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1. Introduction. Banach spaces whose duals possess the Radon-Nikodym property
have been studied extensively in the past (cf. [5]). It has been shown recently in [4] that a
C*-algebra is scattered if and only if its Banach dual possesses the Radon-Nikodym
property. This result extends the well-known result of Pe/czynski and Semandini [8] that
a compact Hausdorff space Cl is dispersed if and only if C(ft)* has the Radon-Nikodym
property. The purpose of this note is to give a transparent proof of a more general result
for Jordan algebras which unifies the aforementioned results. We prove that the dual of a
JB-algebra A possesses the Radon-Nikodym property if and only if the state space of A
is the cr-convex hull of its pure states. We also consider the projective tensor products of
the duals of JB-algebras in this context.

We first recall that a JB-algebra A is a real Jordan algebra with identity e which is
also a Banach space, and where the Jordan product and the norm are related as follows:

Ml = IMP,

A JBW-afgebra is a JB-algebra which is a Banach dual space, and the enveloping
JBW-a/gebra of a JB-algebra A is the bidual A** with the Arens product. We note that
the self-adjoint part of a C*-algebra is a JB-algebra and that the self-adjoint part of a von
Neumann algebra is a JBW-algebra.

Let K be the state space of a JB-algebra A and let dK be the set of pure states. Then,
as in [3], for each p e dK, one can associate a dense representation

<t>p:A^c{p)° A**

with (l)p(a) = c(p) ° a for each a in A, where c{p) denotes the central support of p.
Moreover there is a unique weakly continuous extension

with (£P(A**) = c(p) ° A** and ker <£p = (e-c(p)) ° A**. If p and q are two pure states,
then either c{p) = c{q) or c(p) ° c(q) = 0; in the latter case we say that p and q are disjoint.

A Banach space X is said to possess the Radon-Nikodym property if for any finite
measure space (Cl, 2, ju,) and any JUL-continuous vector measure L: 2 —* X of bounded total
variation, there exists a Bochner integrable function g:O—»X such that L(E) = JE gd/x
for all E in 2. Lindenstrauss [7] has proved that if X has the Radon-Nikodym property,
then it has the Krein-Milman property; that is, every (norm) closed bounded convex
subset of X is the (norm) closed convex hull of its extreme points. The converse is also
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true if X is a dual space. We note that subspaces of a Banach space with the Radon-
Nikodym property also possess this property.

2. The main results. A JBW-algebra is called a factor if its centre is the scalar
multiples of the identity e. A JBW-factor is of type I if it contains a (nonzero) minimal
idempotent.

We noted in [4] that the Banach space T(H) of trace-class operators on a Hilbert
space H has the Radon-Nikodym property. Actually we have the following more general
result.

PROPOSITION 1. Let M be a type I JBW-/actor. Then its predual M* has the Radon-
Nikodym property.

Proof. Since reflexive spaces have the Radon-Nikodym property (cf. [5, p. 76]), we
need only consider the case in which M is not isomorphic to a spin factor or the
exceptional algebra Mf. Then, as in [3; Theorem 3.1], we may assume that M is an
irreducible JW-algebra contained in the full operator algebra B(H) on some (complex)
Hilbert space H. Let T(H)sa denote the self-adjoint trace-class operators. If M is the
self-adjoint part B(H)sa of B(H), then M#= T(H)sa has the Radon-Nikodym property.
Otherwise, by [3, Theorem 3.1], there exists a *-antiautomorphism <J>: B(H) —* B(H) such
that M = {xeB(f/)M:$(x) = x} and <I>2 is the identity mapping I. Further, <J> is im-
plemented by a conjugate linear isometry j:H—>H with <$>(x) = j~xx*j, for each x in
B(H). As usual, we identify the dual T(H)* with B(H) via the duality ((, x)e
T(H)xB(H)-»Tr(xf) where Tr is the canonical trace. Let N = {te T(H)sa:<$>(t) = t}. We
show that M is isometric to the dual space N* via the mapping

xeM-»Jc*eN*:x*(O = Tr(xO (teN).

First |Tr(xO|^||x||-Tr(|(|) implies that ||x*||=s||x||. The reverse inequality follows from the
fact that

||x|| = sup {|Tr(xO|: te T(H)sa, Tr(|r|)«1}

and if teT(H)sa with Tr(|r|)=£l, then \(t + <&(t))eN with

Tr(x(i(t + 4>(f)))) = 5 Tr(xt) + \ Tr(x<&(0) = \ Tr(xf) + Tr(*(tx)) = Tr(xt).

Also, the mapping is onto N*. Indeed, if fe N* and 4> e T(H)*a extends /, then there

exists xeB(H)sa such that <^(0 = Tr(xt) for all t in T{H). Let y =i(x + $>(x)). Then yeM

and for teN, we have O(r) = f and as before y*(f) = Tr(yf) = Tr(!(x + <&(x))O = Tr(xf) =

4>(t) = f(t). So /=y* .
Hence M is isometric to N* and by the uniqueness of the predual, M* is isometric to

N which has the Radon-Nikodym property since it is a subspace of T(H).

