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SUMMARY

Understanding age-specific differences in infection rates can be important in predicting the

magnitude of and mortality in outbreaks and targeting age groups for vaccination programmes.

Standard methods to estimate age-specific rates assume that the age-specific force of infection is

constant in time. However, this assumption may easily be violated in the face of a highly variable

outbreak history, as recently observed for acute immunizing infections like measles, in strongly

seasonal settings. Here we investigate the biases that result from ignoring such fluctuations in

incidence and present a correction based on the epidemic history. We apply the method to data

from a measles outbreak in Niamey, Niger and show that, despite a bimodal age distribution of

cases, the estimated age-specific force of infection is unimodal and concentrated in young children

(<5 years) consistent with previous analyses of age-specific rates in the region.
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INTRODUCTION

The global reduction in the burden of measles

through vaccination is one of the great milestones of

public health [1, 2]. However, despite an estimated

60% reduction in measles mortality worldwide since

1999, measles remains a leading cause of vaccine-

preventable death in children aged <5 years in sub-

Saharan Africa [2]. Measles is classically an infection

of children as infection conveys lifelong immunity

preventing re-infection in older individuals. In the

pre-vaccine era, measles was primarily concentrated

in school-aged children in the industrialized world [3].

Developing countries tend to be characterized by an

even lower mean age at infection, which is important

as disease severity and case-fatality rates are higher in

younger children [4–6].

Understanding age-specific differences in infection

rates is important in predicting the magnitude and

mortality of outbreaks and identifying core age groups

for vaccination programmes. The age-specific force of

infection (FOI), defined as the age-specific rate at

which susceptible individuals contract infection, can

be studied mathematically using the catalytic model

[7, 8]. The catalytic model defines how to discount the

observed age distribution of cases by the predicted

accumulation of immunity with age. The standard
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catalytic model assumes that the age-specific FOI is

constant through time, corresponding to the temporal

equilibrium of dynamic epidemiological models.

However, this assumption, may often be violated in

the face of cyclical variation in incidence [5, 7–9] as is

common for many acute, immunizing infections, like

measles, that tend to show annual or multi-annual

cycles [10–13].

At the extreme of outbreak irregularity, Ferrari

et al. [13] recently showed that measles dynamics in

Niamey, the capital of Niger, are characterized by

frequent local extinction and episodic outbreaks

that can vary over many orders of magnitude. These

patterns result from the interplay between strong

seasonality in transmission rates and very high birth

rates. Such patterns of outbreaks violate the key as-

sumption of the catalytic model. Catalytic models

have generally not been assessed for the impact of

fluctuating dynamics; although pulses of immunity

through mass vaccination have been studied [14]. As

an exception, Whitaker & Farrington [9], found

that seasonal fluctuations in incidence had minimal

impact on estimates of age-specific FOI; however,

it is not clear how these important findings extend to

the highly irregular multi-annual outbreak dynamics

in Niamey. Here we address this issue, presenting

an analysis of the age-specific FOI in Niamey from

incidence data collected during the outbreak in

2003–2004. We describe the biases introduced by the

episodic pattern of outbreaks and present a correction

to the catalytic model that allows estimation of the

age-specific FOI under episodic or periodic outbreak

dynamics.

METHODS

The catalytic model estimates the age-specific FOI of

immunizing pathogens by recognizing that the prob-

ability of infection at any given age, a, is the joint

probability of infection at age a and the probability of

not having been infected in the interval 0 to a – 1.

Note that while we consider discrete age groups cor-

responding to the relevant age-specific heterogeneities

(and data reporting), the extension to continuous age

structure is trivial. IfW(a) is the age-specific FOI, then

the probability of infection at age a, P(a), is :

P(a)= exp x
Xax1

t=0

W(t)

 !
1x exp xW(a)ð Þð Þ, (1)

for age groups of equal length.

Estimating the absolute age-specific FOIW(a) from

age-stratified case-notification data is possible only

if the number of susceptibles (i.e. the denominator)

is known [7, 8, 15]. However, in the absence of data

on the susceptible population, estimates of the FOI

can be made using cumulative seroprevalence as a

measure of ‘those exposed’ [15]. We show below,

using simulated data, that we can extend this ap-

proach to estimate the relative age-specific FOI, up to

an unknown constant by using the total case reports

as the denominator (see Results – Simulated data

section below). Assuming that the incidence of infec-

tion is constant through time and the age distribution

is uniform, and denoting the number of cases in age

group a by Ia we can then model the vector I as a draw

from a multinomial distribution with probability

vector h that represents a scaled version of the prob-

ability of infection-at-age according to:

h(a)=
P(a)Pa
t=1 P(t)

: (2)

If the age distribution is not uniform within the

age-range relevant for the infection in question, as is

the case in many developing countries because of

the high childhood mortality, we can further to re-

scale h by the age pyramid (subject to the constraint

Sh(a)=1) to reflect the lower probability of observing

cases in older age groups because the denominator

decreases over and above the decrease due to the

accumulation of immunity [14]. Combining models

(1) and (2) with a multinomial likelihood, we can es-

timate the relative age specific FOI from case-at-age

data using standard maximum-likelihood or Bayesian

methods.

