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Abstract

Accurate estimation of tuber size distribution (TSD) parameters in discretely categorized
potato (Solanum tuberosum L) yield samples is desirable for estimating modal tuber sizes,
which is fundamental to yield prediction. In the current work, systematic yield digs were con-
ducted on five commercial fields (N = 119) to compare the Weibull, Gamma and Gaussian
distribution functions for relative-likelihood-based goodness-of-fit to the observed discrete
distributions. Parameters were estimated using maximum likelihood estimation (MLE) for
the three distributions but were also derived using the percentiles approach for the Weibull
distribution to compare accuracy against the MLE approaches. The relationship between
TSD and soil nutrient variability was examined using the best-fitting model’s parameters.
The percentiles approach had lower overall relative likelihood than the MLE approaches across
five locations, but had consistently lower Root Mean Square Error in the marketable tuber size
range. Negative relationships were observed between the percentile-based shape parameter
and the concentrations of Phosphorus and Nitrogen, with significant (non-zero-overlapping
95% confidence interval) regression coefficients for P (−0.74 ± 0.33 for distribution of propor-
tional tuber numbers and −1.3 ± 0.62 for tuber weights). Stem density was negatively asso-
ciated with the scale and mode of tuber number (regression coefficients −0.98 ± 0.63 and
−1.08 ± 0.78 respectively) and tuber weight (regression coefficients −0.99 ± 0.78 and −1.04
± 0.69 respectively) distributions. Phosphorus is negatively related to the scale of the tuber-
number-based distribution while positively associating with the tuber weight distribution.
The results suggest that excess P application was associated with the increase in small tubers
that did not contribute significant weight to the final yield.

Introduction

Potato (Solanum tuberosum L.) production is a high input, high output operation driven by
well-developed, technologically advanced markets which depend on a consistent supply of
high-quality potatoes. Nevertheless, high output alone does not necessarily translate into
high returns for growers due to the selectivity of processing factories for tuber size grades
(Machakaire et al., 2016). This occurs especially in the pre-fried potato processing sector
which accounts for 62% of the global processed potato market (Keijbets, 2008). Agronomic
techniques for optimizing tuber size distribution (TSD) are therefore an important consider-
ation for potato growers and researchers.

Several methods of quantitatively describing TSD have been proposed in the literature.
Travis (1987) described TSD using the spread of tuber sizes around the modal grade assuming
a Gaussian distribution, allowing the determination of a coefficient of variation (CV) as an
index for TSD. Ideally, farmers can use this to conduct mid-season TSD assessments,
which can then support management decisions on vine desiccation timing. Struik et al.
(1990) and others subsequently supported the Travis (1987) method. However, the probability
densities plotted by Struik et al. (1991) revealed that the TSD by weight skews to the right and
the Gaussian distribution may not necessarily capture the spread of the data.

Several alternatives have been suggested like the Weibull (Nemecek et al., 1996; Bussan
et al., 2007) Log-normal (Marshall et al., 1993) and the Gamma (Aliche et al., 2019) functions.
Whilst these alternative functions fit TSD more accurately, their parameters are often deter-
mined using maximum likelihood estimation (MLE), which makes it non-ideal for quick
field assessment by non-statisticians. A Gaussian distribution is therefore often assumed
due to the simplicity with which its parameters (i.e. mean and standard deviation) can be
determined from yield digs. Currently, TSD is mostly evaluated using the percentage of
marketable tuber weight in the total tuber yield.
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Potato growers, and subsequently researchers, target different
tuber sizes at harvest depending on localized outlet market
demands (Wurr et al., 1993; Taylor et al., 2018), making it diffi-
cult to standardize the size classes and objectively compare TSD
from different studies. A positive association between soil
Nitrogen (N) concentration and TSD has been consistently
reported by several authors over the past five decades, mostly
when TSD is measured as the proportion or absolute quantity
of yield above a weight or transversal diameter threshold
(Schippers, 1968; Porter and Sisson, 1991; Arsenault et al.,
2001; Gao et al., 2018). The overall effect of N on the shape, loca-
tion and scale of the TSD has not been consistently demonstrated
partly due to the lack of standardized and generally accepted para-
meters for measurement (Wurr et al., 1993).

The influence of Potassium (K) fertilization on potato yield
and TSD is also widely studied (Dickins et al., 1962; Birch
et al., 1967; Allison et al., 2001) and soil K replacement based
on crop removal is generally accepted as a management strategy
in commercial production systems. For Phosphorus (P), Rosen
and Bierman (2008) found that incremental rates between 0
and 74 kg/ha did not affect the percentage of marketable (>85 g)
Russet Burbank yield in loamy sand soil with medium to high
P concentrations (25–33 mg/kg Bray P1). This was attributed to
an increase in the number of small tubers happening concurrently
with a reduction in the percentage of large tubers as P rate
increased. Quoting Westermann and Kleinkopf (1985), Rosen
and Bierman (2008) attribute this response to a shift in dry matter
partitioning from tubers to vegetative growth as leaf P increased.
The response of TSD to P can be affected by P interactions with
other elements in the soil.

Phosphorus is known to exhibit antagonistic relationships with
zinc (Zn) and magnesium (Mg) under alkaline conditions and
iron (Fe) and Aluminium (Al) under strongly acidic conditions
(Rietra et al., 2017). These four elements precipitate P out of
the soil solution and render it unavailable for plant uptake,

hence confounding the effect of P fertilization on agronomic
parameters. The influence of Mg is worth consideration because
it is often applied in potato fields as Epsom salt to control
Mg-deficiency-related leaf chlorosis. Finally, the role of the
Sulphate counter ion in MgSO4 salts and K2SO4, as well as the
inherent soil variability in Sulphur (S) is rarely studied and is
often discounted subject of speculation (Simmons and Kelling,
1987). However, Caldiz et al. (2018) found that 61% of the vari-
ation in the proportion of small tubers (<50 mm) was explained
by the variation in soil S content (P < 0.05). An increase in S con-
centration in the soil had a positive correlation with the percent-
age of small tubers in the final yield. Within-field variation in S
may ultimately be correlated to variation in TSD and evidence
from Caldiz et al. (2018) supports the hypothesis of an increase
in small-sized tubers observed in K2SO4 applications by
Henderson (1965).

The objectives of the current study were to (a) identify which
of the Weibull, Gamma and Gaussian distribution functions was
the best at simulating observed TSD parameters, and; (b) to utilize
the best-fitted distribution function to study the influence of soil
macronutrient availability on TSD.

