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Abstract

Descloux and Geymonat considered a model problem in two-dimensional magnetohydrodynamics and
conjectured that the essential spectrum has an explicitly given band structure. This conjecture was
recently proved by Faierman, Mennicken, and Möller by reducing the problem to that for a 2× 2 block
operator matrix. In a subsequent paper Faierman and Mennicken investigated the essential spectrum for
the problem arising from a particular type of perturbation of precisely one of the operator entries in the
matrix representation cited above of the original problem considered by Descloux and Geymonat. In this
paper we extend the results of that work by investigating the essential spectrum for the problem arising
from particular types of perturbations of all but one of the aforementioned operators. It remains an open
question whether one can perturb the exceptional operator in such a way as to leave the essential spectrum
unchanged.
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1. Introduction

Descloux and Geymonat [DG1, DG2] considered a model problem in two-dimensional
magnetohydrodynamics and a conjecture was made concerning the structure of the
essential spectrum. By approaching this problem from an operator-theoretic point of
view and by exploiting the fact that the coefficients of this operator depended only
upon one of the space variables concerned, Faierman et al. [FMM] were able, with
the use of Fourier series expansions and some results of [GK] concerning systems of
integral equations, to completely prove the conjecture. In a subsequent paper Faierman
and Mennicken [FM] considered a perturbation of the above operator by the addition
of a particular type of potential, so that the coefficients of the perturbed operator no
longer depended only upon one of the space variables concerned, and the essential
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spectrum of the perturbed operator was again completely determined. In this paper we
extend the work of [FM] by considering a perturbation of the original operator by a
potential of a much more general type than hitherto considered, and then investigate
the essential spectrum of this perturbed operator.

To explain our work in more detail, let � denote the region in the (s, t)-plane
defined by the inequalities 0< s < 1, 0< t < 2π , and let ∂1 = ∂/∂s, ∂2 = ∂/∂t . Then
motivated by the fact that we have to deal with spaces of functions which are periodic
with respect to the variable t of period 2π , let us introduce the function space C∞0,π (�)

defined as the set of all f ∈ C∞(�) with support contained in [ε, 1− ε] × [0, 2π ] for
some ε in (0, 1/2) (which may depend on f ) such that ∂ j

2 f (·, 0)= ∂ j
2 f (·, 2π) for all

j ≥ 0, where supp denotes support and C∞(�)= C∞(R2)|�. It is clear that C∞0,π (�)
is a dense subspace of

L2(�, s−1)=

{
f ∈ L2(�)

∣∣∣∣ ∫
�

s−1
| f |2 dx <∞

}
,

where dx denotes the element of two-dimensional Lebesgue measure. Then with u =
(u1, u2)

T , v = (v1, v2)
T (where T denotes the transpose) denoting vector functions in

C∞0,π (�)
2, let us introduce the sesquilinear form on L2(�, s−1)2,

l(u, v)=
∫
�

1
s
[(ω−1∂1u1 + s−1∂2u2)(ω−1∂1v1 + s−1∂2v2)

+ ω−2∂2u1∂2v1 + ∂2u2∂2v2] dx,
(1.1)

and the associated operator with domain C∞0,π (�)
2,

L0 =

(
A B
C D0

)
, (1.2)

where ω is a positive constant,

A =−ω−2s∂1
1
s
∂1 − ω

−2∂2
2 , B =−s∂1

ω−1

s2 ∂2,

C =−
ω−1

s
∂2∂1, D0 =−

1+ s2

s2 ∂2
2 .

In [FMM] it is shown that the form l is symmetric, nonnegative, and closable in
L2(�, s−1)2; and the nonnegative, selfadjoint operator associated with its closure,
that is, Friedrich’s extension of L0, is denoted by LF (see [K, Theorem 2.1, p. 322]).
Then the main result of [FMM] was the complete characterization of σess(LF ), the
essential spectrum of LF , which proved the conjecture of Descloux and Geymonat
cited above.