As discussed above, the catalytic model assumes

that the probability of infection at a particular age is

constant over time. However,W(a, t) can in general be

written as

W(a, t)=
Z A

a0=1
b(a, a0)I(a0, t)da0,

where b(a, ak) is the transmission rate from age group

a to ak and I(ak, t) is the number of infected in-

dividuals, of age ak, at time t [9], which makes explicit

the dependence of the FOI on the time-specific inci-

dence of infection. The standard catalytic model re-

quires that the incidence of infection through time is

roughly constant at some average incidence, �II. In the

face of the variable incidence that results from cyclic

or erratic outbreaks, this assumption will be violated.
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While this is a strong assumption, the consequences of

its violation may not be too severe if the incidence-

at-age data are collected over a long period relative to

the frequency of the outbreaks [9]. However, as we

show below, severe biases can result if the data are

cross-sectional or collected during any given major

outbreak.

In general, long-term disease incidence data are re-

ported as the total over all age groups (see the ex-

ample for Niamey below). As such, we make the

simplifying assumption that W(a, t) can be written as

W(a, t)=b(a)I(t),

where, b(a) is the rate of infection of age group a from

all other age groups, and I(t) is the total incidence at

time t. This is equivalent to assuming the equilibrium

age distribution of infected individuals through time.

While this assumption ignores potential variation in

the age distribution of disease incidence through time

(see below), which is often unknown, it represents an

improvement over the classic methods, as we show

below, by accounting for time-varying incidence,

which often is known.

The irregular, episodic outbreaks that result from

the strong seasonal forcing and high birth rates result

in strong violations of the assumption of time-in-

variance of the age-specific FOI. For example, a 4-

year-old child in an epidemic year will experience a

much higher probability of infection than a 4-year-old

child in a non-epidemic year. To correct for this, we

need to weight the probability of infection at age a in

model (1) by the incidence of infection at age a. To

make the assumption of constant incidence explicit,

we re-write model (1) as:

P(a)= exp x
Xax1

t=0

b(t)�II

 !
1x exp xb(a)�IIð Þð Þ, (3)

Accounting for the variable epidemic history, we can

rewrite model (3) according to:

P(a)= exp x
Xax1

t=0

b(t)I(txa)

 !
1x exp xb(a)I(0)ð Þð Þ,

(4)

where I(txa) indicates the incidence a time steps

prior to that of the time in question. Thus, the age-

specific probability of being susceptible just prior to

the time of the sample [the first term in model (4)] is

the age-specific transmission rate weighted by the

history of exposure of each age group. For our

modified method, we re-write model (4) as,

P(a)=exp x
Xax1

t=0

I(txa)
�II

b(t)�II

 !
1xexp x

I(0)
�II

b(a)�II

� �� �

=exp x
Xax1

t=0

I(txa)
�II

W(t)

 !
1xexp x

I(0)
�II

W(a)

� �� �

9>>>>>=
>>>>>;
(5)

which is the original catalytic model (1) corrected by

the scaled epidemic history, I(t)/�II. Note that as inci-

dence becomes less variable model (5) collapses to the

original catalytic model (1).

DATA

The 2003–2004 outbreak of measles in Niamey, Niger

Niamey is a city of about 800 000 people in south-

western Niger. Measles is regionally endemic in Niger,

but dynamics within Niamey are characterized by

outbreaks during the dry season (November–June)

sometimes followed by local extinction [13]. Because

of the episodic outbreaks, incidence can vary by sev-

eral orders of magnitude from year to year (e.g. there

were 85 cases reported in 1992 vs. 12302 cases in

1995), with deep troughs and long gaps between epi-

demics (Fig. 1). The actual probability of infection-

at-age can therefore vary greatly from year to year.

