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LOCALIZATIONS OF INJECTIVE MODULES
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The question of whether an injective module £ over a noncommutative noetherian
ring R remains injective after localization with respect to a denominator set XzR is
addressed. (For a commutative noetherian ring, the answer is well-known to be
positive.) Injectivity of the localization £ [ X - 1 ] is obtained provided either R is fully
bounded (a result of K. A. Brown) or X consists of regular normalizing elements. In
general, E[X~1'] need not be injective, and examples are constructed. For each positive
integer n, there exists'a simple noetherian domain R with Krull and global dimension
n+1, a left and right denominator set X in R, and an injective right R-module E such
that £[X~X] has injective dimension n; moreover, E is the injective hull of a simple
module.

The research of the first author was partially supported by a National Science
Foundation grant. The work was done while the second author was visiting the
Mathematics Department of the University of Utah, and he wishes to thank that
department for their hospitality.

1. Preservation of injectivity

Given a right or left denominator set X in a ring R, we write tx(E) and E[X~l~\ for
the X-torsion submodule of an R-module E and the X-localization of E. Assuming that
E is an injective R-module, we consider the problem of deciding whether E[X~X] must
be an injective R[X~^-module. Recall that £ [ X - 1 ] is injective as an i?[Z"^-module
if and only if it is injective as an R-module [11, Exercise 12, p. 62].

In case R is commutative noetherian, or, more generally, if R is noetherian and X is
central, £ [ X - 1 ] must be injective [2, Lemma 1.2]. However, for R commutative but not
noetherian, £ [ X - 1 ] need not be injective [5, Theorems 25, 28]. In the noncommutative
fully bounded noetherian case, K. A. Brown has proved the following positive result,
and we thank him for communicating it for presentation here.

Theorem 1.1. (Brown) Let R be a right and left noetherian right fully bounded ring, let
X be a right and left denominator set in R, and let E be an injective right R-module. Then
E[X~l~\ is an injective right R[X~ ^-module.

Proof. It suffices to consider the case that £ is indecomposable. If £ is X-torsion,
then £ [ X - 1 ] = 0, while if £ is X-torsion-free, then £ [Z" 1 ] = £; in either case, E^X'1]
is injective. Hence, it is enough to show that £ is either X-torsion or X-torsion-free.
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290 LOCALIZATIONS OF INJECTIVE MODULES

Let T=tx(E) and suppose that T=^0 and T£E. Since T=fcE we may choose a finitely
generated submodule B of E such that BgT and ann(J3) is maximal among the
annihilators of such submodules. Set C = BnT and Q = ann(B/C); thus BQ^T. By
the H-condition [3, Theorem 7.8], the annihilator of BQ equals the annihilator of some
finite subset of BQ, and hence there exists xeX such that BQx = 0. It follows that Q is
prime, for if / and J are ideals of R such that / £ Q and IJ £ Q, then BIJx = 0 and Jx is
contained in ann(B/), which, by maximality, equals ann(B); then BJx = 0 and so BJsT,
whence J £ Q.

The image I of I in R/ann(B) is a left Ore set, and, because R/ann(B) is left
noetherian, X must be a left denominator set [11, Proposition II.1.5]. Hence, since
Qx^ann(B), there exists yeX such that >><2£ann(B), and ByQ = 0. But ByRgT
because B is not Z-torsion, and so, by maximality of ann(B), we obtain ann(ByR) =
ann(B). Thus Qsann(B), and so g = ann(B).

By the H-condition, R/Q embeds in a finite direct sum of copies of B. Let U be a
uniform right ideal of R/Q. There is a finite set of homomorphisms U->B whose kernels
intersect to zero, and hence one of these maps is injective, so that B has a submodule D
isomorphic to U. Since E is indecomposable, DnTfO. It follows that tx{ U)j=0 and
hence that tx(R/Q)=£0.

But tx(R/Q) is an ideal of R/Q and so, since Q is prime, tx(R/Q) must contain a
regular element c. As cy — 0 for some y e J , we conclude that y e Q and By = 0, so that B
is X-torsion. This contradicts the choice of B.