Methodology

Site characterization

The study was conducted at four sites as summarized in Table 1.
Deaton 6 and HF7 sites were located in the East of England
(Lincolnshire) on reclaimed marshland with a shallow water
table and high organic matter content. There was variation in
soil physical and chemical properties across the field due to the
presence of Roddons, historical features in drained marshland
soils where silty clay soils follow the course of historical streams
and waterways. Horse Foxhole and Buttery Hill were located in
the West of England (Shropshire) on well-drained slightly stony,

Table 1. Summarized information of the study sites

Field Name Year Coordinates Variety N1 Fertilizer2 Nutrient Rate (kg/ha)

HF7 2020 53°12′40.71′′N Maris Piper 30 Nitrogen 107

0°24′49.76′′W Phosphorus 94

Potassium 290

B.Hill3 2020 52°46′22.05′′N Amora 30 Nitrogen 173

2°25′40.46′′W Potassium 94

Deaton 6 2019 53°12′20.97′′N Maris Piper 12 Nitrogen 100

0°21′55.06′′W Phosphorus 150

Potassium 307

C.Leasow4 2020 52°46′15.21′′N P.Dell5 18 Nitrogen 167

2°21′37.57′′W Potassium 89

H.Fxhole6 2019 52°46′26.94′′N Amora 29 Nitrogen 125

2°25′49.38′′W Phosphorus 140

Potassium 238

Magnesium 40

Sulphur 75

1 = Number of samples collected. 2 = Main fertilizer forms were N for Nitrogen, P2O5, for Phosphorus, K2O for Potassium, SO3 for Sulphur and MgSO4.7H2O for Sulphur and Magnesium.
3 = Buttery Hill. 4 = Crabtree Leasow. 5 = Pentland Dell. 6 = Horse Foxhole.
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sandy loam soil subtended by weathered sandstone with low vari-
ation in soil nutrients across the field. Additional tuber sampling
for TSD modelling (without soil analysis) was conducted at
Crabtree Leasow, also located in the West of England with similar
soil and weather conditions to Buttery Hill and Horse Foxhole.
Thus, our study sites are representative of a broad range of soil
conditions as is typical in potato production agriculture.
Planting and field management was carried out by the respective
farmer at each field. Consequently, land preparation was con-
ducted similarly in all fields by ploughing at 30 cm depth followed
by bed-forming at 90 cm between rows and destoning. Fertilizer
was applied uniformly by broadcasting macro and micronutrients
based on soil analysis as summarized in Table 1. Deaton 6 and
HF7 were irrigated by drip irrigation while a hose reel irrigator
was used at Horse Foxhole and Buttery Hill. All management
practices were conducted uniformly across the field throughout
the growing period.

Sampling design

A field survey was designed at each of the five fields using a
model-based sampling approach to determine representative soil
sampling locations that captured the variability in the field. The
number of samples collected at all locations are as provided in
Table 1. Soil sampling was done at all sites except Crabtree
Leasow (thus not included in the soil analysis). Accordingly, the
soil samples were collected at Buttery Hill (N = 23), HF7 (N = 24),
Deaton 6 (N = 12) and Horse Foxhole (N = 23). Soil macronutrient
quantities are known to correlate with organic matter content (Yang
et al., 2011), which in turn influences soil colour (Costa et al., 2020).
The Soil Brightness Index (SBI) as described by Mponela et al.
(2020), was chosen as a substitute for spatially modelling the soil
colour differences at each field and generating strata for a stratified
random sampling design. At each field, the SBI was calculated at
least 1 day per month for 3 months prior to crop emergence and
then the average SBI was calculated. The SBI at each site was calcu-
lated using atmospherically corrected (Level-2A) satellite imagery of
10m resolution acquired by the Sentinel-2 satellite, on manually
inspected cloud-free days. Each field was delineated into three clus-
ters by k-means clustering (k = 3) based on SBI to generate zones of
relative homogeneity which formed the sampling strata. A sampling
unit of 6m by 6m (36m2) was chosen to cover the accuracy speci-
fication of the GarminTM eTrex 20 GPS receiver that was used for
soil sampling. A grid of 36m2 quadrats was imposed across a raster-
ized SBI surface then random quadrats were drawn from each
stratum.

Power analysis to determine the sample size for the survey was
calculated to resolve SBI variability with a statistical power of 0.8
as recommended by Cohen (1988). The effect size was estimated
based on the expected within-field contrast between the k-means
cluster with the lowest SBI value (dark soil) and the one with the
highest SBI value (bright soil) in the sample. The effect size was
therefore calculated as the difference between the mean SBI of
dark soils and the combined mean of the medium and light clus-
ters divided by the standard deviation of the entire dataset. R
v4.0.2 (R Core Team, 2019) was used to calculate the sample
size using the ‘pwr.t.test’ function from the ‘pwr’ package
(Champely et al., 2018). Once the sample size of each cluster
was determined, sampling locations were selected by randomly
selecting quadrats from the grid imposed on the SBI raster. The
quadrats were georeferenced and assigned with unique identifier
codes then exported as a GPx file into the GPS receiver for

tracking during the soil and yield sampling. All raster analysis
steps were performed using ArcGIS (ESRI, 2018).

Soil and nutrient analysis

Soil sampling was conducted before planting, but after fertilizer
incorporation. Soils were sampled using a 30 cm auger. Samples
were collected in triplicate from each quadrat and mixed to
form a composite sample. The soil samples were then air-dried
at 30°C for 72 h. After air drying, the soils were ground and sieved
(<2 mm) prior to analysis. The percentages of sand, silt and clay
in each soil sample were determined using the sedimentation
method (Jackson et al., 1986). Hydrogen peroxide was used to
oxidize organic matter, after which the particle size distribution
was determined through sieving and sedimentation.

Soil samples were analysed for N, C and S using the Dumas
method (Kirsten and Hesselius, 1983). Air-dried soils (0.25 g for
N and 0.15 g for C and S) were passed through a furnace at
1000°C in the presence of oxygen. The oxidized gases were then
detected and measured using a thermal conductivity cell. The
Olsen method (Page, 1982) was used to estimate available P in
the soil. Sodium bicarbonate was used to extract P from the soil
into solution and form phosphomolybdate after reaction with
ammonium molybdate. The phosphomolybdate was reduced by
ascorbic acid to form a blue complex whose concentration was
measured spectrophotometrically at 880 nm. Concentrations of
K and Mg were determined by flame photometry using ammo-
nium nitrate as an extractant as described in (Jackson et al., 1986).

Yield data collection

At every sampling location, the number of plants within a
one-metre row was counted and recorded as a measure of plant
density. At harvest, all the plants in the one-metre length were
carefully uprooted with a spade and the number of main stems
was counted as a measure of stem density. The excavation was
carried out carefully to minimize any loss of tubers. All tubers
were separated from their stolon and stored for further processing.

The number of tubers at each sampling point was counted. At
all locations except for Horse Foxhole, all tubers with a transversal
diameter greater than or equal to 25 mm were graded using potato
sizing squares into 10 mm size grades up to 65 mm, with all
tubers over 65 mm in diameter placed in one bin. All tubers
under 25 mm diameter were binned into one grade. After grading,
the tuber number in each category was counted and its weight was
determined at 0.01 g accuracy. For Horse Foxhole, the tubers were
separated into typical commercial grading of 0–25 mm, 25
mm-45mm, 45–65 mm and greater than 65 mm.

Data analysis

TSD was modelled using the Gaussian (Travis, 1987; Aliche et al.,
2019), Gamma (Aliche et al., 2019) and Weibull (Nemecek et al.,
1996; Bussan et al., 2007) distributions. The Gaussian distribution
is the most widely adopted of the three distributions, with the
mode equalling the mean of the distribution and its parameter
estimation is simple and intuitive as described in Travis (1987).
For the Gamma distribution, the probability density is as
described in Aliche et al. (2019), with respect to TSD in potatoes.
The Weibull distribution density function was described by
Nemecek et al. (1996). The Gamma and Weibull distributions
are considered to be flexible to right-skewed data, common in
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potato TSD (Nemecek et al., 1996; Bussan et al., 2007; Aliche
et al., 2019), and hence they can potentially more accurately esti-
mate modal tuber size than the Gaussian distribution. Love and
Thompson-Johns (1999) demonstrated that agronomic practices
such as wider plant spacing can also lead to left-skewed TSD,
making the Weibull distribution an ideal candidate for modelling
the shape of the distribution flexibly. Figure 1 illustrates the effect
of changing the shape parameter on a conceptual Weibull prob-
ability density curve. Generally, the distribution resolves to an
approximately symmetrical distribution with a shape value of
3.6 and approaches right-skewness or left-skewness above or
below that respectively (Lai et al., 2006). Thus, the Weibull distri-
bution is ideal in this application to model both left and right-
skewed data.