A large outbreak of measles in Niamey occurred

from November 2003 to July 2004. Case records

from 11073 individuals reported to health centres

‘Centres de Santé Intégrés ’ (CSI) and hospitals were

collected retrospectively (from 1 November 2003 to

20 April 2004) and prospectively (from 21 April to

6 July 2004) by Epicentre in conjunction with the
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Fig. 1. Monthly incidence of measles cases in Niamey,
Niger, 1986–2005.
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Ministry of Health of Niger, the World Health

Organization, and Médecins Sans Frontières. The

WHO clinical case definition was used. At the begin-

ning of the outbreak, ten cases were laboratory con-

firmed through detection of measles-specific IgM

antibodies by the Ministry of Health. Of these

records, the patient’s age (in months), sex, date of

symptom onset, vaccination status, and quartier

(neighbourhood) of origin were recorded for 7689

cases. In addition to the detailed data from the

2003–2004 outbreak, the Ministry of Health has

monitored monthly measles incidence for the city of

Niamey since 1986 (Fig. 1).

While the ages of patients were recorded in

1-month intervals during the 2003–2004 outbreak, we

aggregated the data into in 6-month age groups from

ages 0 to 20 years to account for uncertainty in true

ages ; the raw data had disproportionately many chil-

dren reported to be of age exactly 12, 24, 36, 48, and

60 months. For our analyses, we randomly assigned

these individuals into the age group above or below

with an even probability. The population age struc-

ture was assumed to be pyramidal to account for

high rates of mortality. The size of age group a, N(a),

was assumed to follow the relationship N(a)=N(0)

exp(–0.0045a), for a=0, …, 20, which agrees well

with the published age pyramid for Niger [16].

To correct the FOI estimates according to model

(3) we aggregated the monthly 1986–2004 incidence

time-series into 6-month time steps. Thus, an indi-

vidual who was aged between 4 and 4.5 years during

the 2003–2004 outbreak would have experienced an

epidemic history of 149 cases during the 0–0.5 year

age group, eight cases during the 0.5–1 year age

group, 195 cases during the 1–1.5 years age group, etc.

(see Fig. 1).

We fitted the relative age-specific FOI as a piece-

wise constant function (i.e. separate estimates for each

age group with no explicit parametric form). We es-

timated the parameters using a Bayesian framework.

The joint posterior distribution of the age-specific

FOI was calculated using a Markov chain Monte

Carlo implemented in the statistical software package

R [17]. We ran the chain for 50 000 iterations after a

burn-in period of 10 000 iterations and sampled every

100th iteration to avoid autocorrelation in the chain.

We chose non-informative gamma priors for the FOI

in each age group. Point estimates are given as the

mean of the posterior distribution and 95% credible

intervals are the 2.5th and 97.5th percentiles of the

posterior distribution.

Simulation

To evaluate if and how the estimates of age-specific

FOI from the standard catalytic model may be biased

because of episodic outbreaks, we generated data

from a stochastic, age-structured, seasonally forced

dynamic SIR-type model. The birth rate was taken to

be to 50.71/1000 as reported for Niamey [16]. We

chose sinusoidal forcing on the seasonal transmission

rate according to: b(t)=b0(1+b1 cos(2pt/365)). We

set b0=5.5r10x5, the mean transmission rate for

Niamey [13], and set b1=0.8, which produces episodic

dynamics in the chaotic regime, consistent with that

observed for Niamey from 1986 to 2004 [13]. The

population was structured into 41 age groups re-

presenting 6-month intervals from 0–20 years of age

plus an additional category representing individuals

>20 years of age. We simulated the model in discrete,

daily time steps. The number of new infected cases in

age group a at time step t, Ya,t, was assumed to be a

Poisson random variable with expected value

E[Ya, t]=btx1BaItx1Sa, tx1,

where Itx1 is an ar1 vector representing the number

of infected individuals in each age group at time t – 1

and Ba is the ath row of the mixing matrix indicating

the relative mixing rates in age groups [14, 18]. We

chose B to have the structure

B=

B1 B2 � � � B21

B2 B2 � � � B21

..

. ..
. . .

.
B21

B21 B21 B21 B21

;

where Bi is proportional to the relative age-specific

FOI for age group i estimated for the 2003–2004

Niamey outbreak (see below). The form of the mixing

matrix implies that mixing is non-assortative and in-

dividuals mix equally with all younger age groups,

as might be the case in settings such as Niger where

younger siblings are minded by older siblings in ex-

tended family groups [19]. Sensitivity of the results

to the explicit form of the mixing matrix is small

for reasonable structures (see Supplementary Fig. 1,

available in the online version of the paper).