In [FM] a perturbation of the above problem was considered by replacing the
sesquilinear form (1.1) by the form

l(1)(u, v)= l(u, v)+
∫
�

1
s

a(·, ·)u1v1 dx, (1.3)
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where a ∈ L∞(�) and is real-valued. The operator associated with l(1) is then L(1)0 , ob-
tained from the operator L0 of (1.2) by replacing A there by A(1) = A + Sa , where for
any measurable function g defined on�, we use the notation Sg to denote the operator
of multiplication in L2(�, s−1) induced by g. It is shown in [FM] that the sesquilinear
form l(1) is densely defined, symmetric, and closable in L2(�, s−1)2, and with L(1)F
denoting the selfadjoint operator associated with its closure, the main result of that
paper is the proof that σess(L

(1)
F )= σess(LF ) under certain assumptions concerning a.

In this paper we extend the work of [FM] by considering a more general type of
perturbation than considered there. Namely, we replace the sesquilinear form (1.3) by
the form

l(2)(u, v) = l1(u, v)+
∫
�

1
s

b(·, ·)u2v1 dx +
∫
�

1
s

c(·, ·)u1v2 dx

+

∫
�

1
s

d(·, ·)u2v2 dx,

where b, c, and d are functions in L∞(�), b = c, and d is real-valued. The operator
associated with l(2) is then L(2)0 , obtained from the operator L0 of (1.2) by replacing

the operators A, B, C, and D0 there by the operators A(1), B(1), C (1), and D(1)
0 ,

respectively, where B(1) = B + Sb, C (1)
= C + Sc, and D(1)

0 = D0 + Sd . As we shall
see, the form l(2) is densely defined, symmetric, and closable in L2(�, s−1)2, and we
shall denote the selfadjoint operator associated with its closure by L(2)F . Then the object

of this paper is to prove that σess(L
(2)
F )= σess(LF ) under certain conditions concerning

the potentials a, b, and d (see Theorem 3.1 below).
In Section 2 some necessary results are gathered together from both [FM, FMM],

and these are then used in Section 3 to prove our main result, Theorem 3.1.

2. Preliminaries

In this section we gather together some results from [FMM] which we require for
our purposes; and to this end we need the following notation. For a measurable subset
G of � or of the interval 0< s < 1, we denote by L2(G, s−1) the weighted Lebesgue
space relative to s−1 times Lebesgue measure in the Euclidean space containing G,
and denote by (·, ·)0,G,s−1 and ‖ · ‖0,G,s−1 the inner product and norm in L2(G, 1/s).
For a nonnegative integer m we let Hm(G) and Hm((0, 2π)) denote the usual Sobolev
spaces of order m related to L2(G) and L2((0, 2π)), and let

Hm(�, s−1)= { f ∈ Hm(�) | ∂α f ∈ L2(�, s−1) for |α| ≤ m},

where α = (α1, α2) is a multi-index whose length α1 + α2 is denoted by |α|, and
∂α = ∂

α1
1 ∂

α2
2 . We also equip Hm(�, s−1) with the inner product
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( f, g)m,�,s−1 =

∑
|α|≤m

∫
�

s−1∂α f ∂αg dx

and norm ‖ f ‖m,�,s−1 = ( f, f )1/2
m,�,s−1 , where f and g denote vectors in this space.

Furthermore, we introduce the spaces

Hm
π (�, s−1)

= { f ∈ Hm(�, s−1) | ∂
j

2 f (·, 0)= ∂ j
2 f (·, 2π) for j = 0, . . . , m − 1},

Zm
π (�, s−1)

= { f ∈ L2(�, s−1) | s− j∂
j

2 f ∈ L2(�, s−1) for j = 0, . . . , m,

∂
j

2 f (·, 0)= ∂ j
2 f (·, 2π) for j = 0, . . . , m − 1},

Hm
π ((0, 2π))

= { f ∈ Hm((0, 2π)) | ∂ j
2 f (0)= ∂ j

2 (2π) for j = 0, . . . , m − 1},

Hm((0, 1), s−1)