The MLE approach was used to obtain estimates for the mean
and standard deviation of the Gaussian distribution, and the scale
and shape parameters for the Weibull and Gamma distributions.
The ‘fitdstrplus’ R package (Delignette-Muller and Dutang, 2015)
was used to obtain the parameter estimations for all three distri-
butions from the right-censored interval potato TSD data of the
current study. Accordingly, the likelihood of each parameter θ
in each distribution was fitted in Eqn (1):

L(u) =
∏NleftC

j=1

F(xupperj |u)×
∏NrightC

k=1

1− F(xlowerk |u)

×
∏NintC

m=1

(F(xupperm |u)− F(xlowerj |u))
(1)

Using the cumulative distributions (F), where xupperj repre-
sented the upper values defining the Nleft C left-censored observa-
tions, xlowerk represented the lower values defining the Nright C

right-censored observations, xlowerm and xupperm represented the
intervals defining the Nint C interval-censored observations
(Delignette-Muller and Dutang, 2015).

The Weibull distribution parameters were also estimated using
the percentiles method (Dubey, 1967). The motivation for includ-
ing this method was the simple closed-form procedure for calcu-
lating parameter estimates, which potentially makes it easier for
non-statisticians to calculate the parameters and make an in-
ference. The adoption of the Weibull MLE approach in TSD
research is very low, with recent studies still using Gaussian
mean estimates (Buhrig et al., 2015) or simply relative frequencies
(Andrade et al., 2021; van Dijk et al., 2021) to describe TSD and
its changes with respect to agronomic treatments. This is attribut-
able to non-familiarity with the approach due to the ubiquity of
least-squares-based procedures and simplicity of Gaussian param-
eter estimates, which still provide useful models as reported in
Travis (1987). Estimating TSD using the Weibull percentiles
approach provides a simpler alternative to the poorly adopted
MLE approach, contingent upon achieving a comparable empir-
ical accuracy between the two approaches, hence their comparison
in this study. Accordingly, the shape parameter (b̂Weibull) of the
Weibull distribution for the percentiles method was estimated
by linearizing the cumulative distribution function at two differ-
ent discrete diameters (e.g. 45 and 65 mm) then combining the
two equations to solve for b̂Weibull as in Eqn (2):

b̂Weibull = (ln xi − ln xj)
−1 × ln

ln (1− f (xj))

ln (1− f (xi))

[ ]{ }
(2)

The scale parameter âWeibull was then calculated using b̂Weibull and
the cumulative density at one known quantile as in Eqn (3):

âWeibull = xi

[− ln (1− f (xi))]
1

b̂Weibull

(3)

where f(xi..j) represented the cumulative probability of tuber num-
ber or weight at xi or xj tuber diameter and xi…j where the chosen
ith or jth discrete diameter of a tuber

In each sample, the estimated parameters of the four
distribution-fitting approaches (Gaussian, Gamma, Weibull with
MLE and Weibull with percentiles approach) were used to esti-
mate the tuber numbers in each original discrete size grade, cre-
ating fully specified ordered discrete distributions. The estimation
was done by multiplying the estimated probability of each size
grade (the difference between the upper limit and lower limit
cumulative probabilities of each size grade) by the observed
total tuber number. The Weibull percentiles approach was fitted
at the percentiles corresponding to 45 and 65 mm tuber sizes,
selected because this represents the marketable range for main-
crop potatoes. In this case, the percentiles were the cumulative
proportions of the tuber number or weight at 45 or 65 mm, and
were therefore different for every sample. The logarithm of the
relative likelihood (hereinafter referred to as log relative likeli-
hood) of the predicted discrete distribution (relative to the actual
discrete distribution) was then calculated as illustrated in Lindsey
(1974). The likelihood of the discrete distribution was calculated
as the likelihood of a fully specified multinomial distribution in
Eqn (4), where P is the probability of the jth category and n is
the frequency of the jth category.

L(P) =
∏
j

P
nj
j (4)

The log relative likelihood was then used as a ranking index of the
plausibility of the models, with the most plausible model having
the highest likelihood. The log relative likelihood was calculated
as in Eqn (5):

LRR =
∑n

j
ln Ṕj
( )− ln (Pj)

[ ] (5)

where nj is the observed frequency of a category, Ṕj is the prob-
ability of the predicted distribution and Pj is the likelihood of
the observed distribution.

Uncertainty in the log relative likelihood was assessed using
95% confidence intervals. Fisher’s information was used to esti-
mate the variability of the estimate. The Fisher’s information
was derived by negating the expected value of the second deriva-
tive of the log-likelihood equation (Ly et al., 2017), which for the
multinomial distribution used was defined as in Eqn (6):

I(uj) = −E − nj
P2
j

( )
(6)

where θj is the log relative likelihood of the jth category, nj is the
frequency of the jth category and Pi is the probability of the j

th cat-
egory. The reciprocal of the square of the fisher’s information was
used as the standard error component of the confidence interval
formula.
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The main purpose of fitting the theoretical continuous distri-
butions to the discretely measured tuber size fractions is to maxi-
mize the accuracy of the estimate of the modal tuber size grade of
the distribution, which is the marketable component of the pro-
duction. This falls within the 45–65 mm size bands for typical
maincrop varieties. Therefore, the main purpose of the modelling
presented here was to determine which of the distributions-fitting
approaches maximized the likelihood of this tuber size fraction,
using the observed tuber numbers and weights for this size
grade. The log relative likelihood estimates of the 45–65 mm
size band were therefore compared for the four models.
Additionally, the Root Mean Square Error (RMSE) of prediction
for the frequencies or weights in the 45–65 mm size fraction
were compared. The RMSE was calculated as in Eqn (7):

RMSE =
�����������������
1
N

∑N
i=1

(yi − ýi)
2

√√√√ (7)

where N is the number of observations, yi is the observed value
and ýi is the predicted value. The modal tuber size of the most
plausible model within the 45–65 mm size fraction was consid-
ered the best estimate of the distribution’s model. For comparison
purposes, the most plausible distribution fitted using the bench-
mark maximum likelihood approach was used to compare the
modal tuber size predictions of the other models using RMSE.
The RMSE and log relative likelihood were sample-specific, pro-
viding measures of the goodness of fit of the parameter estimates
to the observed TSDs without generalizing uncertainties expected
at out-of-sample observations. The TSD parameters are only valid
for a collected sample, but within-sample hold-out methods
(holding out a random size profile within the sample as a test
dataset during model fitting) were considered impractical in this
case as they would change the TSD of the training set. The
mode of the Gaussian distribution was considered to equal the

mean. The mode for the Gamma distribution was calculated in
Eqn (8) and the mode for the Weibull distribution was calculated
in Eqn (9), as follows:

M̂oGamma = ĝGamma × (âGamma − 1) (8)

M̂oWeibull = âWeibull × 1− 1

b̂Weibull

( ) 1
b̂Weibull (9)

where M̂oGamma is the estimateof themodeof theGammadistribution,
ĝGamma is the scale parameter of the Gamma distribution, âGamma is
the shape parameter of the Gamma distribution, M̂oWeibull is the
estimate of the mode of the Weibull distribution, /̂Weibull is the
scale of theWeibull distribution and b̂Weibull is the shape parameter
of the Weibull distribution.