Therefore E is either X-torsion or X-torsion-free, as desired. •
Another case in which localizations of injective modules are injective is that of a

denominator set consisting of regular normalizing elements. (Recall that a normalizing
element in a ring R is any element ceR such that cR = Re.)

Lemma 1.2. Let x be a regular normalizing element in a ring R, let E be an injective
right R-module, and set A = {aeE\ax = 0}. Then E/A is an injective right R-module.

Proof. That A is a submodule of E follows because x is a normalizing element. Since
x is regular, there exist homomorphisms xR-*E sending x to any element of E; by
injectivity, Ex = E.

For any reR, there is a unique element cp(r)eR such that xr=<p(r)x. Observe that q>
is a ring automorphism of R.

Now right multiplication by x defines an abelian group epimorphism E->E with
kernel A. This induces an abelian group isomorphism f:E/A-*E such that fq(b) = bx for
all beE, where q:E-*E/A is the quotient map. For all beE and reR, we compute that

f(q(b)cp(r)) = fq(b<p(r)) = b(p(r)x = bxr = fq(b)r.

Hence, f(cq>{r))=f{c)r for all ceE/A and all reR.
Let J be a right ideal of R and g:J-*E/A an R-module homomorphism. Then cp'l(J)

is a right ideal of R and fgq> is a group homomorphism from (p^1^) to E. For all teJ
and reR, we check that

fg<t>{cp-\t)r)=fg{t<p{r)) = f(g(t)<p(r)) = fg(t)r = fgcp(<p-\t))r,
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so that fgcp is an ^-module homomorphism. Hence, there exists beE such that fg<p(s) = bs
for all se<p~ *(./). Also, b = f(c) for some ceEjA. For all teJ,we have

fg(t) = fg(p(cp - J « ) = bq> - \t) = f(c)cp ~l(t) = Ret),

whence g{t) = ct.
Therefore E/A is injective. •

Theorem 1.3. Let R be a right noetherian ring, let X be a right denominator set of
regular normalizing elements of R, and let E be an injective right R-module. Then
is an injective right R[X~1~\-module.

Proof. As X consists of regular elements, E is X-divisible. Hence, £ [ X - 1 ] = E/A,
where A = tx(E). Set Ax = {aeE\ax=0} for all xeX, and note that A is the union of the
submodules Ax. Given any x,yeX, there exist reR and zeX such that xr—yz, whence
yzeX and AX\J Ay<=, Ayz. Thus A is a directed union of the Ax.

Now E[X~l~\ is isomorphic to a direct limit of the modules E/Ax, each of which is
injective by Lemma 1.2. Since R is right noetherian, Ef^Y"1] is injective as a right R-
module, and therefore also as a right R[X ~ ^-module. •

2. Loss of injectivity

An example of an injective module which has a localization that is not injective is
constructed in this section. As the coefficient ring for this example is a differential
operator ring, we recall some of the terminology associated with such rings.

The term differential ring is used to denote a ring (associative, with unit) equipped
with a specified derivation. For ease of notation, all derivations in this paper will be
denoted 5. A differential ring which is also a domain, or a field, is called a differential
domain, or a differential field. The subring of constants of a differential ring R is the set
{reR\3(r) = 0}, which, as is readily seen, is a subring of R. In case R is a differential
field, its subring of constants is a subfield of R, and so is called the subfield of constants.

The formal linear differential operator ring associated with a differential ring R,
denoted R\_0; $], is a ring which additively is the abelian group of all polynomials over
R in an indeterminate 6, and in which multiplication is induced from the multiplication
in R via the rule 6r = r6 + 8(r), for all reR. If T=R[9;b~\, then R can be viewed as a left
T-module by extending the left /^-module multiplication of RR to a left T-module
multiplication o under which 9°r = d(r) for all reR. (The module TR constructed in this
fashion is isomorphic to T/T6.) Similarly, if S is a differential ring extension of R, then
S can be viewed as a left S[0; <5]-module and hence as a left T-module.

If R is a commutative differential domain, it will be convenient to obtain the injective
hull E(TR) as a T-submodule of a suitable differential field extension of the quotient field
of R. This differential field extension is constructed so as to contain solutions for all
linear differential equations, as follows.