= { f ∈ L2((0, 1), s−1) | ∂
j

1 f ∈ L2((0, 1), s−1) for j = 1, . . . , m},

where Hm(G), (and hence Hm
π (�)) as well as Hm((0, 2π)) (and hence Hm

π ((0, 2π)))
are equipped with their standard inner products and norms, Hm((0, 1), s−1) is
equipped with the inner product

( f, g)m,(0,1),s−1 =

m∑
j=0

∫ 1

0
s−1∂

j
1 f ∂ j

1 g ds

and norm
‖ f ‖m,(0,1),s−1 = ( f, f )1/2

m,(0,1),s−1,

where f and g denote vectors in this space, while we equip Zm
π (�, s−1) with the inner

product

(·, ·)Zm
π (�,s−1) =

m∑
j=0

(s− j∂2·, s− j∂2·)0,�,s−1

and norm
‖ · ‖Zm

π (�,s−1) = (·, ·)
1/2
Zm
π (�,s−1)

.

It is not difficult to deduce from the results of [FMM] (see in particular Proposition 4.3
there) that C∞0,π (�) is dense in L2(�, s−1) and in Zm

π (�, s−1) for m = 1, 2.
In Section 1 we introduced the functions a, b, c and d and indicated some of their

properties. We now list some further properties which we assume these functions to
satisfy. To this end we require the following definition.

DEFINITION 2.1. We say that the function f satisfies condition (A) if:

(1) f ∈ L∞(�) such that f (s, ·) ∈ H2
π ((0, 2π)) for almost every s in 0< s < 1 and

∂2
2 f ∈ L∞(�);

https://doi.org/10.1017/S1446788710000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000017


[5] The essential spectrum of a perturbed operator 173

(2) if 0< δ < 1 and

ρ f (δ)=

∥∥∥∥(∫ 2π

0
(| f (s, ·)|2 + |∂2

2 f (s, ·)|2) dt

)1/2∥∥∥∥
L∞((0,δ))

,

then ρ f (δ)→ 0 as δ→ 0.

ASSUMPTION 2.2. We henceforth suppose that a, |b|2, and d2 satisfy condition (A).

We stated in Section 1 that the form l with domain C∞0,π (�)
2 (see (1.1)) is symmet-

ric, nonnegative, and closable in L2(�, s−1)2, and we let l̃ denote its closure. Also it
was shown in [FM] that the perturbed form l(1), with domain C∞0,π (�)

2, is symmetric,

closable in L2(�, s−1)2, and has lower bound greater than or equal to −γa , where
γa = ‖a‖L∞(�). Furthermore, if l̃(1) denotes its closure, then l̃ and l̃(1) have the same
domain and on their common domain, l̃(1)(·, ·)= l̃(·, ·)+ (S(1)·, ·)L2(�,s−1)2 , where
S(1) denotes the 2× 2 matrix operator whose entry in the first row and first column
is Sa and all other entries are 0. In addition, if L(1)F denotes the selfadjoint operator

associated with the form l̃(1), then LF and L(1)F have the same domain and on their

common domain, L(1)F = LF + S(1). Finally, if we let γ0 = 2(γa + γb + γd), where
γb = ‖b‖L∞(�) and γd = ‖d‖L∞(�), and refer again to Section 1 for notation, then we
can argue with the form l(2) as we argued with the form l(1) in [FM] to obtain the
following result.

PROPOSITION 2.3. The perturbed form l(2), with domain C∞0,π (�)
2, is symmetric,

closable in L2(�, s−1)2, and has lower bound at least −γ0. Furthermore, if l̃(2)

denotes its closure, then l̃ and l̃(2) have the same domain and on their common domain,
l̃(2)(·, ·)= l̃(·, ·)+ (S(2)·, ·)L2(�,s−1)2 , where

S(2) =

(
Sa Sb
Sc Sd

)
.

Finally, if L(2)F denotes the selfadjoint operator in L2(�, s−1)2 associated with l̃(2),
then L(2)F and LF have the same domain, and on this domain, L(2)F = LF + S(2).

