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Abstract

For diffusion problems, the boundary conditions are specified at two distinct points,
yielding a two end-point boundary value problem which normally requires iterative
techniques. For spherical geometry, it is possible to specify the boundary conditions at
the same points, approximately, by using an optimization principle for arbitrary diffusiv-
ity. When the diffusivity obeys a power or an exponential law, a first integral exists and
iteration can be avoided. For those two exact cases, it is shown that the general
optimization result is extremely accurate when diffusivity increases rapidly with con-
centration.

1. Introduction

The nonlinear diffusion equation

dc/dt = V.(DVe¢) (1.1)
occurs in a variety of scientific and technological fields, for example, hydrology,
soil physics, metallurgy, chemical reactors, chromatography and the drying of
grains, paper, wood, bricks, ceramics and so on. Hence there is the continuing
interest in the understanding of the nature of its solutions. A general class of
solutions, in particular, has been studied when only one geometrical dimension,
£, enters the problem. In one dimension, £ is the distance from a plane source, or
from a cylindrical or spherical source in two and three dimensions. For this
general class and in three dimensions, (1.1) reduces to

dc/9t = £23(¢2Ddc/3t) /L. (1.2)
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We are interested in a similarity solution when only the independent variable
b = £t‘%, enters the problem. The amount of material, M = 47 [ c£%d¢, is then
proportional to 7*/2? at any time, and the flux of material entering the system
q = dM/ dt, is proportional to t3. The present similarity solution implies that we
can define a positive constant, Q, such that ¢ = 47er%. Equation (1.2) then

becomes
~3¢ do/d = ¢ $°Dde /dp ]|/ d3, {13)
and, by integration,
1 ¢ L
D = -5 ¢ (dg/dc) fo 3(?) de, (14)

where concentrations are measured relative to the zero initial concentration and
the latter is assumed to be uniform. Note that, since d¢/dc — ¢ as t — 0, the
lower limit in the integral entering (1.4) must be zero if D is to remain finite.

As long as the diffusivity is bounded, it is also clear that, since g is
proportional to t]i, the concentration at £ = 0 would tend to increase without
limit at ¢ = 0 if (1.4) held there. This of course cannot happen physically. Thus,
we consider the case when ¢ has a maximum value called the saturated
concentration. This saturated concentration is, by definition, taken as unity in
the following. Hence there is some value, ¢,, as yet unknown, such that (1.4)
holds only for ¢ > ¢,, that is, in the unsaturated zone. In the saturated zone we
have, by definition,

c=1 for¢ < ¢, (1.5)
The value of ¢; must of course be related to the imposed flux.

Finally, ¢ satisfies equation (1.5) in the saturated zone and equation (1.4) or
(1.3) in the unsaturated region, that is, for ¢ > ¢,. For a given ¢,, the problem
can be entirely solved with the conditions, ¢ = 1 at ¢ = ¢, and ¢ — 0 as ¢ — c0.
However @, rather than ¢,, is normally given and those two quantities are
related by overall conservation of mass, that is, applying equation (1.4) at¢ = 1,
or

20 =f01 ¢ d. (1.6)

Hence, in principle, the problem is solved for an aribtrary ¢,, yielding ¢(c, ¢,);
then equation (1.6) allows us to relate ¢, and Q.

The experimental determination of D(c) is often carried out by measuring
¢(c) in one dimension, [4], [6], [3]. The two dimensional experiment has also
been used for that purpose (for example, see [11] and [13]). The three dimen-
sional equation (1.4), however, has apparently not been used in the past. It
would, however, be the best choice when properties vary with position, as is
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often the case, for example, in soil physics, [2]. That is, one and two dimensional
experiments involve diffusion from a plane and a line, while in three dimensions
diffusion is around a point source. Also, the more limited extent of the source
requires the use of less material, a useful consideration in field experiments. An
extensive literature exists concerning the similarity solutions of the diffusion
equation, that is, calculating ¢ when D is given, in one, and to a lesser extent, in
two dimensions (see, for example, {4] and [8]). We shall now study some
properties of the solutions in three dimensions. First, an optimization principle is
derived and its physical implications given. Then an exact class of solutions is
obtained when (1.4) has a first integral. Comparison of the two results will
finally illustrate the importance and validity of the optimization principle.