We simulated epidemic dynamics for 30 years and

applied models (3) and (5) to estimate the relative age-

specific FOI from the epidemic in the 30th year pro-

vided the number of cases in that year was >300. We

replicated this for 200 simulated time-series with and

without using the 20-year epidemic history to correct

the estimate.
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RESULTS

Simulated data: bias due to irregular epidemic history

Both the standard catalytic approach and the cor-

rected model work well for regular annual and bi-

ennial dynamics with small epidemic peaks (see

Supplementary Figs 2 and 3, available online). For

more strongly seasonal dynamics, which give erratic

outbreaks, the two methods begin to diverge. Both

methods give similar mean estimates of the relative

age-specific FOI that appear unbiased for the true

FOI (Fig. 2; outbreaks >300 cases), consistent with

the analysis of Whitaker & Farrington [9]. However,

for more erratic dynamics the estimates of the un-

corrected model can be muchmore variable, especially

in the older age groups (Fig. 2). This variability arises

from the bias in the standard catalytic model when

applied to large outbreaks. The episodic dynamics

similar to those observed in Niamey can produce

outbreaks ranging over several orders of magnitude.

When applied to these large outbreaks (of the size

of the Niamey 2003–2004 outbreak: y11000 re-

ported cases), the standard catalytic model has a

strong positive bias in the age-specific FOI for older
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Fig. 2.Distribution of estimates of relative age-specific force
of infection (FOI) for simulated episodic time-series. For

each simulation, the FOI is scaled to have a maximum at 1
for presentation. Shaded regions give the central 50% of
estimates for outbreaks of size >300 (solid lines, n=416

epidemics), >10 000 (dashed lines, n=99), and >15 000
(dotted lines, n=37). The solid line indicates true relative
age-specific FOI for the simulation. (a) Estimates assuming

constant incidence history, (b) estimates corrected using the
epidemic history.
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age groups. Further, the age-at-peak FOI is over-

estimated for large outbreaks. The magnitude of the

bias scales with the size of the outbreak; a slight

positive bias for outbreaks >10 000 cases and a

stronger bias with the appearance of a second mode at

y15 years for outbreaks >15000 cases (Fig. 2a).

Thus, ignoring the time-varying FOI due to variable

incidence leads to an overestimate of the transmission

in older age group individuals for case-at-age data

collected during large outbreaks (as is the case for the

Niamey 2003–2004 outbreak data below). In contrast,

the corrected model more accurately recovers the

shape of the age-specific FOI for both small and large

outbreaks (Fig. 2b). In particular, the corrected

model is not overtly biased for older age groups.

However, while the age-of-peak FOI is well estimated

for outbreaks up to 15000 cases, there is a slight

negative bias in the peak age for the largest epidemics

(Fig. 2b).

The source of the bias in the older age groups, when

using the standard catalytic model, can be understood

by considering the changing age distribution of
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Fig. 5. Age distribution of measles cases in health centre districts in the 2003–2004 outbreak. Inset gives age distribution for
all of Niamey.
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susceptibles through time (Fig. 3). In the intervals

between major outbreaks, susceptibles accumulate in

the later age groups due to the lower overall FOI,

despite their being in relatively high-risk age groups.

The susceptibles that are outside the high-risk age

groups experience a lower overall age-specific FOI

and are thus less likely to become infected in small to

moderate epidemics. As such, the older age groups

become relatively over-represented in the large epi-

demics compared to the situation in which incidence is

constant across years.

Real data: the 2003–2004 outbreak in Niamey

The age distribution of cases during the 2003–2004

outbreak in Niamey was strongly right skewed

(Fig. 4) : the mean and median ages are 4.31 and 2.25

years, respectively. Despite the strong concentration

of cases in young children, the tail of the distribution

is heavy, with a second minor mode at around age 15

years. While small in number, the incidence in older

age groups is surprising as these individuals would be

expected to have contracted measles earlier in life and

thus be immune.

The age distribution of cases in males and females

did not differ (Fig. 4). There was no spatial pattern

in the age distribution of cases within the city (Fig. 5).

Thus, the long tail of the age distribution does not

appear to be associated with gender-specific or

geographic heterogeneities.

We fitted the relative age-specific FOI to the

2003–2004 incidence data using the classic catalytic

model (3), and the corrected model (4). Fitting the

FOI using the classic model suggests that there is a

bimodal age-specific FOI with a peak at 2.5–3 years

followed by an increase from ages 10–20 years (Fig. 6).

Our corrected model that accounts for the epidemic

history yields a unimodal estimate with a peak at age

2.5–3 years that subsequently declines more or less

monotonically with age (Fig. 6).