Turning again to the operator L0 introduced in Section 1 (see (1.2)) and having
domain C∞0,π (�)

2, we now present some results pertaining to this operator which were
derived in [FMM]. In what follows we shall use the notation D(V ) and D(h) to denote
the domain of the operator V and the sesquilinear form h acting in some Hilbert space.

PROPOSITION 2.4. The operator D0 has a Friedrich’s extension in L2(�, s−1), and
if we denote this extension by D, then D is a nonnegative, selfadjoint operator
with domain D(D)= Z2

π (�, s−1) and

Du =−
1+ s2

s2 ∂2
2 u ∀u ∈D(D).

Furthermore, if µ < 0, then (D − µ)−1 maps C∞0,π into itself.
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PROPOSITION 2.5. The operators B and C are closable in L2(�, s−1) and their
closures, B and C, respectively, satisfy B ⊂ C∗ and C ⊂ B∗. Furthermore, for
µ < 0, the operator(D − µ)−1C is also closable in L2(�, s−1).

We henceforth denote the closure of (D − µ)−1C by (D − µ)−1C .
Let µ < 0. Then we also know from [FMM] that L0 − µ admits the representation(

I B(D − µ)−1

0 I

) (
T (0)(µ) 0

0 D − µ

) (
I 0

(D − µ)−1C I

)
, (2.1)

where I denotes the identity operator in L2(�, s−1) and T (0)(µ) denotes the
symmetric operator (A − µ)− B(D − µ)−1C . Furthermore, it is shown in [FMM]
that T (0)(µ) has a Friedrich’s extension T (µ) in L2(�, s−1) which is selfadjoint,
positive, invertible, and satisfies T (µ)≥−µ, while in addition,

D(T (µ)1/2)⊂D((D − µ)−1C).

Note that this last result implies that

G(µ)= (D − µ)−1CT (µ)−1/2

is a bounded operator in L2(�, s−1). Using these facts, it is shown in [FMM] that
LF − µ admits the representation

LF − µ=

(
T (µ)1/2 T (µ)1/2G(µ)∗(D − µ)1/2

0 (D − µ)1/2

)
×

(
T (µ)1/2 0

(D − µ)1/2G(µ)T (µ)1/2 (D − µ)1/2

)
,

(2.2)

and hence

(LF − µ)
−1
=

(
T (µ)−1

−T (µ)−1/2G(µ)∗

−G(µ)T (µ)−1/2 G(µ)G(µ)∗ + (D − µ)−1

)
. (2.3)

3. The main result

In this section we use the results of Section 2 as well as those of [FMM, FM] to
derive the main result of this paper, which is given in the following theorem.

THEOREM 3.1. Suppose that d = 0 almost everywhere in�. Then σess(L
(2)
F )= σess(L

(1)
F ),

and hence

σess(L
(2)
F )=


{0} ∪

∞⋃
m=1

[
m2,

m2

ω2

]
if 0< ω ≤ 1,

{0} ∪
∞⋃

m=1

[
m2

ω2 , m2
]

if ω > 1.

(3.1)
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Since the equality (3.1) with L(2)F replaced by L(1)F is proved in [FM], we need
only prove the first assertion of the theorem. To this end some preliminary results are
required. Accordingly, let us assume henceforth that µ <−γ0 and turn our attention
again to the operator T (µ) introduced in Section 2. Then we observe from [FMM,
Section 6] that if u ∈ C∞0,π (�), then T (µ)u can be expanded in L2(�, s−1) by means
of a Fourier series expansion with respect to the variable t , that is,

T (µ)u =
∞∑

m=−∞

Tm(µ)Qmu ⊗ hm,

where

hm(t)=
1
√

2π
eimt , (Qmu)(s)=

∫ 2π

0
u(s, t)hm(t) dt,

T0(µ)=−ω
−2s∂1

1
s
∂1 − µ,

Tm(µ)=−ω
−2s∂1

m2
− µ

(1+ s2)m2 − µs2 s∂1 +
m2

ω2 − µ for m 6= 0.

From [FMM] we have the following results.

PROPOSITION 3.2. T0(µ), with domain C∞0 ((0, 1)), has a Friedrich’s extension
T0,F (µ) in L2((0, 1), s−1) which has the following properties.