Proposition 2.1. Given a differential field F, there exists a differential field extension F
of F such that every nonhomogeneous linear differential equation over F has a solution in F.
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Proof. It is enough to show that any differential field F t has a differential field
extension CT(FX) such that every nonhomogeneous linear differential equation over Fx

has a solution in CTCFJ), since then the union of the differential fields

can be taken for F. Such a differential field extension a(Ft) can be constructed by
transfinite induction, provided it can be shown that any nonhomogeneous linear
differential equation over a differential field F2 has a solution in a differential field
extension of F 2 .

Hence, consider a differential equation

where a,-,j8eF2
 a n d <*B^0- There is no loss of generality in assuming that an = l, for

otherwise we can multiply throughout (*) by a"1. Set F 3 equal to a rational function
field F2(y0,y1,...,yn-1) where the y} are algebraically independent over F2 , and extend
5 to a derivation of F 3 by the rules S(yj)=yj+i for j=0,...,«—2, while

Then y0 is a solution of (*) in the differential field extension F 3 of F 2 . •
The solvability of nonhomogeneous linear differential equations obtained in Propo-

sition 2.1 says precisely that F is divisible as a left F[0;<5]-module. We shall use this in
the situation where F is the quotient field of a commutative differential domain R. (The
derivation on R extends uniquely to a derivation on F by the quotient rule.) Of course
F is also divisible when viewed as an F[0; (5]-module or as an R[6; (5]-module.

Proposition 2.2. Let R be a commutative differential domain, F its quotient field, and F
as in Proposition 2.1. Set T = R\_Q;b"].

(i) The T-module TF is injective, and the submodule TF is an essential extension of TR.
Consequently, the injective hull of TR can be identified with a T-submodule ofF containing F.

(ii) For any left denominator set X in T, the localization F[X~1] of TF equals F/tx(F).

Proof, (i) Let U be the ring F[9;b"\. Since U is a left principal ideal domain and F is
a divisible [/-module, F is an injective (/-module [10, Theorem 2.8]. Since V is flat as a
right T-module (e.g., [6, Lemma 7]), it follows that F is an injective left T-module [8,
Theorem IV. 12.5]. That TR is essential in TF is clear.

(ii) This is immediate from the divisibility of F as a left T-module. •

Continuing with the notation of Proposition 2.2, let X be a left denominator set in T
such that tx(F) = R. Our first aim is to establish sufficient conditions for the natural map
from F/R to F/tx(F) = F[X~12 to be a split i?-module monomorphism and hence for
F/R to be isomorphic to an J?-module direct summand of E[X~l~\, where E is the
injective hull of TR. (See Proposition 2.7.)
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Recall that a differential ring R is 5-simple provided R is nonzero and the only 5-
ideals (that is, ^-invariant ideals) of R are 0 and R.

Proposition 2.3. Let R be a 5-simple differential ring such that the subring K of
constants of R is a field. Let S be a simple K-algebra, and extend 8 to a derivation on
i?(X)xS so that <5(r®s) = <5(r)®s/or allreR and seS. Then R(R)KS is 5-simple.

Proof. Let / be a nonzero <5-ideal of R (^)K S, and choose a nonzero element

with n minimal. By the minimality of n, the s, are linearly independent over K and each
r,£0.

As R is (5-simple, ^j^o R5j(r])R = R and hence

j = 0 k = 0

for some elements aJk, bjk e R. Set

j = O k = 0

Then yel and

3> = ( l®s 1 ) + (r ' 2®s2)+ ••• +(r'n®sn)

for some elements r'jsR. Note that y=£0 (because the s; are linearly independent). Now

(5(r'2) <g> s2) + • • • + {5(r'n) ® s j = 5(y) e /.