Regression analysis
To assess the significance of the responses of TSD to soil nutri-
ents, linear mixed effect models were computed for the primary
macronutrients. The outcome variables of the linear models
were the shape and scale parameters of the best-fitting models,
treated as new observations. The estimates of the shape and
scale parameter at each sample have unique values of uncon-
trolled uncertainty, contingent upon random error sources and
the efficacy of the parameter estimation method. This has the
potential of biasing regression coefficients if systematic patterns
occur (e.g. spatial autocorrelation in the uncertainty). In this
study, the uncertainty was assumed random, with any spatial pat-
terns assumed to be accounted for in subsequent spatial mixed
effect covariance structures. Equally, uncertainties in the para-
meters related to the sampling process leading to varying sample
characteristics were considered random, therefore all estimates
received the same weight in any further data analysis. The study

Fig. 1. The effect of changing the shape param-
eter on a conceptual Weibull probability density
curve.
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locations were also used as the source of random variation.
Cognisant of the spatial non-independence of the observations
within each location, the mixed effect models included a
Matern covariance structure to account for spatial autocorrelation
(Stein, 1999; Minasny and McBratney, 2005). The Matern covari-
ance was fitted by restricted error maximum likelihood and all
parameters were estimated from the data. Statistical analysis was
conducted in R v4.0.2 (R Core Team, 2019) and the spatial regres-
sion model was conducted using the SpaMM R package (Rousset
and Ferdy, 2014). Statistical significance was evaluated using con-
fidence intervals and the goodness of fit for multivariable regres-
sions was evaluated using nRMSE, which was computed by
dividing the RMSE by the mean of the observed variable.

Results

Summary statistics

Summary statistics for the soil and plant variables measured in
the study are presented in Table 2. Soil texture ranged from

predominantly sandy silt loams at HF7, through sandy loams at
Buttery Hill and Horse Foxhole to predominantly Silty Clays at
Deaton 6. Mean total C was highest at Deaton 6 (124.15 g/kg)
and HF7 (101.77 g/kg), a reflection of the high organic matter
content, while the carbon content of Buttery Hill, and Horse
Foxhole were lower. Deaton 6 and HF7 soils also contained higher
concentrations of N and S but had lower concentrations of P than
the sandy loams. Plant spacing was consistent at approximately
2.5 plants/m2 across locations except Horse Foxhole where incon-
sistent planting spacing led to an average of 5 plants/m2. Horse
Foxhole also recorded the highest number of stems, tubers and
yield per square metre.

The summary statistics of the TSD parameters at the five study
sites where the TSD modelling was conducted are presented in
Table 3. Mu, the tuber size with the largest probability (modal
tuber size with respect to the probability densities of tuber num-
ber as determined using the best-fitting TSD model) ranged from
37 mm at Buttery Hill to 51 mm at Horse Foxhole. The same pat-
tern was also reflected in Mu with respect to tuber weight (49 mm
at Buttery Hill and 61 mm at Horse Foxhole). Similarly, the scale

Table 2. Summary statistics of key soil and plant variables measured at each study site

Soil.Prop1

Deaton 6 HF7 Buttery Hill Horse Foxhole

Mean (CV2) Mean (CV) Mean (CV) Mean (CV)

Clay (%) 38.5 (0.19) 18.3 (0.58) 9.3 (0.15) 14.3 (0.29)

Silt (%) 55.4 (0.12) 38.1 (0.20) 24.6 (0.21) 17.4 (0.30)

Sand (%) 6.1 (0.31) 43.5 (0.30) 66.1 (0.09) 68.3 (0.10)

N (g/kg) 9.4 (0.29) 8.4 (0.45) 1.3 (0.12) 1.7 (0.14)

C (g/kg) 124.2 (0.36) 101.8 (0.46) 12.9 (0.12) 16.3 (0.09)

S (g/kg) 3.3 (0.47) 2.2 (0.51) 0.3 (0.12) 0.3 (0.19)

P (mg/kg) 41.2 (0.15) 42.4 (0.17) 100.0 (0.13) 91.1 (0.12)

pH 7.5 (0.08) 6.6 (0.05) 7 (0.03) 6.6 (0.03)

K (mg/kg) 291.3 (0.27) 272.7 (0.24) 276.8 (0.18) 202.4 (0.19)

Mg (mg/kg) 185.0 (0.29) 80.1 (0.25) 87.4 (0.12) 88.4 (0.14)

Plants/ m2 2.5 (0.12) 2.5 (0.24) 2.8 (0.26) 5.2 (0.30)

Stems/m2 9.8 (0.17) 12.4 (0.34) 13.9 (0.28) 17.0 (0.16)

Tubers/m2 38.7 (0.10) 41.1 (0.28) 35.4 (0.29) 48.3 (0.14)

Yield (kg/m2) 4.2 (0.12) 5.2 (0.19) 3.4 (0.27) 5.5 (0.11)

1 = Soil Property. 2 = Coefficient of variation.

Table 3. Summary statistics of the TSD parameters at five different sites

Parameter

Deaton 6 HF7 B.Hill H.Foxhole C.Leasow

Mean (CV1) Mean (CV) Mean (CV) Mean (CV) Mean (CV)

Mu2 (mm) 49.46 (0.03) 44.50 (0.07) 36.50 (0.08) 51.10 (0.03) 43.70 (0.05)

Muwt
3 (mm) 56.71 (0.05) 53.57 (0.06) 48.45 (0.07) 61.09 (0.03) 49.49 (0.05)

W.Shape4 5.0 (0.12) 4.5 (0.16) 3.4 (0.23) 4.7 (0.12) 5.15 (0.28)

W.Scale5 51.8 (0.03) 48.8 (0.07) 40.6 (0.07) 55.8 (0.03) 45.93 (0.06)

W.Shapewt
6 7.59 (0.20) 8.52 (0.26) 6.46 (0.27) 7.38 (0.14) 7.09 (0.12)

W.Scalewt
7 57.88 (0.04) 54.35 (0.07) 50.42 (0.07) 62.44 (0.02) 50.53 (0.08)

1 = Coefficient of variation. 2 = modal tuber size with respect to proportional tuber weight. 3 = modal tuber size with respect to proportional tuber weight. 4:5 = Weibull or scale shape of
proportional tuber numbers. 6:7 = Weibull shape or scale parameter of proportional tuber weight.
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of the TSD with respect to tuber numbers, ranged from 41 mm at
Buttery Hill to 56 mm at Horse Foxhole and with respect to tuber
weight, the scale was largest at Horse Foxhole (62.44 mm) and
lowest at Buttery Hill (50.42 mm). This large variation between
fields was not replicated within a field with the relative-form
CV for the distribution scale ranging from 0.07 at Buttery Hill
to 0.02 Horse Foxhole for both tuber size and weight.
Within-field variation in TSD with respect to tuber number was
higher when quantified as the shape of the distribution. The aver-
age shape of Weibull curves fitted on within-field TSD with
respect to size ranged from 3.36 at Buttery Hill to 5.04 at
Deaton 6. With respect to weight, higher shape values were
observed, with the minimum at Buttery Hill (6.46) and maximum
at HF7 (8.52). The higher shape values suggested that TSD with
respect to tuber weight was more left-skewed than with respect
to tuber number. Overall, more within-field variability was cap-
tured in the shape parameter than the scale parameter. The CV
ranged from 0.12 at Deaton 6 and Horse Foxhole to 0.23 at
Buttery Hill with respect to tuber number and up to 0.27 at

Buttery hill with respect to tuber weight. The CV of the scale par-
ameter was consistently under 0.1 for both tuber number and
weight, suggesting low variability in the modal tuber size or
weight class despite large variability in the shape of the tail that
influence the shape parameter.