2. Optimization

It is straightforward to check that the following integral, 7, is stationary when
(1.4) holds

1=f0'{401nd

%.— ¢2} de; 21

that is, (1.4) is the Euler-Lagrange equation associated with (2.1). Of course, an
optimization principle is useful only if the optimized parameter is needed in
practice. Here the optimization principle will be useful if ¢, can be predicted
accurately. Numerical integration of equation (1.4) can then be carried out
easily for ¢ > ¢, since, at ¢ = ¢,, dp/dc is given by the imposed flux and ¢ = 1
from the saturation condition.

In one dimension a similar principle exists, [7] and [1], when the concentration
at the surface £ = 0 is, by definition, taken as unity. It was shown that if D
varies rapidly with ¢, then the optimization principle leads to a boundary
condition at ¢ = 0, which, together with ¢ =1 at ¢ =0, allows the direct
numerical evaluation of the one-dimensional similarity solution. Without optimi-
zation, the condition ¢ — 0 as p — oo must be used, which is not applied at the
same point as the condition ¢ =1 at ¢ = 0. Hence the solution is normally
obtained by cumbersome numerical iterations when the optimization result is
not used. The three dimensional case considered here follows a similar scenario.

As in one dimension, we expect that the optimization principle will be useful
when D increases rapidly with ¢. This is an important case, not only because
standard linearization techniques do not apply, but also because it is physically
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relevant in many practical cases. For instance, water diffusion in soil is often
represented, [10], by

D = D, exp(u(c - 1), 22)

with p taking values between 8 and 10. For this diffusivity, and in general for
any rapidly increasing diffusivity, we define a small parameter e, as,

e= (v — Apa. /(" ) 9 1\

A A VAR (24
The limit e —» 0 corresponds to a diffusivity different from zero only when
¢ = 1; for that limit ¢ is then a constant, independent of ¢, and [§ ¢> 4¢ in (1.4)
is proportional to ¢. When ¢ is small, rather than zero, this last integral will not -
be exactly proportional to ¢, but will have a mild dependence on ¢, compared to
that of D. Let us define then a function f(c), such that f(1) = 1 and replace
115 () dc by [ fA]”' in (1.4) where A is an unknown constant.

Then from (1.4)

o' =97 =Af ' fDde. 2.4)
If f(c) were exact, that is, if we had
— € 3 C N
o) =2/ [A [ 4@ 2| 25)

A would be equal to Q.

However, to apply the optimization principle, some approximate choice of f
can be made, for example, f= ¢, or f= 1 and then A is determined for that
choice of f to optimize the estimate of ¢,. The value of A will then differ from
Q7. We shall see later that our results are essentially independent of f and
hence it is not necessary to replace f by any explicit function. Replacing ¢ in
(2.1) by its value in (2.5) and writing dI /d\ = 0, yields,

1 1
2 fo Ddc = fo (67! — ¢7")¢? de. (2.6)

Note that direct integration of (1.4) yields (2.6). However many other integral
conditions could have been obtained from (1.4). Overall mass conservation
could also be used by applying (1.4) at ¢ = 1. However all such conditions are
not optimal and lead to inaccurate relations between ¢, and Q. That is, (2.6) will
be the appropriate condition, because it is obtained from an optimization
principle. Replacing ¢ by its expression in (2.4) yields A. Let us rewrite (2.6) as

1 1
2 fo ' Ddc = fo o*de[o7' —¢5'] + fo (90" — 079 dc, 2.7

where ¢, characterizes the wetting front position, for example, the value of ¢ for
¢ ~0. Note that the value of ¢ for ¢ = 0, strictly, could be infinite depending on
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the behaviour of fD as ¢ — 0. However, if this difficulty arises it is easily
removed either by defining ¢, for a value of ¢ small but non zero, or by taking
J =1 to define a finite ¢ in (2.5). Whatever the definition of ¢, the second term
in the right hand side of (2.7) is an order & smaller than the first. Hence, limiting
ourselves to the first two orders in (2.7), the second term can be calculated to its
lowest order only, or, see the Appendix,