By the minimality of n and the linear independence of s2,.. . ,sB, it follows that <5(rJ) =
and so rje/C, for i = 2,...,n. But then

Thus « = 1 and 3; = 1 (g)s,. By the simplicity of S, we have SslS = S, from which we
conclude that

1 ® 1 e

and hence that I = R(x)KS. •

Corollary 2.4. Let FzF be differential fields with subfields K and K of constants.
Then the multiplication map y. from F (X)K R to F is injective, and hence every K-linearly
independent subset of F is also K-linearly independent.
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Proof. Extend 3 to a derivation on F(g)KK so that 8(x®y) = 8(x)®y for all xeF
and yeK. Since F is <5-simple, Proposition 2.3 shows that F(X)KX is ^-simple. It is easy
to check that fi is a nonzero differential ring homomorphism, and hence that ker(p) is a
proper <5-ideal of F(x)KK. Thus ker(/z) = 0 and ^ is injective. The second conclusion
follows immediately. •

Proposition 2.5. Let FsF be differential fields with subfields K and K of constants.
Let R be a differential subring of F and set R = RK. Then the R-module homomorphism
j:F/R^F/R induced by the inclusion map F—>F is a split monomorphism.

Proof. The map j can be factorized as follows:

F/R -£ (F/R) (X) K - ^ (F/R) (g)K-^> FK/R -U F/R
K K

where / is the isomorphism given by the rule xi->x® 1, the maps g and i are inclusion
maps, and h is induced by the multiplication map p:F (^)KK—>-F. Since g is a split K-
module monomorphism, \®g is a split J?-module monomorphism. It is enough,
therefore, to show that h and i are split 7?-module monomorphisms.

Since FK is an F-subspace of F, there is an F-subspace V^F such that F=FK(B V.
As R £ FK it follows that F/R is an .R-module direct sum

F/R = (FK/R) ®1{V+R)/R]

and hence that i is a split .R-module monomorphism.
Finally, consider h, which we claim is an isomorphism. There is a commutative

diagram with exact rows

0 -* R(g)K -
K

ft' I

0 — R -

where p' is the restriction of p to R(£)KK. Note that p and p' are surjective. By
Corollary 2.4, p is an isomorphism, and hence p' is an isomorphism. Therefore h is an
isomorphism, by the Five-Lemma. •

Lemma 2.6. Let R be a differential ring and X a left denominator set in the ring T=
i?[0;^]. If OeX, then tx(TR) = R.

Proof. Let reR. Since OeX there exists xeX such that xre TO. In addition, xr—(x°r)
lies in TO, whence

and so retx(TR). •
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Proposition 2.7. Let R be a commutative differential domain with quotient field F, and
assume that the subfield K of constants of F is contained in R. Let X be a left denominator
set in the ring T=R[6;5] such that 9eX, and, for all xeX, the K-dimension of the
solution space

{reR\x°r = 0}

of x in R equals the order of x. Then F/R is isomorphic, as an R-module, to a direct
summand of E[X~l~\ where E is the injective hull of TR.

Proof. Let F be a differential field extension of F satisfying the conclusion of
Proposition 2.1, and let K be the subfield of constants of F.

We first show that tx{TF) = RK. That tx{F)^.RK follows from Lemma 2.6. To prove
the reverse inclusion, it is enough to show that for any xeX, the solution space of x in
F is contained in RK. Let the order of x be n. By hypothesis, we can choose a K-basis
{r!,...,rn} for the solution space of x in R. By Corollary 2.4, these rf are ^-linearly
independent. On the other hand, the solution space of x in F has X-dimension at most
n, by [1, Theorem 1]. Thus

{<xeF\x°<x = 0}=Kr1+ ••• + Krn<=RK,

as desired.
Now by Proposition 2.2, F[X-1] = F/tx(F) = F/RK, and E may be identified with a

T-submodule of F containing F. Since E is an injective T-module, it is divisible, whence
EfX""1] = £/**(£)• By Lemma 2.6, Rctx(F). Now the inclusions F^E^F induce R-
module homomorphisms

1] and

whose composition equals the split /^-module monomorphism j of Proposition 2.5. It
follows that p is a split i?-module monomorphism, and so F/R is isomorphic to an R-
module direct summand of E[X~l~\. •

Our next aim is to construct examples of R and X satisfying the hypotheses of
Proposition 2.7. The method which we shall use to construct X is given by the following
result.