(1) T0,F (µ)=−ω
−2s∂11/s∂1 − µ and its domain is

{ f ∈ H1((0, 1), s−1) | s∂1s−1∂1 f ∈ L2((0, 1), s−1), f (1)= 0}.

(2) T0,F (µ) is a selfadjoint, strictly positive operator in L2((0, 1), s−1) with
compact inverse.

(3) T0,F (µ) is precisely the selfadjoint operator in L2((0, 1), s−1) that is associated
with the closed, densely defined, nonnegative form

h(·, ·)= (S0(µ)·, S0(µ)·)0,(0,1),s−1 − µ(·, ·)0,(0,1),s−1

and
T0,F (µ)= S0(µ)

∗S0(µ)− µ,

where

D(S0(µ))= { f ∈ H1((0, 1), s−1) | f (1)= 0},

D(S0(µ)
∗)= { f ∈ L2((0, 1), s−1) | s∂1s−1 f ∈ L2((0, 1)s−1)},

and S0(µ)= ω
−1∂1 and S0(µ)

∗
=−ω−1s∂1s−1 on their respective domains.

PROPOSITION 3.3. Suppose that m 6= 0. Then Tm(µ), with domain C∞0 ((0, 1)), has a
Friedrich’s extension Tm,F (µ) in L2((0, 1), s−1), which has the following properties.
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(1)

Tm,F (µ)=−ω
−2s∂1

m2
− µ

(1+ s2)m2 − µs2 s∂1 +
m2

ω2 − µ

and

D(Tm,F (µ)) = { f ∈ L2((0, 1), s−1) | (s∂1)
j f ∈ L2((0, 1), s−1)

for j = 1, 2, f (1)= 0}.

(2) Tm,F (µ) is a selfadjoint and strictly positive operator in L2((0, 1), s−1).
(3) Tm,F (µ) is precisely the selfadjoint operator in L2((0, 1), s−1) that is associated

with the closed, densely defined, nonnegative form

h(·, ·)= (Sm(µ)·, Sm(µ)·)0,(0,1),s−1 +

(
m2

ω2 − µ

)
(·, ·)0,(0,1),s−1

and

Tm,F (µ)= Sm(µ)
∗Sm(µ)+

m2

ω2 − µ,

where

D(Sm(µ))= { f ∈ L2((0, 1), s−1) | s∂1 f ∈ L2((0, 1), s−1), f (1)= 0},

D(Sm(µ)
∗)= {L2((0, 1), s−1) | s∂1 f ∈ L2((0, 1), s−1)}

and

Sm(µ) =
s

ω

√
m2 − µ

(1+ s2)m2 − µ s2 ∂1,

Sm(µ)
∗
= −sω−1∂1

√
m2 − µ

(1+ s2)m2 − µ s2

on their respective domains.

PROPOSITION 3.4. The domain D(T (µ)) of T (µ) is the set of all f ∈ L2(�, s−1)

such that Qm f ∈D(Tm,F (µ)) for all m ∈ Z and

∞∑
m=−∞

‖Tm,F (µ)Qm f ‖20,(0,1),s−1 <∞.

Furthermore, for all f ∈D(T (µ)),

T (µ) f =
∞∑

m=−∞

(Tm,F (µ)Qm f )⊗ hm .
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We now use the results just cited as well as those of Section 2 to derive some results
which will be used in the proof of Theorem 3.1. To this end let S(2)0 = S(2) − S(1).
Then we observe that

L(2)F − µ= LF − µ+ S2
= L(1)F − µ+ S(2)0

and that
‖S(2)0 (L(1)F − µ)

−1
‖L2(�,s−1)2→L2(�,s−1)2 < 1,

that
(L(2)F − µ)

−1
= (L(1)F − µ)

−1(I + S(2)0 (L(1)F − µ)
−1)−1,

and hence it follows that

(L(2)F − µ)
−1
− (L(1)F − µ)

−1

=−(L(1)F − µ)
−1S(2)0 (L(1)F − µ)

−1(I + S(2)0 (L(1)F − µ)
−1)−1.