J; pde = (87" = 45")@ ~ §(85 — 9D 29)

If, in (1.6), ¢ is replaced by ¢, — (¢ — ¢), we obtain, up to the second order,
20 = ¢3{1 +[0,/9 + 362/ + In(¢1/90) — 3 ¢} (29)

Eliminating ¢, between (2.8) and (2.9) allows us to find ¢, for a given soil when
Q is given, independently of the exact choice for f and ¢,. This was of course the
aim of the optimization method; in addition, note that ¢, is only an inter-
mediary in the calculations so that its exact definition is irrelevant. It must also
be remembered that (2.8) and (2.9) are approximate, that is, terms of order
O(e?), were ignored. In the next paragraph we shall assess the precision of these
relations for two general classes of soils, by comparison with the exact solutions.
These exact solutions are now found when first integrals to (1.4) exist.

3. First integrals

First integrals of (1.3) exist when D belongs to certain classes of functions. A
general method discussed in [5] is followed here. Setting

u= ¢/D‘5, 3.1)
and
w=3u + D du/dD, 3.2)
(1.4) becomes,
3+ (w—u/2) d(uw™)/du + ww™'[ D> d(D>* dc/dD)/dc] = 0,
(3.3)

which represents a first integral if the term in the square brackets is constant. Or,
by integration,

dD/dc = D/[ n+ V"c], 34)
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where p and v are arbitrary constants. Two general classes of solutions result
from (3.4). If »~! = 0, then D is of the form,

D = D, exp p(c — 1), (3.5)

where D, is a constant and p > 0. If »™' 0, then D is proportional to
(p + v7'c)’. Taking (u + »7'c) as the new concentration, which is equivalent to
taking u = 0 without loss of generality, then

D = D¢’ (3.6)

where D, is a constant, and » > 0. Those two classes of solutions, corresponding
to the diffusivity obeying an exponential and a power law for arbitrary exponent
will allow us, in particular, to check the validity of the optimization result.
Equation (3.3) becomes

2430 + ww (3 +v7") + (w — Ju)udw™ /du = 0. (3.7

Note the interesting result, which we shall use later, that p does not enter in
(3.7), hence the differential equation is independent of the diffusivity when the
exponential law holds. Let us consider the behaviour of the solutions as ¢ — 0,
that is, ¥ — oo. For large u, »™' 5= 0, we have by a straightforward expansion

wl=-lyu—=3ul/(1+ v )+ 12473/ (2 + v)(¥ + 1)) + O(u3),(3.8)

which shows that as ¢ — 0, ¢ is finite while dc/d¢ is infinite, as expected
physically since D(0) = 0. On the other hand, for the exponential case, D(0) #
0, hence, as ¢ — 0, ¢ — oo and dc/dp — 0. Then, (3.7) shows that

wl >~ C exp(-u*/4) asu— oo, (3.9)

where the constant, C, is a priori unknown, that is, it depends on the particular
problem being solved.

Because of their different behaviour as u — oo, the solutions for power and
exponential diffusivities are now considered separately.

4. Power law

Numerical integration of (3.7) was carried out using a fourth order standard
Runge-Kutta integration. The starting point was taken for u = 50 which is large
enough for the third term in (3.8) to be negligible. Hence (3.8) could be used
reliably to calculate w corresponding to u = 50.
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TaBLE 1

Exact positions of the saturated front ¢,/ D!/2 obtained by numerical integration
of (3.7) when D = D¢’ for various values of », and for various values of the