Comparison of TSD functions

The distribution functions were fitted to the average propor-
tional tuber weights at each location. The Gaussian and
Gamma distributions predicted relatively lower probability
densities at the modal tuber size compared to the two Weibull
distributions (Fig. 2). The Weibull distributions tended to pre-
dict higher probability densities between 50 mm and 60 mm
but the probability density quickly fell off towards the right
tail, predicting low tuber yield in the oversized tuber size frac-
tions (>65 mm). The Gaussian and Gamma distributions
decrease towards the right tail and predict higher yields in the
oversized fractions.

Fig. 2. The Gaussian, Gamma and Weibull distribution functions fitted to the average proportional tuber weights at HF7 (a), Buttery Hill (b), Crabtree Leasow (c),
Deaton 6 (d ) and Horse Foxhole (e).
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The distribution functions were fitted to the proportional
tuber numbers at all five locations (Fig. 3). The Gamma distribu-
tion tended to underestimate the TSD relative to the other three
fitting methods. Apart from the right-skew at Buttery Hill, the
TSD with respect to tuber number was roughly symmetric and
the difference between the Gaussian and the two Weibull methods
was not readily discernible visually. The Weibull shape at Crabtree
Leasow, Buttery Hill, Horse Foxhole and Deaton 6 ranged from
4.7 to 5.0, suggesting left-skewed distribution (Table 3).

The log relative likelihood estimates of the overall distributions
of the four tested models, relative to the overall distribution of the
observed tuber numbers and tuber weights in each size fraction
were calculated (Table 4). The confidence intervals of the esti-
mates are also shown. With respect to tuber number, the
Gaussian distribution was found to be the most plausible model
at one out of the five locations (Crabtree Leasow) while the

Weibull distribution was the most plausible at Branston Booths,
Buttery Hill and Deaton 6. The Weibull distribution with percen-
tiles approach to parameter estimation was found to be most
plausible at Horse Foxhole, where the tubers were sized in com-
mercially practised main crop size fractions. With respect to
tuber weight, the Weibull distribution with MLE was the most
plausible model at Branston Booths, Buttery Hill, Crabtree
Leasow and Deaton 6, with the highest relative likelihood to the
observed discrete distribution as shown in Table 4. Similar to
the distributions of the tuber numbers, the Weibull distribution
with percentile-based parameter estimation was the most plaus-
ible model at Horse Foxhole with no overlapping confidence
intervals at all five locations. Overall, the Gamma distribution
was found to be the least plausible of the four tested models
with respect to both tuber number and weight while the
Gaussian distribution ranked second to the Weibull maximum

Fig. 3. The Gaussian, Gamma and Weibull distribution functions fitted to the average proportional tuber numbers at HF7 (a), Buttery Hill (b), Crabtree Leasow (c),
Deaton 6 (d ) and Horse Foxhole (e).
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likelihood estimates. The maximum likelihood estimates, particu-
larly the Gamma and Weibull distributions, performed better
than the Weibull percentiles approach in generalizing the pre-
dicted theoretical curve to the observed discrete distribution, on
account of the fitting procedure which took full advantage of
the discrete bins in the MLE. On the other hand, when less infor-
mation (i.e. wider bins) was available as was the case at Horse
Foxhole, the Weibull percentiles approach was more plausible
than the maximum likelihood approach. While the overall gener-
alization of the distribution to the observed discrete distribution is
important, it is more crucial to maximize the log relative likeli-
hood within the marketable tuber size fraction of the main crop
(45–65 mm), where the mode of the distribution occurs. This is
because the primary goal of modelling TSD is to estimate the
tuber size fraction with the highest probability density (Mu).
This is used as an estimate of tuber size for the field. Following
standard procedures from Travis (1987), the principles of scaling
are adopted, such that the weight of an object is proportional to
its volume and the volume is in turn proportional to the cubic
power of its linear dimensions. Working backwards, the estimated

linear dimension (Mu) can therefore be converted to a yield
(weight) prediction, incorporating a pre-defined variety-specific
tuber shape parameter and observed tuber number. The standard
formula for this conversion is provided in Travis et al. (1987). The
log relative likelihood of marketable tuber number and weight
proportions were calculated (Table 5). With respect to tuber num-
ber, the results show that the Weibull percentiles approach gener-
alizes better than all the three other approaches, on account of its
high relative likelihood. The closed-form of the percentiles
approach meant that the differences between the estimated pro-
portions and the actual proportions were very small, with log rela-
tive likelihood approaching zero. For the maximum likelihood
approaches, better generalization to the overall distribution as
shown in Table 4 meant less goodness of fit in the marketable
tuber portion where the mode of the distribution occurs. The
same result was observed with respect to tuber weight, where
the Weibull percentiles approach performed better that all three
other approaches on account of its high log relative likelihood.
With respect to both tuber number and weight, the Weibull dis-
tribution was also the most plausible of the three models fitted by

Table 4. Average log relative likelihood estimate and the margin of error (based on 95% confidence interval) of fitted Gaussian, Weibull, Gamma and Weibull
Percentiles curves to potato TSDs at five, relative to the likelihood of the observed discrete distribution

Distr.1 HF7 B.Hill2 C.Leasow3 Deaton 6 H. Foxhole4

Tuber Number

Gaussian −3.10 ± 0.03 −3.02 ± 0.02 −2.15 ± 0.03 −4.52 ±−0.03 −2.31 ±−0.01

W.MLE5 −2.75 ± 0.03 −2.95 ± 0.02 −2.83 ± 0.02 −3.73 ± 0.02 −1.53 ± 0.02

Gamma −5.27 ± 0.03 −3.47 ± 0.03 −2.74 ± 0.03 −8.71 ± 0.02 −2.48 ± 0.01

W.Perc6 −3.68 ± 0.03 −3.86 ± 0.03 −2.42 ± 0.04 −5.38 ± 0.01 −0.03 ± 0.01

Tuber weight

Gaussian −345.31 ± 0.01 −272.14 ± 0.04 −160.71 ± 0.01 −249.75 ± 0.01 −3.87 ± 0.01

W.MLE −197.33 ± 0.01 −196.74 ± 0.04 −110.32 ± 0.03 −222.35 ± 0.02 −2.70 ± 0.01

Gamma −538.54 ± 0.01 −398.75 ± 0.01 −247.98 ± 0.01 −431.97 ± 0.02 −4.79 ± 0.03

W.Perc −392.47 ± 0.01 −322.85 ± 0.03 −272.79 ± 0.02 −309.53 ± 0.02 −0.33 ± 0.01

1 = Distribution. 2 = Buttery Hill. 3 = Crabtree Leasow. 4 = Horse Foxhole. 5 = Weibull distribution with parameters estimated by MLE. 6 = Weibull distribution with parameters estimated by the
percentiles approach.