Proposition 2.8. Let T be a ring, c a regular element of T, and G a group of
automorphisms of T. Let X be the multiplicatively closed subset of T generated by the set
{g(c)\geG}. Then X is a left denominator set in T if and only if

For each teT there exists xeX such that xteTc. (*)

Proof. Note that X is closed under the action of G, and that X consists of regular
elements. In particular, the reversibility condition is trivially satisfied, and so only the
Ore condition is of concern.

That (*) is necessary is clear since ceX. Conversely, suppose that (*) holds. We
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prove by induction that X satisfies the left Ore condition; namely, given teT and
gu...,gneG there exist xneX and tneT such that

xnt = tngn(c)gn. i(c). ..g2(c)g1(c).

For the case « = 1, condition (*) provides us with elements xeX and ueT such that
xgi1(t) = uc. Thus ^i(x)t=g1(u)g1(c) and hence xlt = tlgl(c) where x1=gl(x)eX and
t1=g1(u)eT. For the inductive step, let n>l and suppose that there exist xn-ieX and
tB_i6T satisfying

By the case n = l there exist yeX and tneT such that ytn-i = tngn(c). Therefore, setting
xn = yxn-leX, we obtain

Xnt = yxn-1t = tngn(c)gn_ i(c) ...g2(c)gi(c),

completing the inductive step. •
We shall apply Proposition 2.8 in the case that T is a differential operator ring and

c = 9. In order to see that X is a right as well as left denominator set, we use an
involution to reverse sides in T Provided T=.R[0;<5] for a commutative differential ring
R, there is a natural involution * on T such that 0*= —9 and r* = r for all reR.

Proposition 2.9. Let R be a commutative differential ring, A an additive group of
constants of R, and T the ring R[0;d~]. Let X be the multiplicatively closed subset of T
generated by the set {6 + a\(xeA}. Then the following conditions are equivalent:

(i) X is a left denominator set in T.
(ii) X is a right denominator set in T.
(iii) For each reR there exists xeX such that xor = 0.

Proof, (i)o(ii): Let Y be the multiplicatively closed set {±x|xeA"}. As A is an
additive subgroup of R, we see that

Y=Y* = {±z\zeX*}.

Now X is a left denominator set if and only if Y= Y* is a left denominator set, if and
only if X* is a left denominator set, if and only if X is a right denominator set.

(i)o(iii): For each <xeA there is an automorphism gx of T such that ga(0) = 0 + a and
gjr) = r for all reR. The set X is the multiplicatively closed subset of T generated by
{g(6)\geG} where G is the group {ga|ae/4} of automorphisms of T. By Proposition 2.8,
X is a left denominator set if and only if

For each te T there exists xeX such that xteTO. (*)

Given teT and xeX, write t = ro + r16+ ••• +rn6" for some r^R and observe that

xt—(x°ro)eT9.
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Hence, xteTd for some xeX if and only if x<>ro = 0 for some xeX. Therefore (*) and
(iii) are equivalent. •

Lemma 2.10. Let R be a commutative differential domain with quotient field F. If R is
8-simple then all nonzero constants of F are units of R.

Proof. Let a be a nonzero constant of F, and let

I = {reR\areR}.

If re I, then <xd(r) = 8{ccr) e R and so 8(r)el. Hence, / is a <5-ideal of R, and we note that
/ is nonzero. It follows, by the ̂ -simplicity of R, that I = R, whence a e R. Now xR is a
nonzero 8-deal of R, and so <xR = R. Thus a must be a unit of R. •

Proposition 2.11. Let K be afield of characteristic zero, let n be a positive integer, and
assume that K contains n elements a.1,...,ixn that are Q-linearly independent. Let A denote
the additive group Ztx1-\ +2a n . Let F be a rational function field K(xo,xlt...,xn) with
the xt algebraically independent over K, and let 5 be the K-linear derivation on F such that
<5(xo) = l and <5(x.) = a,X; for i>0. Let R be the differential subring KFjco.x*1,.. . ,**1]
of F, and let X be the multiplicatively closed subset of the ring T=R[0;8~\ generated by
the set {8 + a\aeA}.

(i) R is 8-simple.
(ii) The subfield of constants of F is K.