303

flux 9/ D2
Q/D¥* »v=10 v=2_8 r==~6 vr=4 r=2

2.0 1.4808338 1.4592754 1.4267657 1.3723834 1.2635879
1.9 1.4523489 1.4305360 1.3976871 1.3428529 1.2335782
1.8 1.4228011 1.4007208 1.3675179 1.3122182 1.2024748
1.7 1.3920876 1.3697257 1.3361530 1.2803743 1.1701750
1.6 1.3600886 1.3374297 1.3034701 1.2471991 1.1365647
1.5 1.3266635 1.3036908 1.2693261 1.1212549 1.1101508
14 1.2916407 1.2683408 1.2335517 1.1762581 1.0648468
1.3 1.2548360 1.2311784 1.1959443 1.1381235 1.0263932
1.2 1.2159920 1.1919592 1.1562586 1.0979032 0.9859221
1.1 1.1748156 1.1503823 1.1141929 1.0553006 0.9431625
1.0 1.1309310 1.1060708 1.0693703 1.0099464 0.8977768
0.9 1.0838608 1.1058542 1.0213103 0.9613723 0.8493449
0.8 1.0329739 1.0071672 0.9693853 0.8970519 0.7973267
0.7 0.9774199 0.9510921 0.9127519 0.8519303 0.7410164
0.6 0.9160031 0.8889123 0.8502344 0.7891327 0.6794563
0.5 0.8469585 0.8195084 0.7801161 0.7189625 0.6112989
04 0.7675036 0.7394947 0.6997293 0.6389495 0.5345466
0.3 0.6728179 0.6443552 0.6045473 0.5449907 0.4460187
0.2 0.5532310 0.5247603 0.4857765 0.4293668 0.3400854
0.1 0.3833401 0.3565894 0.3216377 0.2739800 0.2048061
0.09 0.3608949 0.3348183 0.3007277 0.2546835 0.1887288
0.08 0.3373072 0.3116100 0.2785485 0.2343679 0.1720063
0.07 03116775 0.2867135 0.2548949 0.2128875 0.1545662
0.06 0.2838301 0.2597988 0.2295016 0.1900584 0.1363200
0.05 0.2532406 0.2304177 0.2020153 0.1656420 0.1171582
0.04 0.2191517 0.1979341 0.1719455 0.1393181 9.0969110
0.03 0.1803966 0.1613891 0.1385743 0.1106352 0.0748304
0.02 0.1349962 0.1192031 0.1007608 0.0789105 0.0525229
0.01 0.0789912 0.0683425 0.0564222 0.0429743 0.0265170
0.001 0.0101762 0.0084537 0.0048465 —

0.0066782

Table 1 gives values of u, = ¢,/ D|/? for various values of » and Q / D}/? where,
from the definition of the flux, saturation is obtained from

Q/ DY = witvhi
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Table 2 gives the corresponding results from the optimization procedure. In the
present case e = 1 /(v + 2) and [} Ddc = D,/(v + 1) in (2.8) and (2.9).

TABLE 2
Positions of the saturated front ¢,/ D}/? obtained by optimization from (2.8)
and (2.9), when D = D,c?, for various values of » and Q/ D{/>.

Q/D}* v=10 v =28 v==6 v=4 v=2

2.0 1.4808359 1.4592042 1.4265946 1.3718601 1.2611401
1.9 1.4523487 14304620 1.3975102 1.3423149 1.2310921
1.8 1.4227985 1.4006438 1.3673347 1.3116647 1.1999495
1.7 1.3920823 1.3696456 1.3359630 1.2798044 1.1676118
1.6 1.3600804 1.3373461 1.3032728 1.2466118 1.1339632
1.5 1.3266523 1.3036037 1.2691209 1.2119441 1.0988691
1.4 1.2916315 1.2682493 1.2333379 1.1756330 1.0621716
1.3 1.2548183 1.2310823 1.1957212 1.1137477 1.0238416
1.2 1.2159704 1.1918580 1.1560259 1.0972355 0.9831830
1.1 1.1747893 1.1502762 1.1113948 1.0546099 1.9403970
1.0 1.1309002 1.1059575 1.0691136 1.0092315 0.8949927
0.9 1.0838238 1.0584223 1.0210400 0.9606323 0.8455211
0.8 1.0329306 1.0070179 1.9691002 1.9082990 1.7945409
0.7 0.9773695 0.9509540 0.9124504 0.8511395 0.7382588
0.6 0.9159443 0.8889751 0.8499151 0.7883184 0.6767591
0.5 0.8468899 0.8193472 0.7797780 0.7181299 0.6070833
04 0.7674232 0.7393194 0.6993725 0.6381099 0.5303895
03 0.6727236 0.6441648 0.6041755 0.5437246 0.4420654
0.2 0.5531212 0.5245232 0.4852155 0.4280974 0.3366500
0.1 0.3831606 0.3563986 0.3210816 0.2729017 0.2027049
0.09 03609173 0.3346331 0.3004364 0.2536536 0.1868554
0.09 03371233 0.3114322 0.2780180 0.2333969 0.1703902
0.07  0.3114928 0.2865452 0.2543848 0.2119883 0.1532412
0.06  0.2836463 0.2596428 0.2290197 0.1892475 0.1353265
005  0.2530604 0.2302777 0.2015719 0.1649407 0.1165447
004  0.2189795 0.1976744 0.1715555 0.1387542 0.0967665
0.03  0.1802401 0.1611643 0.1382593 0.1102462 0.0758198
0.02  0.1348695 0.1190348 0.1005545 0.0787470 0.0534604
0.01 0.0789235 0.0682709 0.0563772 0.0430991 0.0293046