Our goal now is to prove that (L(2)F − µ)
−1
− (L(1)F − µ)

−1 is a compact operator in
L2(�, s−1)2 and then use this fact to prove Theorem 3.1. Then since

(L(1)F − µ)
−1
= (L(1)F − µ)

−1
− (LF − µ)

−1
+ (LF − µ)

−1,

and since we know from [FM] that (L(1)F − µ)
−1
− (LF − µ)

−1 is a compact operator
in L2(�, s−1)2, we see that our goal will be achieved if we can show that

X (µ)= (LF − µ)
−1S(2)0 (LF − µ)

−1

is a compact operator in L2(�, s−1)2.
Accordingly, let X j,k(µ), where 1≤ j, k ≤ 2, denote the components of X (µ).

Then it follows from (2.3) that

X11(µ) = −T (µ)−1/2G(µ)∗ScT (µ)−1

− (T (µ)−1Sb − T (µ)−1/2G(µ)∗Sd)G(µ)T (µ)
−1/2,

X12(µ) = T (µ)−1/2G(µ)∗ScT (µ)−1/2G(µ)∗

+ (T (µ)−1Sb − T (µ)−1/2G(µ)∗Sd)(G(µ)G(µ)
∗
+ (D − µ)−1),

X21(µ) = (G(µ)G(µ)
∗
+ (D − µ)−1)ScT (µ)−1

− (G(µ)T (µ)−1/2Sb − (G(µ)G(µ)
∗
+ (D − µ)−1)Sd)GT (µ)−1/2,

X22(µ) = −(G(µ)G(µ)
∗
+ (D − µ)−1)ScT (µ)−1/2G(µ)∗

− (G(µ)T (µ)−1/2Sb − (G(µ)G(µ)
∗
+ (D − µ)−1)Sd)

× (G(µ)G(µ)∗ + (D − µ)−1).

PROPOSITION 3.5. ScT (µ)−1, ScT (µ)−1/2, and Sd G(µ)T (µ)−1/2 are compact
operators in L2(�, s−1).
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PROOF. Since

‖ScT (µ)−1 f ‖20,�,s−1 = (T (µ)
−1S|c|2 T (µ)−1 f, f ) ∀ f ∈ L2(�, s−1)

and since we know from [FM] that T (µ)−1S|c|2 T (µ)−1 is a compact operator in
L2(�, s−1), it follows that this last result is also true for ScT (µ)−1. Furthermore,
since

‖ScT (µ)−1/2 f ‖20,�,s−1 = (V (µ) f, f )0,�,s−1,

where V (µ)= T (µ)−1/2S|c|2 T (µ)−1/2, and since we know from [FM] that V (µ) is
a compact operator in L2(�, s−1), it follows that this last result is also true for
ScT (µ)−1/2.

Turning next to the assertion concerning Sd G(µ)T (µ)−1/2, let us observe from
[FMM] that

G(µ)T (µ)−1/2 f =
∞∑

m=−∞
m 6=0

Gm(µ)Tm,F (µ)
−1/2 Qm f ⊗ hm

for all f ∈ L2(�, s−1), where

Gm(µ)=−
im√

(m2 − µ)[(1+ s2)m2 − µs2]
Sm(µ)Tm,F (µ)

−1/2. (3.2)

We note from part (3) of Proposition 3.3 that

D(Tm,F (µ)
1/2)=D(Sm(µ)),

and hence it follows that Sm(µ)Tm,F (µ)
−1/2 is a bounded operator in L2((0, 1), s−1).

Furthermore, since

‖ f ‖20,(0,1),s−1

= ‖Sm(µ)Tm,F (µ)
−1/2 f ‖20,(0,1),s−1 +

(
m2

ω2 − µ

)
‖Tm,F (µ)

−1/2 f ‖20,(0,1),s−1

for all f ∈ L2((0, 1), s−1), it also follows that

‖Gm(µ)‖L2((0,1),s−1)→L2((0,1),s−1) ≤
1
|m|

and
‖Tm,F (µ)

−1/2
‖L2((0,1),s−1)→L2((0,1),s−1) ≤

ω√
m2 − ω2µ

.