Table 5. Average log relative likelihood estimate and the margin of error (based on 95% confidence interval) of fitted Gaussian, Weibull, Gamma and Weibull
Percentiles curves to the 45–65 mm size band of potato TSDs at five, relative to the likelihood of the observed discrete distribution

Distr.1 HF7 B.Hill2 C.Leasow3 Deaton 6 H. Foxhole4

Marketable Tuber Numbers

Gaussian −4.05 ± 0.19 −2.10 ± 0.13 −1.45 ± 0.2 −6.81 ± 0.14 −13.97 ± 0.12

W.MLE5 −2.64 ± 0.2 −2.23 ± 0.14 −0.79 ± 0.2 −4.50 ± 0.15 −11.49 ± 0.11

Gamma −6.83 ± 0.17 −3.62 ± 0.12 −2.82 ± 0.18 −11.89 ± 0.13 −22.18 ± 0.1

W.Perc6 0.00 ± 0.02 −0.17 ±−0.11 −0.12 ±−0.02 0.00 ± 0.02 0.00 ± 0.49

Marketable Tuber Weight

Gaussian −223.53 ± 0.03 −171.91 ± 0.03 −88.92 ± 0.03 −186.17 ± 0.02 0.53 ± 1.25

W.MLE −29.73 ± 0.02 −66.03 ± 0.02 31.75 ± 0.03 −85.66 ± 0.02 0.53 ± 1.28

Gamma −405.03 ± 0.02 −318.12 ± 0.02 −212.83 ± 0.02 −382.95 ± 0.02 0.53 ± 1.31

W.Perc 0.00 ± 0.02 −0.03 ± 0.01 −0.08 ± 0.02 0.00 ± 0.02 0.00 ± 0.05

1 = Distribution. 2 = Buttery Hill. 3 = Crabtree Leasow. 4 = Horse Foxhole. 5 = Weibull distribution with parameters estimated by MLE. 6 = Weibull distribution with parameters estimated by the
percentiles approach.
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MLE. This analysis showed that the Weibull distribution with the
percentiles approach had the highest log relative likelihood of the
observed marketable tuber profile, making it the best candidate
for describing the TSD for the purposes of predicting the
modal tuber size. However, the maximum likelihood estimate of
the Weibull distribution proved to be a better model for general-
izing the overall distribution outside the marketable component.

Using the Weibull distribution with MLE as a benchmark, the
deviation of the other models from the benchmark in the predic-
tion of the modal tuber size was as shown in Table 6. With respect
to tuber weight, the Weibull percentiles approach yielded the low-
est RMSE to the Weibull maximum likelihood approach’s mode
estimation at all locations except Horse Foxhole. However, as
seen in Table 4, the percentiles approach was the most plausible
model at Horse Foxhole, therefore its low RMSE approach was
considered to be due to the lesser accuracy of the Weibull max-
imum likelihood approach at this location. These results were
mirrored in the RMSEs of the modal tuber weight as shown in
Table 6. Apart from Horse foxhole, the RMSE of the shape par-
ameter between the maximum likelihood and percentiles
approaches at all locations was within 1.5 units, showing that
the percentiles approach approximated the shape of the distribu-
tion comparably to the benchmark. Similar observations were
made for the scale parameter. At Horse Foxhole, higher RMSEs
were observed, partially attributable to the lesser accuracy of the
maximum likelihood approach. The analysis showed that the per-
centiles approach was comparable to the maximum likelihood
approach in the estimation of the modal tuber size and yielded
the highest log relative likelihood of the observed marketable
yield. Therefore the distribution shape, scale and modal tuber
size as estimated using the percentiles approach were tested for
their predictability using within-field soil nutrient variation.

Linear modelling
The linear modelling results for the relationships between soil
nutrients and TSD parameters with respect to tuber number are
presented in Table 7. Stem density was also included as a fixed
effect. For the shape parameter, no significant relationship was

observed with the stem density. This suggested that the propor-
tional number of tubers falling into the pre-defined size bands
was not affected by the stem density. However, P and N were
observed to negatively associate with the shape parameter with
statistical significance through the confidence intervals
(Table 7). The strongest negative relationship with the shape par-
ameter was observed with P, suggesting that P increased the pro-
portional numbers of small-sized tubers. For the scale parameter,
a significant negative relationship was observed with stem density,
with a standardized regression coefficient of −0.98, suggesting
that increased stem densities led to a decrease in the overall
range of the distribution. Positive relationships with the scale par-
ameter were observed for P and N, suggesting that the two nutri-
ents increased the overall range of the distribution, though only P
was observed to hold a statistically significant relationship.

The overall effect of P on the TSD at the four sites was as
shown in Fig. 4, where the average shape and scale parameter
from low-P samples (P concentration less than the location
mean) and high-P samples (P concentration higher than the loca-
tion mean) were plotted to visualize the relationship. Overall, an
increase in P at all four locations was associated with a shift of
the TSD towards a right skew, leading to a lower probability dens-
ity of the modal tuber size. As shown in Table 7, the mode of the
distribution with respect to tuber number was also significantly
related to the stem density and P, with a statistically significant
regression coefficient of −2.37 for P. Setting the random effects
to zero, the fixed-effects-only model had an nRMSE of 0.14 for
the mode, suggesting that the expected modal tuber size across
the field can be predicted to acceptable accuracy using stem dens-
ity and soil nutrient information, with a Matern covariance struc-
ture fitted across the surface.

The regression coefficients of the shape, scale and mode vari-
ables of the TSD (with respect to tuber weight) as a function of
stem density and the concentrations of soil nutrients were calcu-
lated (Table 8). The shape parameter was negatively related to
stem density with a regression coefficient of −0.31, showing
that increasing stem numbers moderately associated with a shift
of the TSD towards a right skew. The same association was also

Table 6. Root Mean Square Error (RMSE) of estimates from the Gaussian, Gamma and Weibull (Percentiles approach) benchmarked against the Weibull model with
MLE

Location gauRMSE1 gamRMSE2 weiRMSE3 shapeRMSE4 scaleRMSE5

Tuber number

HF7 1.63 5.08 2.57 0.77 1.83

B.Hill6 2.21 3.91 5.49 0.78 3.05

C. Leasow7 1.55 4.36 2.53 1.21 1.82

Deaton 6 1.63 5.06 2.04 0.76 1.17

H.Foxhole8 0.85 6.71 2.99 1.21 1.75

Tuber weight

HF7 2.24 3.85 1.36 1.19 1.51

B.Hill 1.94 4.25 1.57 1.25 1.47

C. Leasow 2.17 3.84 1.35 1.07 1.70

Deaton 6 2.28 3.82 1.16 0.76 1.03

H.Foxhole 2.48 3.63 2.63 3.06 2.15

1 = RMSE of the mode of Gaussian model vs Weibull MLE, 2 = RMSE of the mode of the Gamma model vs Weibull MLE. 3 = RMSE of mode of the Weibull percentiles model vs Weibull MLE.
4 = RMSE of Weibull percentiles shape vs Weibull MLE. 5 = RMSE of Weibull percentiles scale vs Weibull MLE. 6 = Buttery Hill. 7 = Crabtree Leasow. 8 = Horse Foxhole.
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observed with nutrients P and N, suggesting that increased soil
nutrient concentrations in these soils were associated with an
increase in the proportion of low-weight tubers. The relationships
between the three variables and the shape parameter were all sig-
nificant as evaluated through their non-zero confidence intervals.