0.001 0.0102073 0.0085093 0.0067903 0.0051454 —

Eliminating Q in (2.8), using its value in (2.9), gives ¢, for given ¢,/¢,. This
expression can then be used to eliminate ¢g in (2.9), resulting in a relationship
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between Q and ¢, /¢, only. Hence for given Q, ¢,/¢, is easily calculated, then
¢ and finally ¢,. The results are shown in Table 2, for the same values of » and
Q/D}? as in Table 1. Comparison of the two tables show the remarkable
agreement between the exact values of Table 1 and the approximate values
obtained by optimization in Table 2. As expected, the agreement is better as »
increases. Even for » as low as 2, the error is at most 1% if Q/D}/? is not too
small, for example, larger than about 0.03. This ensures that the saturated region
contains 1% or more of the total amount of material. For vanishing fluxes, the
saturated zone is relatively small and its extent more difficult to predict by
optimization and the more so for lower values of ». When Q/D?/? is as large as
2, or larger, the saturated zone contains a sizeable fraction of the total amount
of material, and the approximate result is numerically very accurate, and again

the accuracy increases with increasing v. :

The two tables show explicitly the precision of the optimization procedure
when the diffusivity obeys a power law. Furthermore, they may also be used to
obtain some estimate of the expected error when D does not exactly obey a
power law. Then, for ¢ given by (2.3), an equivalent » is obtained from
e = 1/(» + 2). If the error then deduced from Tables 1 and 2 is acceptable, (2.8)
and (2.9) can be used to calculate ¢, for an arbitrary D and a given Q. Knowing
¢, and Q then allows the straightforward numerical integration of (1.4) without
cumbersome iteration.

We should also mention that when D obeys a power law, (1.2) can be reduced
to a form similar to (1.4) when g is proportional to any power of time. This
particular case, which has been studied for the one dimensional case [9], [12],
can be quite useful in practice. However, contrary to the case studied here and
represented by (1.4), it cannot be extended to an arbitrary diffusivity.

5. Exponential law

When the diffusivity obeys (2.2) the optimization procedure remains as before
and (2.8) and (2.9) yield u, and w, when Q/D}/? and u are given. As already
mentioned, (3.7) is independent of the diffusivity in that case. It is then possible
to solve (3.7) numerically, again by a fourth order Runge-Kutta method, with
the initial point (u,, w,) obtained by optimization. Then (3.2) can be used to
obtain the corresponding exponent of the diffusivity, u*, as

p* =fu°°(%u - w) du, (5.1)

where the integration is carried out numerically. Clearly u* will be different
from u, the exponent of the diffusivity used in the optimization procedure to
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calculate the initial point (u,, w,). Indeed, the difference between u and p* gives
a convenient measure of the error in the optimization procedure.

TABLE 3
Exact values of p* when D = D, exp(p*(c — 1)) obtained numerically for given
values of the flux, @/ D{/? and saturated front positions. The latter are chosen
to be the same front positions given by optimization from (2.8) and (2.9), when
D is taken as D, exp(u(c — 1)).