DISCUSSION

Understanding the age-specific dynamics of disease

transmission is important for calibrating models [20,

21] and effectively planning age-targeted vaccination

strategies [22]. In a very important contribution,

Whitaker & Farrington [9] showed that, despite the

implicit assumption of endemic equilibrium, regular

cyclic epidemic dynamics do not strongly bias the

standard catalyticmodel. In areas with strong seasonal

variation in transmission and high birth rates,

regular epidemic cycles can break down and give rise

to erratic outbreaks that vary strongly in magnitude

[13]. Here we have shown that erratic outbreak dy-

namics lead to systematic biases in the estimation of

the age-specific FOI for large outbreaks when using

the standard catalytic model, resulting in an overesti-

mate of the role of older individuals. Further, we have

presented a method to correct the age-specific FOI

estimates using the previous epidemic history.

Measles outbreaks in Niamey can vary greatly from

year to year as a consequence of strong seasonal forc-

ing, high birth rates, and stochastic re-introduction

following local extinction [13]. In the face of this varia-

bility, the classical methods to analyse age-specific

incidence data lead to biased estimates of the age-

specific FOI. Indeed, the classic, uncorrected catalytic

model predicts an unusually high FOI in the 10–20

years age groups. Measles is classically thought of

as a childhood disease, and an increasing FOI in

older age groups is inconsistent with prior obser-

vations, at low to medium vaccination rates, in both

industrialized [3, 15] and developing countries [4–6].

Our modified method that accounts for the epidemic

history shows that the observed age distribution of

measles cases in the 2003–2004 outbreak is consistent
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with high FOI in young children, and is consistent

with childhood transmission as observed elsewhere

[4–6]. The apparently high FOI in older age groups

that was estimated by the standard model can be ex-

plained parsimoniously as a spurious result of the

erratic but recurrent epidemics.

There are alternative explanations for the observed

age distribution of cases in Niamey. The high inci-

dence of older cases could be the result of higher re-

porting rates in older age groups. However, measles

tends to be more severe in younger children [23, 24] ;

and previous studies of the age-specific reporting rate

have suggested that reporting in older age groups

tends to be lower rather than higher [6]. Alternatively,

the older cases may represent immigrants from re-

gions with relatively low measles exposure, or in-

creased exposure in older age groups due to childcare

(of offspring or siblings). However, both of these

hypotheses, require the supposition of mechanisms

for which there is no empirical support. Further, the

observed similarity of the male and female age dis-

tributions does not suggest any sex bias in the age

distribution as might be expected if childcare or mi-

gration were strong drivers of the observed pattern.

Thus, the most parsimonious explanation of the ob-

served age distribution of cases is the interaction

between erratic dynamics and age-structured trans-

mission.

While estimating the absolute age-specific FOI is

ideal for developing age-structured models of epi-

demic dynamics, it is often difficult in the absence of

data about the size of the susceptible population. The

methods we have presented illustrate that we can use

case-at-age data to estimate the relative age-specific

FOI, which allows us to understand the relative con-

tributions of age groups to epidemic dynamics and

inform age-specific policy recommendations.

The public health consequence of our calculations

is that age-targeted vaccination programmes in

Niamey should continue to focus on young children,

where the bulk of the FOI is concentrated. It further

argues strongly for the continuation of follow-up

strategies, such as catch-up campaigns, to reduce the

accumulation of susceptible individuals in older age

groups during the intervals between outbreaks. These

individuals may themselves reside in relatively low-

risk age groups, yet they may provide fuel to sustain

the chains of transmission during the major out-

breaks. Further, the accumulation of older-aged

women without prior exposure to measles means more

children will be born without maternal immunity to

measles. In the 2003–2004 Niamey outbreak 206 cases

(2.6%) were aged <6 months and 850 cases (11.1%)

were aged <9 months. Given the high case fatality in

very young children [22], the reduction of maternal

immunity due to the accumulation of susceptible

women in older age groups could have disproportion-

ate effects on the overall burden of measles mortality

in the future.

A corollary to these observations is the insight that

the age structure of cases should be expected to be

constant across outbreaks of different magnitudes.

This is particularly important in highly seasonal areas

like Niger [13], but may become increasingly relevant

as vaccine uptake increases in less seasonally forced

areas and outbreaks become less regular [25]. As a

result, calculations of the burden of measles mortality

and morbidity that rely on the assumption of static

age distributions (e.g. [2, 26]) may result in biased

estimates of measles burden.
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