The fixed-effects-only model fitted the data with an nRMSE of
0.22. Stem density also had a significant negative association
with the scale parameter, which suggested that observations
with relatively high stem densities had a smaller range of tuber
sizes with a higher concentration of small tubers. Phosphorus

Table 7. Linear modelling results for the relationships between soil nutrients (and stem density) and TSD parameters with respect to tuber number

Response Predictors Estimate nRMSEfixef
1 delta AICc2 D.F.3 ICC14

Shape5 Intercept 4.35 ± 0.63 0.18 7.15 75.66 0.37

Stem density −0.04 ± 0.17

Phosphorus −0.74 ± 0.33

Nitrogen −0.29 ± 0.25

Scale5 Intercept 49.15 ± 7.22 0.13 14.77 72.19 0.87

Stem density −0.98 ± 0.63

Phosphorus 0.92 ± 0.27

Nitrogen 1.44 ± 1.16

Mode5 Intercept 45.71 ± 8.05 0.14 11.41 72.66 0.83

Stem density −1.08 ± 0.78

Phosphorus −2.37 ± 1.99

Nitrogen 0.85 ± 1.40

1 = Normalized Root Mean Square Error of the fixed effects model, with random effects set to zero. 2 = change in the conditional Akaike Information Criteria between the current model and
the random intercept model. 3 = effective degrees of freedom. 4 = Intraclass correlation of the random effects. 5 = parameter determined from the best fitting model.

Fig. 4. Illustration of the effect of Phosphorus concentration on the TSD at Deaton 6 (a), Buttery Hill (b), HF7 (c), and Horse Foxhole (d ).
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and N had significant positive relationships with the scale param-
eter, suggesting that the overall range of the distribution was
increased with the increase of these soil nutrients. Potassium
was also negatively related to the scale parameter. The fixed effects
explained the variation in the scale parameter with an nRMSE of
0.09. The model fitted for the modal tuber size showed significant
negative relationships between stem density and tuber size.
Phosphorus and N both had positive relationships with the
mode as shown by the positive regression coefficients in
Table 8. However, the P relationship was not significant as evalu-
ated the zero-coverage of the confidence interval. The fixed effect
coefficients fitted the observed data with an nRMSE of 0.21.

Discussion

TSD model

The findings of the study showed that potato TSD was more con-
sistent with the Weibull distribution than the Gamma and
Gaussian distributions, consistent with Nemecek et al. (1996)
and Bussan et al. (2007). The log relative likelihood analysis of
the overall distribution showed that the maximum likelihood
approaches generalized to the observed discrete proportions better
than the percentiles approach and the Weibull distribution max-
imum likelihood approach was the best method for generalizing
the shape and scale of the distribution. However, in the context
of this study, the percentiles approach performed better at maxi-
mizing the likelihood of the tuber size fraction of interest (45–65
mm) because its closed-form offered the opportunity to maintain
the likelihood of this desired size fraction accurately. Ultimately,
the main goal of TSD modelling is to maximize the likelihood
of modelling the correct modal tuber size of a collected sample,
which will fall within a pre-defined tuber size interval. In the sam-
ple used in this study, the log relative likelihood analysis demon-
strated comparable performance between the estimates for the
marketable tuber size fraction determined using the Weibull per-
centiles approach and MLE. Additionally, the Weibull percentiles
approach had the lowest RMSE for the prediction of the modal

tuber size, in comparison with the MLE approach, while main-
taining the highest relative likelihood for the frequency of the
marketable 45–65 mm size fraction. Unlike the percentiles
approach, the accuracy of the MLE approach can be potentially
improved with closer sample-grading intervals. However, closer
grading entails more labour at grading time, which affects the
adoption of the method in large-scale production environments,
making the percentiles approach an attractive option. The relative
likelihood for the marketable size range in the MLE method can
also be improved by incorporating a weighted approach that pro-
vides more weight to the desired size fraction, a trading bias for
precision where credible context-specific weight-selection meth-
ods can be produced (Hu and Zidek, 2002). Large variation in
the Weibull shape parameter for TSD modelled against both
tuber number and weight proportions shows the merit of adopt-
ing a flexible distribution function, in contrast to Nemecek et al.
(1996) who suggested an average Weibull shape parameter of 2.3
as a general solution to simulate a right-skewed distribution.
However, Nemecek et al. (1996) used tuber samples from potatoes
grown for a seed market, which are desiccated early with less time
allowed for tuber bulking. In the current study, a largely right-
skewed distribution was observed at Buttery Hill, which also
had the smallest average tuber size. The Weibull distribution
best modelled the Buttery Hill crop as evidenced by the log rela-
tive likelihoods of both the overall distribution and the marketable
portion. However, the shape parameter was 3.4 for TSD modelled
after proportional tuber numbers and 6.46 for TSD modelled after
proportional weight. This showed that proportional tuber num-
bers were roughly symmetrically distributed around the modal
tuber size, but the proportional weights were slightly left-skewed
because of a higher weight per tuber of the larger tubers.

Across all locations, the predicted modal tuber size with
respect to tuber weight was larger than the modal tuber size
with respect to tuber numbers. This is in line with principles of
scaling whereby the weight of an object is proportional to its vol-
ume, which is in turn proportional to the cubic power of its linear
dimensions, the principle behind the use of the modal tuber size
for predicting yield in Travis et al. (1987). Therefore, in an

Table 8. Linear modelling results for the relationships between soil nutrients (and stem density) and TSD parameters with respect to tuber weight

Response Predictors Estimate nRMSEfixef
1 delta AICc2 D.F.3 ICC14

Shape5 Intercept 7.46 ± 0.36 0.22 5.01 77 0.37

Stem density −0.31 ± 0.59

Phosphorus −1.3 ± 0.62

Nitrogen −0.89 ± 0.63

Scale5 Intercept 56.26 ± 5.79 0.09 12.69 74.23 0.72

Stem density −0.99 ± 0.78

Phosphorus 2.6 ± 1.83

Nitrogen 2.1 ± 1.17

Potassium −0.75 ± 0.8

Mode5 Intercept 54.79 ± 6.28 0.21 11.94 75.14 0.79

Stem density −1.04 ± 0.69

Phosphorus 1.27 ± 1.57

Nitrogen 1.35 ± 1.07

1 = Normalized Root Mean Square Error of the fixed effects model, with random effects set to zero. 2 = change in the conditional Akaike Information Criteria between the current model and
the random intercept model. 3 = effective degrees of freedom. 4 = Intraclass correlation of the random effects. 5 = parameter determined from the best fitting model.
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assumed Gaussian distribution of tuber numbers, the distribution
of tuber weights can be expected to be slightly left-skewed with a
higher modal size with respect to proportional tuber weights on
account of an exponential increase of weight per tuber with
increasing tuber size. These findings provide further evidence
that the assumption of a Gaussian distribution as adopted by
Travis (1987) does not universally hold true.

Struik et al. (1991) observed an initial right-skewed TSD with a
modal tuber size gradually shifting to the right as more time was
allowed for tuber bulking by shifting the harvest date. There is
good evidence therefore that the overall shape of the distribution
is influenced by the average tuber size, which depends on the time
of observation, tuber bulking rate and the timing of harvest. It can
be argued that the Gaussian (Sands and Regel, 1983), Log-normal
(Marshall et al., 1993) and Gamma (Aliche et al., 2019) distribu-
tions, as well as the Weibull distribution with a fixed shape par-
ameter, are all instance-specific realizations of an underlying
dynamic distribution that is a function of the tuber bulking status
at the time of observation. In turn, tuber bulking rates are con-
trolled in part by the efficiency of source-sink transportation of
photosynthates which depends on the plant nutrition status of
the crop (Struik et al., 1991). Allowing for a flexible shape param-
eter, the current results suggest that the Weibull distribution is the
best estimator of the TSD curve at any stage of tuber development
for the most representative prediction of the modal tuber size,
which is the main purpose for modelling TSD.