Lastly we observe from (3.2) that

Gm(µ)Tm,F (µ)
−1/2
=−

im√
(m2 − µ)[(1+ s2)m2 − µ s2]

Sm(µ)Tm,F (µ)
−1,
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from which it follows that Gm(µ)Tm,F (µ)
−1/2 is a bounded linear transformation from

L2((0, 1), s−1) into L2((δ, 1)) whose range lies in H1((δ, 1)) for any δ satisfying
0< δ < 1. Hence we conclude from the closed graph theorem that the mapping

Gm(µ)Tm,F (µ)
−1/2
: L2((0, 1), s−1)→ H1((δ, 1))

is bounded. Let us now use these facts to prove the assertion concerning the
compactness of Sd G(µ)T (µ)−1/2; since

‖Sd G(µ)T (µ)−1/2 f ‖20,�,s−1 = (T (µ)
−1/2G(µ)∗Sd2 G(µ)T (µ)−1/2 f, f )0,�,s−1,

we see that the assertion will be proved if we can show that

T (µ)−1/2G(µ)∗Sd2 GT (µ)−1/2

is a compact operator in L2(�, s−1).
To this end let

dr = dr (s)= (2π)−1/2(Qr d2)(s) ∀r ∈ Z.

Then it follows from the foregoing results that for all f ∈ L2(�, s−1),

‖T (µ)−1/2G(µ)∗Sd2 G(µ)T (µ)−1/2 f ‖0,�,s−1

=

( ∞∑
m=−∞

∥∥∥∥ ∞∑
r=−∞

Tm,F (µ)
−1/2Gm(µ)

∗dr Gm−r (µ)

× Tm−r,F (µ)
−1/2 Qm−r f

∥∥∥∥2

0,(0,1),s−1

)1/2

≤

∞∑
r=−∞

1

1+ r2

( ∞∑
m=−∞

∥∥∥∥Tm,F (µ)
−1/2Gm(µ)

∗d̃r Gm−r (µ)

× Tm−r,F (µ)
−1/2 Qm−r f

∥∥∥∥2

0,�,s−1

)1/2

,

(3.3)

where d̃r = (1+ r2)dr , and G0(µ) is defined to be 0, and where we have made use of
Minkowski’s inequality. Note also that

d̃2
r ≤

1
π

∫ 2π

0
(d2(s, ·)2 + |∂2

2 d2(s, ·)|2) dt ≤ 2γ̃ 2
d ,

where γ̃ 2
d = γ

4
d + ‖∂

2
2 d2
‖

2
L∞(�)

.

Next let F denote a bounded set in L2(�, s−1). Then it follows from the fact that
‖Qr f ‖0,(0,1),s−1 ≤ ‖ f ‖0,�,s−1 for all f ∈ L2(�, s−1) that {Qr f | r ∈ Z, f ∈ F} is a
bounded set in L2((0, 1), s−1). Hence if we fix an integer `≥ 2 and observe from
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Propositions 3.2, 3.3, and the text following (3.2) that for each pair (m, r), in Z2 with
m 6= r , the set {Gm−r (µ)Tm−r,F (µ)

−1/2 Qm−r f } f ∈F is bounded in H1((`−1, 1)),
then we can appeal firstly to Rellich’s theorem and then to a standard diagonalization
procedure to select a sequence of vectors { fn}

∞

1 in F such that the sequence

{Gm−r (µ)Tm−r,F (µ)
−1/2 Qm−r fn}

∞

n=1

converges in L2((`
−1, 1)) for every pair (m, r) ∈ Z2. Since this result is true for

every `≥ 2, we can again appeal to a standard diagonalization procedure to choose
the sequence { fn}

∞

1 just cited so that the sequence

{Gm−r (µ)Tm−r,F (µ)
−1/2 Qm−r fn}

∞

n=1

converges in L2((`
−1, 1)) for every pair (m, r) ∈ Z2 and for every integer `≥ 2.