PROPOSITION 2. Let M be a JBW-algebra. Then its predual M* has the Radon-
Nikodym property if and only if M is a direct sum of type I JBW-/ac(ors.

Proof. The sufficiency follows from the above proposition. We prove the necessity.
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Let K<=M* be the normal state space of M. Then the Krein-Milman property implies
that K is the (norm) closed convex hull of the pure states dK. For each p e dK, consider
the dense representation

where c(p)eM and <£P(M) = c{p) ° M is a type I JBW-factor (cf. [1, §5]). We have
Pi ker<£={0} for if a e f\ ker$p, then c(p)°a = O for all p in dK and hence

a = 0 as K is the norm-closed convex hull of dK. Now ker <j>p = (e - c(p)) ° M for each
pedK gives A (e-c(p)) = 0 and so e = V c(p). Therefore M=S©(c(p) ° M) where

pedK pedK

the sum is taken over all the mutually disjoint pure normal states.
Incidentally, we have only used the Krein-Milman property in the above proof;

hence the Krein-Milman property and the Radon-Nikodym property are equivalent in
the preduals of JBW-algebras.

THEOREM 3. Let A be a JB-algebra with state space K. Then the following conditions
are equivalent.

(i) K is the a-convex hull a(dK) of the pure states; that is,
r oo co "\

= \ X KK: I K = 1, K >0, kn edK\
^n = \ n=l J

with norm-convergent infinite sum.
(ii) A* has the Radon-Nikodym property.

(iii) A** is a direct sum of type I JBW-factors.

Proof. (i)=>(iii). As in the proof of Proposition 2, we have A** = X®(c(p) ° A**)
where the sum is taken over all the mutually disjoint pure states of A.

(iii) ̂ > (ii). Proposition 2.
(ii) ̂ > (i). By the Krein-Milman property, the state space K of A is the norm-closed

convex hull of its pure states dK. As the o--convex hull a(dK) is a split face of K [2;
Corollary 5.8], it is norm-closed and it follows that K = cr(dK).

REMARKS 1. The above result does not hold for arbitrary Banach spaces. For
instance, every positive functional of U is the sum of a sequence of pure functionals while
l*= L does not have the Radon-Nikodym property [5, p. 219].

2. A compact Hausdorff space O is dispersed [8] if and only if every Radon measure
on Cl is atomic. Jensen has extended this notion to C*-algebras in [10] where a C*-algebra
is called scattered if every positive functional is atomic. Moreover, the atomic functionals
are shown to be the sums of sequences of pure functions [10, Theorem 1.2]. Theorem 3
relates this notion to the Radon-Nikodym property in the wider context of Jordan
algebras.

3. Tensor products. Let X and Y be Banach spaces with the Radon-Nikodym
property. It is an open problem whether the projective tensor product X® Y also has this
property (cf. [5, p. 258]). We prove here a special case for the dual spaces of JB-algebras.
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Let H and K be Hilbert spaces. We first recall that T(H) can be identified with the
projective tensor product H<S>CH* [9, Theorem 5.12]. It follows from the associativity of
the projective tensor products (cf. [6, p. 51]) that T(H)R&T(K)sa = (HM&H$)®T(K)sa

has the Radon-Nikodym property (cf. [5, p. 249]). Further, it is easy to verify that
T(H)sa&T(K)sacT(H)R<&T(K)sa. Hence T(H)sa®T(K)sa has the Radon-Nikodym
property.

LEMMA 4. Let M and N be two type I JBW-/actors with preduals M* and N%
respectively. Then the projective tensor product Mx&N* has the Radon-Nikodym property.

Proof. As in Proposition 1, it suffices to consider the case in which MQB(H) and
N^B(K) are irreducible JW-algebras on some Hilbert spaces H and K with *-
antiautomorphisms $: B(H)^B(H) and ^ : B(K)^B(K) such that ±(I + <&): T(H)sa -*
T{H)m and ^(1+^): T(K)sa -* T(K)sa are projections with norm =£l and M* =
&I + Q)T(H)m, N* = ±(I + V)T(K)sa. Thus, by [9, Theorem 3.10], we have M^N^Z
T(H)sa&T(K)sa. Therefore M*<g>N* has the Radon-Nikodym property.

THEOREM 5. Let A and B be JB-algebras such that A* and B* have the Radon-
Nikodym property. Then the projective tensor product A*<8>B* also has the Radon-
Nikodym property.

Proof. By Theorem 3, A** = I M ° and B** = 'ZMfi are direct sums of type I

JBW-factors Ma,M0 with A* = (zM*\ and B* = (lJVfg] where MJ and M% are

preduals of Ma and Me respectively. Thus we have

(cf[6,p.46])
a, 3

which has the Radon-Nikodym property by the above lemma.
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