proof. Again most of the proof is routine. We only remark that for

e(oa') , where a, a' £ Z(f, f*) , one may take c(a) + e(o') , as follows.

If A = Hi > H2 i ... and A = Hi > # 2 - •••
 a r e t n e chains associated

with a and a1 respectively, then take again

A = Hx n H[ > H2 n H'2 > . . . for do' . Now H. n H'./H. n H'.

is isomorphic to a subgroup of H./H. ® H'./H'. , so that for each i

5 (c(a)+c(a' ))f*U) •

As in the case of the normal subgroups of type £(/) , the number of

those of type £(/", /*) is uncountable; in fact it is uncountable for

every fixed / . We show more precisely that we can find for each real

number a a normal subgroup N of F , N = E(_f, /*) for fixed / ,

such that N > ffo whenever a > B . This statement relies on the
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following theorem.

THEOREM 7.3. Let f*, g* € F* be such that f*, g* and the

quotient f*/g* are monotonically increasing and unbounded. Then, for

every f t F } £(/,/*) properly contains T.{f, g*) .

Proof. That £(/, f*) contains Z(/, g*) is obvious. We only show

that there is an element a in £(/, f*) which does not belong to

£(/, g*) •

Since f* is a positive, non-decreasing function, we can choose a

constant c such that ef*{i) 2 2 for all i . Let d. = [cf*(i)] be

the integral part of cf*(i) . Choose a basis X = \x• \ i £ Z \

define an automorphism a of A as follows:

xla = xl >

x.a = x. + f(l)x. for all j such that 1 5 j 5 dY + 1 ,
3 3 J*~-L

then generally for each i > 1 :

for all j such that

i + dx + .... + di-x < j < i + dx + ... + dt_x + ^ .

Clearly 0 6 E(/, /*) ; a descending chain corresponding to a is given

by H = A , H. = {x. | j > 1 + d. + ... + d. , } , and with a(a) = c

all requirements are satisfied.

Now assume that a belongs also to £(/", ĝ *) , so that there is a

descending chain A = K\ 2 #2 - ••• corresponding to a such that

ka - k € /(i)/l for all k i K. and r(x./#.+1) 5 c'(a)#*U) for some

real constant c' (a) . From the definition of a , the elements x. for

1 < j 5 1 + d-. + • . . + d. do not belong to K. . . Wow the same argument

as at the end of the proof of Lemma 6.5 shows that the elements x • + K. .

3 ' T'+-L

for 1 < j 5 1 + d, + ... + d- are linearly independent in A/K. , . Thus

1) - dx
 + ^ 2 + ... + di > a[f*{l) + ... + f*(i)] - i ,
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where a = e(a) . Now let f*(i)/g*(i) = r{i) , so that r{i) < r{i+l)

and r(i) -*• °° as i •+ °° . Then, from the above

1) > c(a)[r{l)g*(l) + ... + r{i)g*U)) - i •

On the other hand, as r[K./K. ) S c'(o)g*(i) , we have

Hence, writing a(\) = (e(a)r(X)-c' (o))g*{\) - 1 for » f Z , we have

for all i

i
I a{\) < 0 .

X=l

But <3(o) and a'{a) are positive constants, and r{\) and g*(\) tend

to infinity, and so a(X)•*•«, contradicting the above inequality. Thus

a { Z(/, g") as required.

Theorem 7-3 provides us with many ways of constructing normal

subgroup chains as described in the introduction. Put, for example,

.2°
g*(i) = i for all i , where a is an arbitrary real number. Then

whenever a > 3 we have £(/, g*} > £(/, gi) f°r an arbitrary fixed

f i. F . Clearly other such functions could be used so that there are

certainly infinitely many distinct such subgroup chains in each £(/) .
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