A method for non-destructively modelling TSD is desirable for
temporal monitoring of the changes in TSD. To achieve this, one of
the parameters in the Weibull distribution needs to be modelled as
a function of a non-destructively measurable variable. Both
Nemecek et al. (1996) and Bussan et al. (2007) chose to model
the scale parameter from empirical data, however, they did so for
different reasons. Nemecek et al. (1996) suggested a fixed
Weibull shape parameter, as they empirically observed that distri-
bution fit was relatively invariant in their dataset. However,
Bussan et al. (2007) explicitly modelled the scale parameter because
it had a high correlation to measured stem and tuber density. In the
current study, the shape parameter had higher within-field variabil-
ity than the scale at all study sites as measured by the CV, regard-
less of the method by which TSD was measured (i.e. as a function
of proportional tuber number or weight).

Effect of soil factors on the TSD

Literature on TSD is dominated by plant population studies, with
the number of stems per unit area being reported to have a nega-
tive effect on indicators of TSD and tuber number (Knowles and
Knowles, 2006; Bussan et al., 2007; Aliche et al., 2019). These past
findings all support the hypothesis that higher stem numbers per
unit area increase the tuber number per unit area at the expense of
tuber size, leading to more uniform but smaller-sized tubers. The
results of the multivariable regression are in general agreement
with these findings as stem number per unit area had the most
consistent negative regression coefficients with the modal tuber
size and the scale parameter of TSD, regardless of whether TSD
was modelled with respect to proportional tuber numbers or
weight. A lower scale parameter associated with increased stem
number means that there was a smaller probability density of
large tubers, supporting the previous findings.

The standardized regression coefficients suggest for stem num-
ber suggest a large effect size of stem number on the modal tuber
size and scale, to provide further support to the hypothesis that

stem density increase significantly affects tuber size. Stem density
also had consistently negative relationships to the shape of the dis-
tribution but the effect size was low, This may be interpreted to
mean that bulking rates of large tubers are reduced the presence
of high stem numbers but the tuber filling is not altered to particu-
larly favour any one of the other predefined size classes
significantly.

The results suggest that the effects of soil macronutrients on
TSD may be important, observing negative associations between
P and the shape parameter with a high effect size for TSD mea-
sured with respect to tuber number or weight. This is consistent
with findings that high P tests (25–33 mg/kg) may be associated
with an increase in the proportion of small tubers in the TSD,
attributed to increased vegetative growth at the expense of tuber
bulking (see Birch et al., 1967; Prummel and Barnau-Sijthoff,
1984; Sharma and Arora, 1987; Rosen and Bierman, 2008).

In the current study, the lowest concentration of available P
was observed at Deaton 6 (41 mg/kg), with up to 100 mg/kg at
Buttery Hill, which were much greater than the soil P tests at
which negative effects were observed in the Rosen and Bierman
(2008) study. While positive effects of P on tuber yield compo-
nents have been reported from replicated experiments by
Freeman et al. (1998), the responses were in low P soils and an
asymptote was reached at 27 mg/kg for the Kennebec variety.
The results give evidence of a significant negative relationship
between P concentrations and the modal tuber size with respect
to tuber numbers, meaning that the proportional number of smal-
ler tubers increases as P concentration increases. However, the
scale of the distribution with respect to both tuber number and
weight was increased with an increase in P concentration. This
meant suggests that P did not affect the tuber filling hierarchy
but led to the induction of more tubers that remained within
the small size fraction. The smaller tubers are expected to have
a relatively low contribution to the overall yield therefore the posi-
tive effect of P on the scale of the distribution can be expected to
positively affect the modal tuber size as observed in the study.

As a possible explanatory mechanism, potatoes are known to
maintain P uptake even at high soil P tests like the ones observed
in the current study (Jasim et al., 2020), thereby accumulating
inorganic P in the cytosol. Inorganic phosphate accumulation is
inhibitory to the activity of ADP-glucose pyrophosphorylase
and subsequently inhibit the starch synthesis and accumulation
in sink organs (Crafts-Brandner, 1992; Kleczkowski, 1999;
Tiessen et al., 2002). A tuber-filling hierarchy has been previously
shown whereby larger tubers grow the fastest and increase the
spread of the TSD (Mackerron et al., 1988), therefore high P con-
centrations can be expected to contribute to increased proportions
of small tuber numbers without penalizing the scale of the distri-
bution as shown in the study.

There have been a few previous studies where the effect of soil
nutrients on TSD was systematically studied. Wurr et al. (1993)
found that N had a significant effect of TSD measured as the spread
(CV %) of tuber sizes (assuming a Gaussian distribution), however,
they found no effect of P. The findings by Wurr et al. (1993) are
also reflective of the design-intrinsic large concentration gradients
of the nutrient treatments in controlled experiments, where N
becomes a limiting nutrient hence its effects are emphasized. In
the adequately fertilized sites of the current study where N was
not a limiting factor for production, the evidence suggests that P
equally contributes to the underlying model that explains within-
field variation in TSD. Nitrogen was largely found to have the
same effects on TSD parameters as P, with positive standardized
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regression coefficients on the scale and mode with respect to tuber
weight suggesting that N increases the variability in tuber size, in
alignment with Wurr et al. (1993). High N was associated with a
lower shape parameter, showing a particularly high effect size
with respect to tuber weight. However, wide confidence intervals
call for a more precise estimation of the relationship.

These findings mean that field variation in expected TSD can
be constructed from soil data by modelling the shape parameter
and scale parameter for the field. The scale and shape parameters
can also be calibrated by mid-season yield digs. The beneficial
properties of N and P on tuber yield are well documented in
the literature and formulate the basis of crop fertilization model-
ling with the assumption of a Mitscherlich exponential growing
process with a horizontal asymptote. The current findings suggest
the existence of an inflection point after which over-fertilization
results in a linear reduction in the shape of the TSD.

Conclusion

In conclusion, the study has shown that the shape parameter of
the Weibull distribution determined using a linearized cumulative
probability function provides an adequate index for describing the
overall shape of TSD and performs better than the Gaussian and
Gamma distributions in simulating observed TSD. The linearized
formulae for the Weibull shape and scale presented in the current
paper can be easily implemented in spreadsheet software at the
farm level. Using the shape parameter, agronomists can improve
the monitoring methods of the temporal shift in TSD from yield
digs and (where large tubers are preferred) aim for symmetrical
(shape ∼3) or left-skewed (shape >3) TSD. With the availability
of Weibull cumulative probability functions in popular spread-
sheet software, tuber numbers in any discrete size grades can be
calculated from the modelled shape and scale parameter. From
the current study, the shape parameter had larger within-field
variability than the scale parameter and was significantly affected
by excess P and N. Ultimately, high-intensity soil maps of these
elements can enable high-resolution modelling of spatial TSD
variation. While requirements for high-intensity soil sampling
remain prohibitive, modelling of soil variability using co-kriging
proxies like apparent electrical conductivity becomes important
and relevant for generating high-resolution field variation for
decision-support. Subsequent studies to validate these findings
in more environments are recommended, as well as controlled
studies to investigate the general point of inflection at which add-
itional fertilization becomes detrimental to TSD.
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