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Abstract. The properties of the characteristic curves of several fami­
lies of periodic orbits, in a conservative dynamical system of two degrees 
of freedom, symmetric with respect to both axes, are reviewed. The two 
main types of families are presented. One sees that the pattern of the 
characteristics in the exact resonance case is similar to that of the 
near resonance case except for the basic characteristic . The form of the char­
acteristics can be found theoretically by means of the second integral. 

1. INTRODUCTION 
The motion of a star on the plane of symmetry of a non axisymmetric 

galaxy can be described by the Hamiltonian 

1 2 2 2 2 2 2 
H = y(x + y + ui.x + to y ) + higher order terms (1) 

Several investigators have used the Hamiltonian (1) in order to study 
the families of periodic orbits and successive bifurcations, considering 
only one mixed third order term (see, e.g., Contopoulos, 1970a; Contopou-
los and Michaelides, 1980; Contopoulos and Zikides, 1980; Contopoulos, 
19 81). 

In the following we shall deal with the Hamiltonian 

1 2 2 2 2 2 2 4 2 2 4 
H = ^ (x + y + u^x + u2y ) - e ( a -x + 2a x y + a y ) (2) 

where u ,0).,a-,a_,a„ are positive constants and e is the perturbation. 
The Hamiltonian \2) may be considered to describe the motion of a star 
on the plane of symmetry of a non rotating elliptical galaxy. 

This choice is justified by the fact that the dynamics of elliptical 
galaxies have gained a considerable interest in the last few years. Now 
our understanding of the shapes and ways to form elliptical galaxies is 
clearly different from that of a few years ago. Elliptical galaxies were 
then thought to be rotationally flattened oblate systems with isotropic 
velocity dispersions (e.g., Freeman 1975). Observations and detailed dy­
namical studies have recently shown that most elliptical galaxies are 
not flattened by rotation but instead they appear to be triaxial systems 
with anisotropic velocity dispersions (Binney 1978, Illingworth 1981). 
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As a consequence of the above thoughts a study of p e r i o d i c o r b i t s , 
in a galaxy descr ibed by the Hamiltonian (2) seems t o be of i n t e r e s t be ­
cause these o r b i t s are the main landmarks in explor ing the t o t a l i t y of 
o r b i t s . 

2 . DESCRIPTION OF THE FAMILIES 
I t i s we l l known t h a t , fo r any given value of e one can f ind p e r i ­

odic o r b i t s making n o s c i l l a t i o n s along the x -ax i s and m o s c i l l a t i o n s 
along the y - a x i s whenever t he r a t i o of the unperturbed f requencies co../io„ 
i s near a r a t i o n a l number n/m. We study p e r i o d i c o r b i t s i n t e r s e c t i n g the 
x-axis pe rpend icu la r ly a t a po in t x fo r a constant value of the energy 
h . For a given value of n and m the value of x v a r i e s by varying the 
pe r tu rba t ion e . Then the curve x = x(e ) i s c a l l e d t he c h a r a c t e r i s t i c of 
the corresponding family of p e r i o d i c o r b i t s . 

In g e n e r a l , two types of fami l ies are p r e s e n t : a) Regular f ami l i es 
which are connected with the main fami l i es d i r e c t l y or through b i f u r c a t ­
i o n s , b) I r r e g u l a r f ami l i es not connected with the above f a m i l i e s . These 
famil ies appear a t r e l a t i v e l y la rge p e r t u r b a t i o n s and seem t o be connected 
with the d i s s o l u t i o n of t he i n v a r i a n t curves of non p e r i o d i c o r b i t s 
(Contopoulos 1970a). 

Figure 1 shows the c h a r a c t e r i s t i c curves of s e v e r a l f ami l i e s of p e r i ­
odic o r b i t s when co = 0 . 4 , co2 = 0 . 1 ( IO. /CO^ 2/1) a 1 = 0 . 1 , a„ = 0 . 5 , ag = 
0 .02 . Solid l i n e i n d i c a t e s t a b l e o r b i t s while dashed l i n e s i n d i c a t e un­
s t a b l e o r b i t s . We can see t h r ee groups of r e g u l a r f a m i l i e s : 
i ) In the f i r s t group belong the b a s i c c h a r a c t e r i s t i c and i t s b i f u r c a t ­

i o n s . The b a s i c c h a r a c t e r i s t i c s t a r t s from the x-ax is (x = to-x) in 
the exact resonance cases whi le in the near resonance cases s t a r t s 
always from the boundary l i n e given by the equat ion 

2£a^x4 - x2+ 2h = 0 , (3) 

where a. = a . /co. . 
i i ) In the second group belong the c h a r a c t e r i s t i c s which b i f u r c a t e from 

the boundary l i n e . 
i i i ) F i n a l l y , in the t h i r d group belong the c h a r a c t e r i s t i c which b i f u r c a t e 

from the x = 0 axis . 
We can f ind approximately t he form of t he c h a r a c t e r i s t i c s for small 

values of e using the formula 

(i)1 3a. 4a0 3a , 2a . 3a~ 

r = - -A {l - e [ ( - 4 - ^ | + _ 3 ) , + ( - ^ - _ | ) h ] } W 
2 io1 l o ^ to2 0 ) ^ 2 <D2 

where r i s t he r o t a t i o n number, h i s t he t o t a l energy and $ i n i s t h e second 
i n t e g r a l (Caranicolas 1982). This formula i s not v a l i d when <*></w2 i s 
near 1. In t h i s case we can f ind t he form of the b a s i c c h a r a c t e r i s t i c 
using a s p e c i a l form of the second i n t e g r a l (Caranicolas and Barbanis 
1982). 
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