Q/1)|3/2 p=10 p=2_8 p=206 p=4 p=2

20 10.000743 8.001718 6.004004 4.013487 2.037667
1.8 10.000853 8.001743 6.004810 4.014935 2.040362
1.6 10.001011 8.002224 6.005389 4.016658 2.043760
1.4 10.001210 8.002589 6.006202 4.018854 2.047042
1.2 10.001477 8.002070 6.007268 4.021655 2.051222
1.0 10.001843 8.003740 6.008726 4.025350 2.056140
0.8 10.002398 8.004724 6.010831 4.030438 2.061943
0.6 10.003297 8.006307 6.014113 4.037917 2.068677
0.7 10.005004 8.009227 6.019921 4.049839 2.074660
0.2 10.009360 8.016319 6.032980 4.072181 2.076580
0.18 10.010200 8.017624 6.035258 4.075525 2.075164
0.16 10011189 8.010151 6.037876 4.077145 2.073034
0.14 10.012369 8.020960 6.040916 4.083065 2.069900
0.12 10.013819 8.023133 6.044499 4.087320 2.065301
0.10 10.015631 8.025801 6.048802 4.091853 2.058456
0.08 10.017975 8.029203 6.054082 4.096496 2.047899
0.06 10.021137 8.033664 6.060817 4.100688 2.030381
0.04 10.025698 8.039918 6.069649 4.102446 1.995494

0.02 10.033079 8.049814 6.082204 4.091899 —

Table 3 gives p* for various values of @/ D/? and p. As in the previous case,

the error increases when Q and p decrease. Again this table could be used to
estimate the error of optimization when D does not obey an exponential law
when p == 1 /¢, with ¢ calculated from(2.3). To compare the errors predicted in
Tables 1 and 2 and Table 3, note that for the same ¢, p ~ » + 2, and that the
relative error in ¢, predicted by optimization is of the order of (p* — p)/u’
Under those conditions, both predict errors of the same order of magnitude for
the same Q/ D}/? and e. This suggests that prediction of the optimization error
when D does not obey a power or an exponential law will be adequate.
However, use of Tables 1 and 2 which give directly the error on ¢, is preferable
in practice.
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6. Summary

In summary, we have developed a general optimization procedure which
predicts, approximately, the position of the saturated front for a three dimen-
sional diffusion problem. Knowledge of this position permits the straightforward
integration of the diffusion equation. An estimate of the optimization error can
also be obtained from exact results for special diffusivity functions. The optimi-
zation result can be used with confidence when the diffusivity increases rapidly
with concentration, near saturation. It is also found that the error is less for large
fluxes at the source.
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Appendix: Derivation of (2.8) and (2.9)

In the calculations, we limit ourselves to the main term and one correction of
order e, that is, we neglect higher order terms. In (2.7) we have

1

fo $* de[ 97" — ¢5'] = 20[ 7' — #5'], (A1)

the other integral is obviously of a smaller order, that is, it is a correction of

order ¢, hence we have to calculate it to its lower order only. Using (2.5) we can
write,

5t = o) de = [ A" s Dae 97! Afc'fDdE]_B de.  (A2)

We now recognise that, to the lowest order, which is all we are interested in, and
for ¢ near one, where the main contribution to the integral takes place, since D
increases rapidly with ¢, then

f * f Ddé =~ ofD, (A3)
0

where a is a constant.
Note that, to the lowest order, we could also replace f by one in (A2) and
(A3). We then obtain

fol(¢6’ —¢ )¢ dc~a fo : AfD[¢," A f : fodzr de, (A4)
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or,
1
S, @' = 97)¢? de =4a[ 9} ~ 93] (AS)

An estimate of « is obtained by integration of (A3) for f = 1, that is, to the
lowest order, yielding

a :fnl(l — ¢)Ddc/ (j;l Ddc), (A6)

which shows that a is equal to ¢, as defined in (2.3). Using (Al) and (A5) to
eliminate the integrals in (2.7) yields (2.8).

The derivation of (2.9) proceeds along the same lines. Starting from (1.6) we
have to estimate

1 1
J, #de=ad+ [ (5= ¢d) e, (A7)

where the second integral is an order of magnitude smaller than ¢3 and hence
has to be calculated to its lowest order only. Using (A3) and remembering that
« = g, we have

f’(¢3 — $3) de = _ef" SB[ +32+3)/(1+ 2] dz,  (A8)
0 (o
where § = ¢,/¢, — 1. By elementary integration, (A8) yields (2.9).
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