Let `, m0, and r0 denote integers at least 2 with m0 > r0. Then with { fn}
∞

1 denoting
the sequence in F defined above, it follows from (3.3) that for j, k ≥ 1,

‖T (µ)−1/2G(µ)∗Sd2 G(µ)T (µ)−1/2( f j − fk)‖0,�,s−1 ≤

3∑
j=0

Ji ,

where

J0 =

∞∑
r=−∞

1

1+ r2

( ∞∑
m=−∞

m 6=0

‖Vm,r (µ)( f j − fk)‖
2
0,(0,`−1),s−1

)1/2

,

J1 =
∑
|r |>r0

1

1+ r2

( ∞∑
m=−∞

m 6=0

‖Vm,r (µ)( f j − fk)‖
2
0,(`−1,1),s−1

)1/2

,

J2 =
∑
|r |≤r0

1

1+ r2

( ∑
|m|>m0

‖Vm,r (µ)( f j − fk)‖
2
0,(`−1,1),s−1

)1/2

,

J3 =
∑
|r |≤r0

1

1+ r2

( ∑
|m|≤m0

m 6=0

‖Vm,r (µ)( f j − fk)‖
2
0,(`−1,1),s−1

)1/2

,

Vm,r (µ)=
ω√

m2(m2 − µ)
d̃r Gm−r (µ)Tm−r,F (µ)

−1/2 Qm−r .

It follows from the results above that

J0 ≤ C0ρd2(`
−1)

( ∞∑
r=−∞

1

1+ r2

)( ∞∑
m=−∞

m 6=0

1

m2(m2 − µ)

)1/2

,

J1 ≤ C0γ̃d

(∑
r>r0

1

1+ r2

)( ∞∑
m=−∞

m 6=0

1

m2(m2 − µ)

)1/2

,
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and

J2 ≤ C0γ̃d

(∑
|r |≤r0

1

1+ r2

)

×

( ∑
|m|>m0

1

m2(m2 − µ)(m − r0)2[(m − r0)2 − µ]

)1/2

,

J3 ≤ C0γ̃d

(∑
|r |≤r0

1

1+ r2

)

×

( ∑
|m|≤m0

m 6=0

‖Gm−r (µ)Tm−r,F (µ)
−1/2 Qm−r ( f j − fk)‖

2
0,(`−1,1),s−1

)1/2

,

where
C0 = 2

√
2(1+ M)(1+ ω2) and M = sup

f ∈F
‖ f ‖0,�,s−1 .

Hence given any ε > 0, we can choose ` so large that J0 < ε/4, then choose r0 so
large that J1 < ε/4, and finally choose m0 large enough that J2 < ε/4. Then with
`, r0, and m0 so chosen we can choose n0 large enough that J3 < ε/4 for j, k ≥ n0.
Thus we have shown that there exists an integer n0 such that

‖T (µ)−1/2G(µ)∗Sd2 G(µ)T (µ)−1/2( f j − fk)‖0,�,s−1 < ε ∀ j, k ≥ n0,

and since ε is arbitrary, we conclude that

T (µ)−1/2G(µ)∗Sd2 G(µ)T (µ)−1/2

is a compact operator in L2(�, s−1), and this completes the proof of the proposition. 2

PROOF OF THEOREM 3.1. It follows from Proposition 3.5 and from a consideration
of adjoints that X11(µ), X12(µ), X21(µ), and

X22(µ)− (G(µ)G(µ)
∗
+ (D − µ)−1)Sd(G(µ)G(µ)

∗
+ (D − µ)−1)

are compact operators in L2(�, s−1). Thus if we suppose that ‖d‖L∞(�) = 0,
then X (µ), and hence also (L(2)F − µ)

−1
− (L(1)F − µ)

−1, are compact operators in

L2(�, s−1)2; and this implies that σess(L
(2)
F − µ)

−1
= σess(L

(1)
F − µ)

−1. It is an

immediate consequence of this result that σess(L
(2)
F )= σess(L

(1)
F ). 2
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