(iii) X is a left and right denominator set in T.
(iv) For all xeX, the K-dimension of the solution space of x in R equals the order of x.

Proof, (i) The differential subring S = K[x1
± 1 , . . . ,xn

± 1] of R is (5-simple by [9,
Theorem 2.1]. Note that an element seS cannot satisfy 8(s)eK unless seK, in which
case <5(s) = 0.

Let / be a nonzero (5-ideal in R = S[x0], and let m be the minimal degree in x0 of
nonzero elements of /. The set

J = {smeS|smxJ + s m _ 1 x^- 1 + ••• +soel for some s m _ l J . . . , s o eS}

is a nonzero (5-ideal of S, and so J = S. Hence, there exist elements sm_1 ; . . . , s 0 in S such
that the element

y = x£ + s m _ 1 x ;T 1 + ••• +s 1 x 0 + s0

lies in /. But the element

8(y) = (m + 8(sm_ x))XQ " l + [terms of degree ^ m — 2 in x0]

also lies in /, whence <5(y) = 0, by the minimality of m. As a result, 5 (s m _J= — m, and so
m = 0. Thus / n S f O , and therefore, since S is 5-simple, I nS = S and I = R.
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(ii) Any unit u of R has the form

u = Pxfl)xf2)...x™{n)

for some nonzero ft e K and some integers m(i), and

d(u) = [m{\)a.y +m(2)(x2 + ••• + m ( n ) < x j u .

If u$K, then at least one m(i)^0 and S(u)j=O by the Q-linear independence of the a;.
Hence, (ii) follows from (i) and Lemma 2.10.

(iii) By Proposition 2.9 it is enough to show that for each reR there exists zeX such
that z o r = 0. First suppose that

, Ym(0)vm(l) Ym(n)

r — x 0 x 1 ...xn

for some integers m(i) with m(0) ̂  0. If

••• -m(n)aB,
then y " ( 0 | + 1 6 l and ym(0) + 1 o r = 0 . Since R is spanned over K by monomials of the
above form, and since X is commutative, the desired condition follows,

(iv) Let x e X be of order k. Then x can be written in the form

where the /?,• are distinct elements of A, the m(j) are positive integers, and
There are integers p(j,i), for j = 1, . . . , t and i=l,...,n, such that

for each ;. Set yj=x^-^xZ0'2)• • • x%u'n) for j=l,...,t. It is a routine calculation to check
that the set

is a /C-linearly independent set of k elements of the solution space of x in R. By
[1, Theorem 1], this solution space has dimension exactly k. •

We are now in a position to construct our example.

Theorem 2.12. Let n be a positive integer. There exist a simple noetherian domain T,
a left and right denominator set X in T, and an injective left T-module E such that

and inj.dim.(£[X"1]) = n. Moreover, E is the injective hull of a simple left T-module.
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Proof. Choose a field K of characteristic zero which has Q-dimension at least n, and
let R,T,X be as in Proposition 2.11. Then R is a ^-simple, commutative, noetherian,
regular, differential domain of Krull and global dimension n + 1. By [2, Theorem 6.3],
RR has injective dimension n + 1. If F is the quotient field of R, then since RF is
injective, R(F/R) must have injective dimension n.

Note from the <5-simplicity of R that R is a simple left T-module. As R is a ^-simple
noetherian Q-algebra and <5=/=0, the domain T is a simple noetherian ring [4,
Proposition 3.1, Theorem 3.2]. Consequently, T has Krull and global dimension n+1,
by [7, Theorems 2.6 and 3.2].

Let £ be the injective hull of TR. By Propositions 2.11 and 2.7, F/R is isomorphic, as
an /^-module, to a direct summand of E[X~l~\. Hence,

inj.dim.(K£[X-!]) ^ inj.dim.(R(F/R)) = n.

Since T is flat as a right K-module, we conclude using [8, Theorem IV. 12.5] that

Recall that ElX~^^E/tx(E). If ^ [ X " 1 ] had injective dimension n+1, then tx(E)
would have injective dimension n + 2, which is impossible. Therefore inj.dim.(r£[X~ *]) = n.
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